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Background:Validating the high-risk (HR) and ultra-high-risk (UHR) stages of bipolar disorder (BP)may help en-
able early intervention strategies.
Methods:We followed up with 44 offspring of parents with BP, subdividing into the HR and UHR categories. The
offspring were aged 8–28 years and were free of any current DSM-IV diagnoses. Our multilevel, integrative ap-
proach encompassed gray matter (GM) volumes, brain network connectivity, neuropsychological performance,
and clinical outcomes.
Findings: Comparedwith the healthy controls (HCs) (n= 33), the HR offspring (n=26) showed GM volume re-
ductions in the right orbitofrontal cortex. Comparedwith the HR offspring, the UHR offspring (n=18) exhibited
increased GM volumes in four regions. Both the HR and UHR offspring displayed abnormalities in the inferior oc-
cipital cortex regarding themeasures of degree and centrality, reflecting the connections and roles of the region,
respectively. In theUHR versus theHR offspring, the UHR offspring exhibited upwards-shifted small world topol-
ogies that reflect high clustering and efficiency in the brain networks. Compared with the HCs, the UHR offspring
had significantly lower assortativity, which was suggestive of vulnerability. Finally, processing speed, visual–

spatial, and general function were impaired in the UHR offspring but not in the HR offspring.
Interpretation: The abnormalities observed in the HR offspring appear to be inherited, whereas those associated
with the UHR offspring represent stage-specific changes predisposing them to developing the disorder.
© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Bipolar disorder (BP) is a major psychiatric disorder that is disabling
and recurrent. It is highly heritable (more than 70%) (Tsuang and
Faraone, 2000) and is characterized byhypo/manic episodes. Pioneering
work on the trajectory of BP has identified early-risk syndromes that
precede the official onset (Akiskal et al., 1985; Duffy et al., 2014;
Mesman et al., 2013) and are proposed to represent early stages in the
development of BP (Duffy et al., 2014). Identifying the early stages of
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BP is important for prevention and early intervention strategies, which
have been shown to be successful in early psychosis and can avert or
delay the transition from clinically ultra-high-risk conditions to a full
psychotic disorder (McGorry et al., 2009). The early symptoms (and
syndromes) that precede full-blown BP are usually non-specific during
childhood (e.g., anxiety, sleep disturbance, and attention deficit hyper-
activity disorder (ADHD) symptoms/signs) and thenmanifest as adjust-
ment disorder during early adolescence and later as subthreshold
depression and/or hypomania that falls short of the official criteria
(Akiskal et al., 1985; Correll et al., 2014; Duffy et al., 2014; Egeland
et al., 2000; Mesman et al., 2013). In a Canadian follow-up study (up
to 16 years) of the offspring of parents with BP, the accumulated inci-
dence of majormood disorders (depressive spectrum and bipolar disor-
ders) was unfortunately high — 83.3% (Duffy et al., 2014). Another
Dutch study of genetically high-risk offspring (12 years of follow-up)
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showed that 72% of the offspring developed a lifetime DSM-IV (Diag-
nostic and Statistical Manual of Mental Disorders, 4th Edition) axis I
disorder (Mesman et al., 2013). Furthermore, in modeling the develop-
mental stages of BP – from non-specific symptoms, followed by minor
mood disorder, major depressive episodes, and finally hypo/manic epi-
sodes – once entering the model, these high-risk offspring progressed
linearly through the stages without skipping any stage (Duffy et al.,
2014), which suggests a progressive process and an urgent need for in-
tervention. Recently, clinical staging models for BP that cut across the
dichotomous category of the present classification systems have been
proposed with attempts at better understanding the underlying patho-
physiology and providing potential targets for early intervention (Frank
et al., 2014; Scott et al., 2013). The clinical staging models hypothesize
that there are stages (0, 1a and 1b) that precede full-blown BP. Stage
0 and stage 1amay together represent a phase of biological vulnerability
(i.e., genetic risk) with no or mild, non-specific symptoms that can be
subsumed into the HR stage (Scott et al., 2013), whereas stage 1b can
be described as ultra-high-risk (UHR), manifesting subthreshold
syndromes, alterations in cortical (and subcortical) volumes, and
deficits in cognitive function (Frank et al., 2014).

Interrogating the underlying pathophysiology prior to the full-
blownmanifestations can help clarify some confounding effects. For ex-
ample, extant neuroimaging research on established BP has suggested
that the volume of graymatter (GM) decreases in the regions underpin-
ning emotion processing and regulation and cognitive processes, such
as the ventrolateral prefrontal cortex (vlPFC), orbitofrontal cortex
(OFC) and amygdala (Phillips and Swartz, 2014). Nevertheless, these
changesmore likely reflect the net effect of inherited neuropathological
vulnerability and a number of contributing factors including illness pro-
gression, symptoms (e.g., psychotic symptoms), comorbid conditions,
andmedications such as lithium that can normalize or increase GM vol-
umes (Kalmar et al., 2009; Moore et al., 2000; Moorhead et al., 2007;
Nugent et al., 2006; Strasser et al., 2005).

Brain network analysis has been increasingly adopted in neurosci-
ence research. This method provides useful information about brain or-
ganization in terms of how spatially segregated brain regions are
integrated globally via connecting fiber tracts (i.e., an anatomical net-
work) to form an integrated system (for a comprehensive review, see
(Bullmore and Sporns, 2009)). Accumulating evidence suggests that
inter-regional integration is crucial for cognitive performance, particu-
larly for effortful psychological tasks, such as working memory
(Kitzbichler et al., 2011).Moreover, brain network analysis is particular-
ly helpful for research on those psychiatric disorders that are conceptu-
alized as dysconnectivity syndromes, such as schizophrenia and BP,
disorders that may be caused by the failure of integrating spatially dis-
tributed brain regions to form a large-scale network (Catani and
ffytche, 2005). Among measures of brain network topology, small-
world properties are useful for describing anatomical connectivity net-
works that reflect a high clustering of functionally associated regions
with short path length (high efficiency) (Bassett and Bullmore, 2006;
Bullmore and Sporns, 2012). These properties were reported to be her-
itable in twin studies (Smit et al., 2008), related to cognitive perfor-
mance (Micheloyannis et al., 2009), and significantly altered in
schizophrenia (Bassett et al., 2008; Liu et al., 2008) (a disorder sharing
many overlapping features with BP, including genetics). In contrast,
assortativity, an index that can be used tomeasure the robustness to as-
saults (i.e., structurally abnormal regions) of a brain network (Newman,
2002), may potentially assist in capturing the vulnerability of the UHR
stage of BP.

At the macroscopic level, cognitive deficits have been demonstrated
to be an important aspect of full-blown BP that adversely affects
the quality of life in people with the disorder (Wingo et al., 2009).
A significant research gap is whether cognitive deficits are the
consequences of the course of illness and its related factors, such as
medications (e.g., valproate) and recurrent subthreshold syndromes
(Martinez-Aran et al., 2004; Rosa et al., 2014; Xu et al., 2012), or are
inherited, e.g., the deficits in visual–spatial memory (Ferrier et al.,
2004) and working memory observed in the “unaffected” relatives of
patients with BP (Kulkarni et al., 2010). Indeed, our previous study
showed that patients with BP, following clinical remission from depres-
sion after six-week treatments, did not recover their processing speed
and visual–spatial memory functioning (Xu et al., 2012). To fill the re-
search gap, it is necessary to investigate whether cognitive deficits
exist in genetically high-risk individuals at the very early stages before
the onset of full-blown syndromes.

A multi-dimensional approach can inform complementary and mu-
tually informative connections between different levels of descriptions
across stages, thus yielding patterns of abnormalities (Phillips and
Kupfer, 2013). Such an approachmay assist in understanding how neu-
ral substrates affect cognitive function and behavioral phenotypes
across stages.

Given the above considerations, this study applied a multi-
dimensional approach to investigating neural correlates and cognitive
function at the HR and UHR stages of BP. We began by proposing oper-
ational UHR criteria for BP and delineating the clinical characteristics
and general functions for both theHR andUHR stages.We first searched
for structural abnormalities in the GM that form the neural basis of the
functional system by comparing HR offspring (stage 0 and stage 1a)
with healthy controls – neuroanatomical endophenotypes – and further
tested the validity of UHR (stage 1b) by comparing UHR with HR off-
spring as an attempt to dissect stage-specific (i.e., adaptive) from
inherited alterations. Then, in a regional-level network connectivity
analysis, we compared the degree and centrality of the prior identified
abnormal regions (reflecting the connections and roles of a region, re-
spectively, see Section 2), which could help elucidatewhether volumet-
ric changes in GM (i.e., GM reduction)were a consequence of the lack of
connecting fiber bundles.We also quantitatively examinedwhether the
significance (centrality) of the structurally abnormal regions would be
affected within the brain networks. Next, a whole-brain network topol-
ogy analysis was applied to encapsulate all the individual abnormalities
that reflect the whole-brain network properties, including small-world
and assortativity properties. Finally, at the cognitive function level, we
delineated whether cognitive deficits predate the onset, and if so, at
what stages; we then searched for their neural correlates.

We hypothesized that HR offspring versus healthy controls had de-
creased GM volumes in the regions underlying emotion processing
and regulation. Compared with HR offspring, UHR offspring might ex-
hibit decreased GM volumes in the regions (e.g., the OFC) related to
emotion processing and regulation and in the regions (e.g., the parietal
and occipital cortex) involved in the cognitive deficits of bipolar disor-
der (e.g., processing speed). For the brain network measures, HR and
UHR offspring may display impairments in the degree and centrality
of those abnormal regions identified by prior GM volume analyses
when compared to healthy controls. At the whole-brain level, small-
world properties in UHR offspring might be lower (worse) than those
in HR offspring and healthy controls. Compared to healthy controls,
UHR offspringmight display lower values in assortativity, which is sug-
gestive of vulnerability. Finally, we hypothesized that the deficits in pro-
cessing speed and visual–spatial memory existed prior to the official
onset of bipolar disorder (in the HR and/or UHR stages); there may be
a correlation between the cognitive deficits and GM volumes in those
structurally abnormal regions.

2. Methods

2.1. Participants

This study derived and extended from the project “The Recognition
and Early Intervention of Prodromal Bipolar Disorders (REI-PBD)”,
whose aims were to identify bipolar prodromal syndromes and to eval-
uate the effectiveness of exercise interventions for UHR offspring
(ClinicalTrials.gov Identifier: NCT01863628). The participants were
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offspring of parents with BP (bipolar I or bipolar II disorder), and the
parents referred their offspring to the project; they were recruited
fromMarch 2013 to January 2015. Parents with BP were initially identi-
fied from the Guangzhou Brain hospital (a tertiary national hospital) –
the earliest psychiatric hospital in China – where they received psychi-
atric services and from population-based registers. The study was ap-
proved by the Institutional Review Board of the Guangzhou Brain
Hospital. Written informed consent was obtained from all participants
and their parents when appropriate (i.e., age b18 years).

2.2. Procedures

Parentswith BPwith offspring aged 8–28years lacking a diagnosis of
any psychiatric disorder were interviewed; the diagnosis of proband BP
was based on the Structured Clinical Interview for DSM-IV-TR Axis I Dis-
orders, Patient Edition (SCID-I/P) and all available medical information,
including blood and brain-imaging tests and treatment history. The se-
lected age range for the offspring is important for testing our hypothe-
ses, given that i) the typical onset of BP is in adolescence or early
adulthood, ii) some individuals with bipolar disorder can manifest
symptoms as early as 8 years old, long before onset (Akiskal et al.,
1985; Duffy et al., 2014; Mesman et al., 2013), and iii) the period is de-
velopmentally crucial for structural maturation (Paus et al., 2008). The
offspring underwent in-depth and systematic assessments and were
prospectively followed up at several time points (scheduled at weeks
1, 2, 4, 8, and 12 for the UHR offspring) during the first 3 months and
then yearly (up to 2 years) or anytime therewere changes in symptoms.
In this process, we first applied a self-made, 74-item symptom checklist
(which consisted of a constellation of symptoms/signs encompassing
the commonly reported prodromal symptoms/signs and the defining
symptoms/signs by the inclusion criteria (below)) to assess current
symptoms and a modified retrospective instrument based on the Bipo-
lar Prodrome Symptom Scale-Retrospective: Patient Version (BPSS-R-
Pt) (Correll et al., 2007) to assess past symptoms. Second, the offspring
aged b18 yearswere assessed using the Schedule for Affective Disorders
and Schizophrenia for School-Aged Children: Present and Lifetime Ver-
sion (K-SADS-PL) or the SCID-I/P for offspring N18 years to exclude any
psychiatric disorders. Third, the Hamilton Depression Rating Scale
(HAM-D), the YoungMania Rating Scale (YMRS), and the Brief Psychiat-
ric Rating Scale (BPRS) were implemented to assess the extent of de-
pression, mania, and psychotic symptoms, respectively. Finally, the
Global Assessment of Functioning Scale (GAF)was used to assess gener-
al function, and a family history of psychiatric disorders was confirmed
using the Family Interview for Genetic Studies (FIGS). Of the 747 off-
spring with parents with BP screened by research psychiatrists, 554
were not eligible according to the inclusion and exclusion criteria
(e.g., having a psychiatric diagnosis, in treatment, or too young/old),
130 declined further participation, and 19 offspring did not complete
the MRI data collections. The resultant 44 offspring were included in
this study, with 18 offspring defined as UHR by the operational criteria
we tentatively proposed (below). Given that non-specific symptoms
are not uncommonly endorsed by high-risk offspring and that they
are usually transient and can be contingent, we subsumed stage 0 and
stage 1a into the HR stage, which is in agreement with the clinical stag-
ing model for psychotic and severe mood disorders (Scott et al., 2013).
Thirty-three age-matched healthy controls who were free of any psy-
chiatric disorders and had no family history of psychiatric disorders
were recruited by advertisement and word of mouth. They were sys-
tematically assessed in a similar fashion as the high-risk offspring.

2.3. Inclusion and Exclusion Criteria

The criteria for the UHR offspring were i) having at least one biolog-
ical parent with bipolar disorder (bipolar I and bipolar II) and ii) mani-
festing at least one of the following defining syndromes: 1) two
(or more) hypomania symptoms lasting at least 4 days but not meeting
DSM-IV hypomanic episode criteria; 2) two (ormore)major depressive
symptoms lasting at least 1 week but falling short of a major depressive
episode; 3) one (or more) of the following attenuated psychotic symp-
toms lasting at least 10 min for each manifestation and 2–7 manifesta-
tions per week for at least 3 months — ideas of reference, odd ideas,
odd beliefs, unusual perceptual experiences, bizarre thoughts or speech,
grandiosity, suspicious ideas, paranoid ideas, odd mannerisms, halluci-
nations, disorganized/catatonic behaviors; and 4) two (or more) of the
hyperactivity and impulsivity symptoms/signs defined by the DSM-IV
for attention deficit hyperactivity disorder (ADHD) that were observ-
able by teachers, peers, and/or parents.

The construction of this UHR criteria referred to the clinical staging
model for psychotic disorder and severe mood disorder recently pro-
posed by Scott and colleagues (Scott et al., 2013), which is based on in-
tervention data in early psychosis (McGorry et al., 2006) and on the
studies of prodromal symptoms of bipolar disorder (Bechdolf et al.,
2012). According to the clinical staging model (Scott et al., 2013), in
the UHR stage, high-risk individuals manifest subthreshold syndromes
that fall short of criteria for a psychiatric disorder. Thus, this study con-
sidered any established psychiatric disorders as exclusion criteria
(below). Moreover, because commonly reported “prodromal” symp-
toms consist of manic and depressive symptoms and ADHD hyperactiv-
ity and impulsivity symptoms/signs (Bechdolf et al., 2012), these
symptoms were included in the UHR criteria. Though attenuated psy-
chotic symptoms were reported prior to bipolar disorder, they were
less frequently presented compared tomanic and depressive symptoms
(Correll et al., 2014). As such, the UHR criteria required the participants
to have at least one biological parent with bipolar disorder (Duffy,
2014b) to increase the specificity of the sub-syndromes in terms of pro-
gression into bipolar disorder. This requirement may be particularly
helpful for the ADHD symptoms and attenuated psychotic symptoms
that may lack specificity for predicting bipolar disorder.

The following conditionswere excluded: DSM-IV-defined disorders;
serious general medical illness; mental retardation; the prescription of
psychoactive drugs or thyroxine; the inability to complete neuropsy-
chological tests because of physical conditions; and drug or alcohol use.

2.4. Neuroimaging Data

T1-weighted and diffusion tensor images were acquired using a 3.0
Tesla scanner (Philips, Best, Netherlands). The parameters of the T1-
weighted images and the processing of these images are reported in
supplementary Appendix A. The parameters used to obtain the diffusion
tensor images and themethods of constructing the anatomical network
connectivitymatrix are fully reported in Appendix B. Figure S1describes
a schematic of the brain network construction.

Graphmetricswere computed inMATLABwith the Brain Connectiv-
ity Toolbox (www.brain-connectivity-toolbox.net). Two node-level
network measurements were applied to investigate our research ques-
tions: i) degree of a region (node), indicating the number of tracts
(edges) linking it to the rest of the network; and ii) the betweenness
centrality of a region, measuring the fraction of the shortest paths be-
tween any pair of regions that pass through it, which is indicative of
its structural or functional importance. The small-world property is
thought to reflect an economical trade-off between maximizing adap-
tive values and minimizing wiring costs (i.e., high clustering and high
efficiency) (Bassett and Bullmore, 2006; Bullmore and Sporns, 2012).
Assortativity indicates that nodes of high degrees tend to connect with
each other and can reflect the robustness to assaults to networks that
suffer from the structural integrity of the network. Themathematic def-
initions of all the network properties are reported in Appendix C.

2.5. Neuropsychological Performance

We applied the MATRICS Consensus Cognitive Battery (MCCB), sug-
gested by the International Society for Bipolar Disorder-Battery for

http://www.brain-connectivity-toolbox.net


Table 1
Demographic and clinical data in the offspring groups and healthy controls.

HR offspring
N = 26

UHR offspring
N = 18

HC
N = 33

F or X2 p Post hoca

Age at assessment, years 17.7 (5.4) 16.2 (7.0) 15.9 (4.4) 0.841 0.435 NA
Gender, female/male 15/11 9/9 18/15 0.254 0.881 NA
Right handedness, % 96.2 94.4 100 1.663 0.435 NA
Years of education 10.1 (3.9) 7.9 (4.5) 10.1 (3.8) 2.06 1 0.135 NA
HAM-D 0.8 (1.2) 8.0 (11.8) 0.3 (1.0) 11.721 b0.001 B N A; B N C
YMRS 0 (0) 4.4 (3.4) 0.2 (0.9) 22.724 b0.001 B N A; B N C
BPRS 18.2 (0.5) 23.9 (8.4) 18.4 (1.1) 12.725 b0.001 B N A; B N C
Global Assessment Scale 94.9 (2.8) 79.6 (14.7) 93.5 (4.4) 23.654 b0.001 A N B; C N B
TONI-3 26.1 (8.7) 26.3 (9.1) 29.9 (8.0) 1.818 0.170 NA

Abbreviations: HC, healthy controls; HR, high-risk; UHR, ultra-high-risk; NA, not applicable; HAM-D, Hamilton Depression Rating Scale; YMRS, Young Mania Rating Scale; BPRS, Brief
Psychiatric Rating Scale; and TONI-3, Test of Nonverbal Intelligence, Third Edition.
Note: A = high-risk offspring; B = ultra-high-risk offspring.

a The threshold for significance was p b 0.05 with the Bonferroni correction.
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Assessment of Neurocognition (ISBD-BANC), to assess neuropsychologi-
cal performance. We emphasized processing speed and visual–spatial
memory because our previous findings suggested that these functions
would not recover after clinical remission (Xu et al., 2012).

2.6. Statistical Analysis

Analysis of variance (ANOVA) and Chi-square tests were applied for
the demographic and clinical data. As in the T1-weighted image analy-
sis, two planned comparisons – HR offspring versus healthy controls
and UHR versus HR offspring – were conducted in the Statistical Para-
metric Mapping 8 software Package (SPM8; Wellcome Department of
Cognitive Neurology, London, UK). A preliminary whole-brain analysis
was performed using a statistical threshold of p b 0.001 and an extent
threshold of k N 50. Then, regions of an a priori mask that met the
threshold were analyzed with FWE-correction at the individual voxel
level for the mask. The significance threshold was set at p b 0.05. The
mask was drawn using the Wake Forest University Pick Atlas
(Maldjian et al., 2003),whichwasbased on previous research on bipolar
disorder (Nugent et al., 2006) and UHR psychosis (Pantelis et al., 2003),
including the superior prefrontal, orbital, cingulate, superior temporal
cortex and cerebellum. Moreover, different types of neuroimaging
data have suggested the involvement of the parietal and occipital cortex
in bipolar disorder (Cerullo et al., 2014; Fears et al., 2015; James et al.,
2011; Yuksel et al., 2015). Our previous study found that patients with
bipolar disorder did not recover their visual–spatial memory and
processing speed after clinical remission from depression, implying that
the deficits in these two domains may be serving as potential
neurocognitive endophenotypes (Xu et al., 2012). Furthermore, there is
some evidence suggesting an association between GM volumes and pro-
cessing speed in bipolar patients (Fears et al., 2015) and the role of the
Table 2
Differences in gray matter volumes for high-risk offspring versus healthy controls and ultra-hi

Regions BA Cluster sizea MN

X

HR offspring versus HC
Right OFC 11 90
Right cerebellum lobe NA 935

UHR versus HR offspring
Right SFG 10 118 1
Right PCC 31 118 1
Left middle and inferior OG 31/30 187 −4
Left SPC 7 59 −1

Abbreviations: HR, high-risk; HC, healthy controls; BA, Brodmann's areas; OFC, orbitofrontal co
SPC, superior parietal cortex.

a Statistics at voxel-level set to a minimum uncorrected threshold of p b 0.001, k N 50 voxel
b Montreal Neurological institute coordinates in millimeters.
c Family-wise error correction for multiple comparisons.
visual cortex (occipital region) in cognitive functioning (Cooke et al.,
2015; Fears et al., 2015). Thus, these two regions were added to the
mask. Age, gender, handedness, and total intracranial volume (the
brain volumes had been demodulated during the processing of the T1-
weighted images, Supplementary Appendix A) were included as
covariates.

To reduce multiple statistical testing, multivariate analysis of vari-
ance (MANOVA) was first applied to compare the degree (and central-
ity) of the regions that were identified by prior comparisons of gray
matter volumes between groups across the offspring and healthy con-
trol groups. Permutation tests were further applied to test the signifi-
cantly different measures identified by the MANOVA analysis, which
could be considered an attempt to control for type I error (Camargo
et al., 2008). MANOVAwas applied to compare neuropsychological per-
formance among groups,with age, gender, and years of education as co-
variates. Mixed-effect regression models were applied by modeling
membership (HR and UHR offspring) as a fixed factor and GM volumes
as covariates to examine the relationships between the GM volumes
and the cognitive deficits (beta, Wald X2, 95% confidence interval (CI)
and p value were reported).

3. Results

3.1. Clinical Characteristics and General Function

Thedemographic and clinical characteristics are shown in Table 1. Of
the 18 UHR offspring, 12 (66.7%)manifestedmanic sub-syndrome, nine
(50.0%) manifested depressive sub-syndrome, five (27.8%) manifested
hyperactivity and impulsivity symptoms/signs, and four manifested at-
tenuated psychotic symptoms (22.2%). The age of thefirst symptomand
the duration were on average 11.7 (SD = 5.4) years old and 4.4 (SD =
gh-risk offspring.

I coordinatesb T tests PFWE-corrected
c

Y Z

6 62 −20 4.10 0.023
8 −54 −6 4.41 0.029

5 59 3 3.89 0.023
5 −70 15 4.24 0.017
8 −79 0 4.19 0.033
5 −73 39 3.78 0.047

rtex; SFG, superior frontal gyrus; PCC, posterior cingulate cortex; OG, occipital gyrus; and

s.
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3.6) years, respectively. Three individuals developed full-blown BP
identified after follow-up. Apart from the depressive, manic, and psy-
chotic symptoms, general function measured by the GAF was signifi-
cantly worse in the UHR offspring (n = 26) than in the HR offspring
and healthy controls (n = 33) (p b 0.05, Bonferroni correction).

3.2. Voxel-Based Morphometry (VBM) Analysis

Compared with the healthy controls, the HR offspring showed signifi-
cantly lower GM volumes in the right OFC and the right cerebellum.
Compared to theHR offspring, the UHR offspring had significantly greater
GM volumes in four regions, including the right superior frontal gyrus,
posterior cingulate cortex, left parietal cortex, and the right middle and
inferior occipital gyrus (Table 2 and Fig. 1, FWE-corrected p b 0.05).

3.3. Regional-Level and Whole-Brain Network Analysis

For the abnormal regions that were identified in the prior VBM anal-
ysis, we examined the degree and centrality of these regions, which re-
flects the connection (of a region to the rest) and the importance of a
region in the brain network, respectively. Among the five regions, the
MANOVA analysis revealed that the degree of the left inferior occipital
gyrus was significantly different across the three groups (F = 5.541,
df= 2,68, p=0.006). The centrality of this regionwas also significantly
different across the three group (F = 3.22, df = 2,68, p = 0.047)
(Figure S2). The permutation tests (the permutation distribution is
shown in the supplementary materials) further revealed that both the
Fig. 1. (a) Turquoise and pink represent the regions showing significant changes in graymatter v
high-risk offspring, respectively. (b) The regions in which the high-risk offspring had significan
the ultra-high-risk offspring displayed significantly higher gray matter volumes than the high-
HR and UHR offspring had significantly fewer degrees of this region
than the healthy controls (p = 0.003 and p = 0.03, respectively), thus
indicating fewer connections from this region to other regions. The cen-
trality of the region was significantly lower in the HR offspring than in
the healthy controls (p = 0.021), whereas the UHR offspring showed
a similar trend, although it did not reach significance (p = 0.07).

A secondary analysis was conducted to examine the centrality of the
anterior cingulate cortex (ACC) in the offspring, as abnormalities in this
region have been reported in individualswhomet the criteria of “at-risk
mental state” (ARMS) (Lord et al., 2011). As shown in Table S1, both the
HR and UHR offspring displayed significantly lower centrality in com-
parison to healthy controls (permutation tests, p b 0.05). The centrality
of the ACC was significantly lower in the UHR offspring than that in the
HR offspring (permutation test, p = 0.006).

In the global-level network analysis (Table 3), the UHR offspring
displayed a significantly higher small-world property than the HR off-
spring (p= 0.030). As for assortativity, the UHR offspring displayed sig-
nificantly lower values than the healthy controls (p = 0.020), which is
suggestive of vulnerability,whereas theHRoffspringdid not display sig-
nificant differences from the healthy controls (p = 0.189).

3.4. Cognitive Function and Correlation Analysis

As shown in Table 3, compared to the healthy controls, theMANOVA
revealed that the UHR offspring displayed deficits in both processing
speed and visual-working memory (F = 6.109, df = 1,50, p = 0.017;
F = 4.669, df = 1,50, p = 0.036, respectively). The HR offspring
olumes in the high-risk offspring versus healthy controls and in the high-risk versus ultra-
tly lower graymatter volumes than the healthy controls. (c) and (d) The regions in which
risk offspring.



Table 3
Network properties of neuropsychological performance in the high-risk offspring, ultra-high-risk offspring, and healthy controls.

Groups Contrasts Permutation testsa

HR UHR HC p value

Small-world property (SD) 3.11 (0.30) 3.38 (0.50) 3.22 (0.44) HR versus HC 0.836
UHR versus HC 0.875
HR versus UHR 0.030

Assortativityb (median) 0.03 (0.03) 0.01 (0.02) 0.05 (0.04) HR versus HC 0.190
UHR versus HC 0.020
HR versus UHR 0.828

MANOVA

F(1,50) p value

Processing speedc 60.7 (12.3) 51.7 (10.5) 61.7 (8.7) HR versus HC 0.261 0.612
UHR versus HC 6.109 0.017

Visual–spatial memoryd 25.0 (5.8) 23.2 (5.6) 27.0 (5.1) HR versus HC 0.087 0.769
UHR versus HC 4.669 0.036

Abbreviations: HR, high-risk; UHR, ultra-high-risk; HC, healthy controls; SD, standard deviation; and MANOVA, Multivariate Analysis of Variance.
Notes:

a Number of resamples = 5000; the distribution of mean differences is shown in the supplementary materials.
b Shown as the mean (median); other data: mean (SD).
c Measured by the Brief Assessment of Cognition in Schizophrenia: Symbol Coding.
d Measured by the Brief Visuospatial Memory Test.
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were not significantly impaired in either processing speed or visual-
working memory (F = 0.261, df = 1,59, p = 0.612; F = 0.087, p =
0.769, respectively). The mixed-effect regression models found
that processing speed was significantly related to the GM volumes
of the three regions, including the right posterior cingulate cortex
(p = 0.005), right superior frontal gyrus (p = 0.011), and left superior
parietal cortex (p= 0.027). There were no significant relationships be-
tween visual–spatial memory and the GM volumes of the regions
(p N 0.05) (Table S2).

4. Discussion

This study provides preliminary evidence that some pathophysio-
logical changes (i.e., GMvolumes and brain networkmeasures)may be-
come apparent in certain early stages (i.e., the HR and UHR stages)
preceding the official onset of bipolar disorder. Some resultswere unex-
pected. For example, instead of decreased GM volumes, the UHR versus
HR offspring displayed increased GM volumes in some regions. UHR
versus HR offspring showed an upward-shifted small-world property
that reflects high clustering and short path lengths (discussed below).

At the macroscopic level, our data suggest that deficits in processing
speed and visual–spatial memory may exist in the UHR stage but not in
the HR stage. Moreover, the deficits in processing speed may be related
to the GM volumes in the right superior frontal gyrus, posterior cingu-
late cortex, and the left superior parietal cortex.

4.1. Changes in GM Volumes

In terms of structural abnormalities, the HR offspring showed a
volumetric reduction in the right OFC and the right cerebellum. The
OFC, the most inferior and ventral part of the prefrontal cortex,
has been found to be involved in set shifting and reversal learning
(Rygula et al., 2010), encoding reward values in reward processing
(Grabenhorst and Rolls, 2011), decision-making processes (Bechara
et al., 2000), and emotion processing (Liu et al., 2012), which may un-
derlie certain characteristics of BP, such as mood lability, mood dysregu-
lation, and reward sensitivity (Phillips and Swartz, 2014). Decreased
OFC volumes have been reported in pediatric and adult BP patients
(James et al., 2011; Stanfield et al., 2009), but a reduction in this region
has also been reported to relate to depressive symptoms (Nery et al.,
2009). By minimizing the effects of symptoms, this study indicates that
the decreased volumes in the two regions may represent genetic suscep-
tibility. In addition, the connections of the OFC with other regions might
not be impaired in the HR offspring in terms of the degree of this region
within the brain networks. Orbitofrontal reduction has also been ob-
served in those individuals with prodromal symptoms of psychosis who
were subsequently predisposed to psychosis (mainly schizophrenia and
BP with psychotic features) (Pantelis et al., 2003). In the UHR versus HR
offspring, there were increased GM volumes in several regions (most of
which were located in the parietal and occipital cortex), suggestive of
stage-specific changes that may predispose subjects to the full develop-
ment of BP. This finding is in agreement with research on UHR psychosis,
which shows that volumetric changes in prefrontal regions are related to
genetic susceptibility, whereas volumetric changes in the parietal and
temporal regions are related to the transition stage into psychotic disor-
der (the stage in which attenuated psychotic symptoms are manifested)
(Lawrie et al., 1999; Pantelis et al., 2003). This finding also coincides with
morphometric studies reporting that the structural abnormalities in unaf-
fected relatives of BP proband were relatively restricted to the prefrontal
cortex, whereas the widespread volumetric changes identified in pediat-
ric BP extended to the temporal, occipital and parietal cortexes and the
amygdala, some of which were associated with symptoms (Chang et al.,
2005; Frazier et al., 2005; Hajek et al., 2013; Matsuo et al., 2012; Nery
et al., 2009). The increased GM volumes observed in the UHR offspring
are unlikely to be protective factors because the selected age range
for the offspring represents the most at-risk time for the onset of
full-blown BP. Moreover, the UHR offspring manifested varying sub-
syndromes, and some of them received a diagnosis of full-blown BP dur-
ing follow-up. Furthermore, we found that there was an inverse relation-
ship between the GMvolumes from these regions and cognitive function.
During normative brain maturation from childhood to post-adolescence,
gray matter reductions are found in these regions, including in the supe-
rior frontal, parietal and occipital regions. Such graymatter reductions are
associated with increased brain growth (Sowell et al., 2001). As such, the
observation of increasedGMvolumes in theUHRoffspringmight indicate
disruptions in the process of brainmaturation that may predispose an in-
dividual to developing BP. To test this speculation, we conducted a com-
plementary analysis to examine differences in the relationship of age to
GM volumes in the four regions between the HR and UHR offspring.
Our speculation is supported by the results of this analysis, which showed
that there were differential relationships between age and GM volumes
across the HR and UHR offspring groups (supplementary Figure S7).

In addition, the increased volumes inUHRoffspringmay relate to the
phenomenon of “allostasis,” which refers to the body's reactions to re-
peated adverse physical or psychosocial conditions that cause stress
(McEwen, 2000). Allostasis is fundamentally crucial for adaptation, the
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maintenance of homeostasis and survival in the short term, which
might manifest as increased GM changes. However, over longer inter-
vals, prolonged reactions/over-compensationsmay lead to neurotoxici-
ty effects; such neurotoxicity effects could manifest as brain structure
atrophy (Drevets et al., 1997; Kasai et al., 2003; Moorhead et al.,
2007), as reported in individuals at UHR for psychosis over a period of
12 months or longer (Pantelis et al., 2003).

4.2. Brain Network Properties

At the finer-grain level, we observed that both the HR and UHR off-
spring displayed significantly fewer degrees of the inferior occipital re-
gion. This region is not critical for emotion processing and regulation,
dysfunction of which may underlie the clinical characteristics of BP
(Phillips and Swartz, 2014), e.g., mood instability andmanic symptoms.
Rather, the occipital cortex plays a key role in sensory function and visu-
al–spatial memory in particular (Cooke et al., 2015; Fears et al., 2015).
We performed an exploratory analysis (Pearson correlation) showing
that the degree of the inferior occipital cortex was positively associated
with processing speed and visual–spatial memory in the healthy con-
trols (p b 0.05). The finding of fewer degrees of the inferior occipital re-
gions is consistent with the observation of deficits in processing speed
and visual–spatial memory in the UHR offspring. This observation
seems to support the notion that abnormalities of the occipital region
may be related to the impairments of cognitive function in BP (Fears
et al., 2015; Lyoo et al., 2006). Additionally, it is possible that the involve-
ment of the inferior occipital region reflects the high vulnerability to de-
veloping severe forms of bipolar disorder because the abnormalities of
this site are relatively common in psychotic bipolar disorder,
schizoaffective disorder, (Ivleva et al., 2013), and poor-outcome BP
(Bonne et al., 1996). One study on schizophrenia found significantly
changed degrees in some regions, including the inferior occipital cortex
(Bassett et al., 2008). Moreover, the ARMS criteria were defined by
Yung et al. using the UHR criteria for the onset of psychotic disorders
(Yung et al., 2005). Lord et al. found that the centrality of this site was
associated with the severity of psychotic symptoms in ARMS individuals
(Lord et al., 2011). Using the present UHR criteria (which were more
specific to BP), this study found decreased centrality in the ACC in UHR
versus HR offspring, implying that the centrality of the ACC may be
related to the severity of symptoms that are not limited to psychotic
symptoms.

Small-world properties, which are characterized by high clustering
and short path lengths (high efficiency), support rapid synchronization
and information transfer across spatially separated regions (Bullmore
and Sporns, 2012). The development of a small-world topology is a
dynamic process, evolving from early brain development (b2 years)
(Fan et al., 2011) and demonstrating more long-distance connections
during late childhood and adolescence (Chen et al., 2013). Long-
distance connections facilitate information processing across regions
(high efficiency) and lead to shorter path lengths between spatially
separated regions (i.e., the path length is shorter compared to when
those regions were connected via a number of shorter path-connecting
nodes in between). Research has shown that brain networks increase ef-
ficiency by configuring more long-distance connections while per-
forming effortful cognitive tasks (Kitzbichler et al., 2011). Thus, the
increased incidence of small-world topology in UHR offspring may be
tentatively interpreted as a compensation for impaired cognitive function
by configuring more long-distance connections in the brain network.
However, these long-distances connections, which likely integrate
“hub” regions, are expensive in terms of the wiring and metabolic costs.
They are subject to selective attack in the networks during pathophysio-
logical processes (Bullmore and Sporns, 2012). In what may be a trade-
off between adaptive value and wiring cost, psychiatric disorders such
as schizophrenia have been reported to be associated with abnormal
shifts in small-world properties (Bassett et al., 2008; Bullmore and
Sporns, 2012; Liu et al., 2008). Alternatively, synaptic pruning (which
results in the reduction of fiber connections and gray matter density)
is known to occur during the normative development of the brain
from childhood through adolescence (Penzes et al., 2011); thus, the
upwards-shifted small world topology in the UHR offspring may be due
to disruptions in synaptic pruning that can lead to brain networks
of higher clustering and efficiency. Whole-brain network properties
help to uncover dysfunction in an entire system comprised of inter-
connected regions, providing more comprehensive information
than just a focus on individual regions (Bullmore and Sporns,
2009). Assortativity was able to capture the clinically defined UHR
stage, which is a critical stage prior to official onset that includes
varying sub-syndromes.

4.3. Neuropsychological Performance and the Neural Correlates

At the cognitive level, our finding is that processing speed and
visual–spatial memory may not be impaired at the HR stage; however,
as the disease progresses further into the UHR stage, deficits in these
domains can become apparent. Although emerging before official
onset, genetically high-risk individuals who manifest no or mild, non-
specific symptoms may have intact cognitive functioning in these
domains. Our finding is at odds with previous findings that suggested
cognitive deficits were inherited abnormalities in bipolar disorder.
These studies examined neuropsychological performance in the
“unaffected” relatives of individuals with BP (Drysdale et al., 2013;
Kulkarni et al., 2010). Thus, the discrepancy probably lies in the
definition of “unaffected”. By applying the clinical staging model, this
study allowed the further subdivision of the unaffected status into the
HR and UHR stages. In the HR stage, the impact of subthreshold symp-
toms on neuropsychological performance could be minimized. Indeed,
previous research has shown that cognitive deficits are not characteris-
tic of genetically high-risk, unaffected offspring (i.e., those with intact
visual information processing) (Duffy et al., 2009) or of individuals
later diagnosed with BP (both high and low academic performance
was associated with risk for bipolar disorder) (MacCabe et al., 2010)
but were apparent in those high-risk individuals who later developed
psychotic affective disorder and schizophrenia (Cannon et al., 2008).
Moreover, we observed a negative correlation between processing
speed performance and the GM volumes of the regions in which the
UHR offspring displayed abnormalities, including the right posterior
cingulate cortex, superior frontal gyrus, and left superior parietal cortex.
This result resonates with the observation that UHR offspring exhibited
increased GM volumes and deficits in processing speed. The GM vol-
umes in the parietal cortex have been reported to be negatively corre-
lated with executive function in bipolar patients (Haldane et al.,
2008). However, a recentmulti-generational family study of bipolar dis-
order by Fears et al. reported that the GM volume of the posterior
cingulate cortex was positively correlated with processing speed
in bipolar patients, although the correlation did not survive the
FDR-correction (Fears et al., 2015). They also found a positive corre-
lation between the GM volumes in both the post cingulate and supe-
rior parietal cortex and visual–spatial memory. This observation is
not supported by our study. Although the etiology of the GM change
is unknown, factors such as age and affected status may contribute
to the discrepancy.

4.4. Limitations

The following limitations must be noted for the interpretation
of these results. First, the follow-up in this study was relatively short
(up to 2.5 years), and only 17% of the UHR offspring have been con-
firmed to develop bipolar disorder by follow-up. Additionally, the sam-
ple size was relatively small. These findings need to be replicated in
large, independent samples. Moreover, given that certain psychiatric
disorders (e.g., substance use disorder and major depression) can pre-
cede the onset of bipolar disorder (Duffy et al., 2014) and this study
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excluded DSM-IV diagnosable disorders, the findings of this study may
not be generalizable to other populations inwhich psychiatric disorders
are comorbid with or precede the sub-syndromes specified in the UHR
criteria (e.g., subthreshold depression). The UHR criteria for bipolar
disorder need to be refined to better represent the full spectrum of
symptoms. Furthermore, themanic sub-syndromeduration requirement
(at least 4 days) may be conservative. Offspring with manic sub-
syndromesmay already be in a relatively “late” prodromal stage of bipo-
lar disorder. The definition of bipolar disorder not otherwise specified
(bipolar NOS) by DSM-IV is vague. Applying a duration of at least
4 days, the Course and Outcome of Bipolar Youth (COBY) study found
that youths with bipolar NOS had a high rate of conversion into bipolar
I or bipolar II disorder (29% in two years and 38% in four years)
(Birmaher et al., 2006, 2009). Finally, the etiology of bipolar disorder
may be heterogeneous (Duffy, 2014b). The current clinical staging
model may be biased towards severe cases of bipolar disorder, in
which a proportion of the UHR offspring displayed attenuated
psychotic symptoms (the symptoms were partly overlapping with
the UHR criteria for psychosis despite genetic susceptibility for
BP). Thus, the findings of this study may not be generalizable to
other high-risk populations.

4.5. Conclusions

Our data suggest that the underlying abnormalities of BP may
become apparent long before the official onset of BP. Specifically,
the decreased GM volumes in the OFC observed in the HR offspring
may serve as neuroanatomical endophenotypes. In this stage, genetical-
ly high-risk offspring may not yet have cognitive deficits in processing
speed and visual memory. In the next stage, UHR offspring may display
increased GM volumes in the right posterior cingulate cortex, superior
frontal gyrus, and left superior parietal cortex, which may partly ex-
plain the cognitive deficits found in UHR offspring. Although some
network properties, such as small-world property, were significant-
ly different between the HR and UHR offspring, the nature of these
changes are currently hard to interpret, and these findings need to
be replicated. We tentatively speculate that some changes may be
related to compensatory reactions, which may be worthy of future
investigation.

Clinical stagingmodels are scientifically and clinically important, and
they emphasize progression from a very early stage prior to the sub-
syndromes. At this stage, common confounding effects (including symp-
toms, illness duration andmedications) are minimized, and the possibil-
ity of investigating the underlying pathophysiology is maximized. More
importantly, identifying abnormalities prior to full-blown onset opens
up the possibility of putting into practice early intervention (i.e., when
cognitive deficits are observed in the UHR stage) or even primary inter-
vention strategies (i.e., when intact cognitive function but disrupted
brain connections are observed in theHR stage), of particular importance
because BP is currently considered irremediable and becomes progres-
sively worse. A range of early interventions that show preliminary
evidence of effectiveness, including sleep hygiene, nutraceuticals
(e.g., omega-3 fatty acids), mindfulness, emotion regulation strategies,
and anti-inflammatory agents (Duffy, 2014a), might be justified for off-
spring at familiar risk and those in the UHR stage in particular.
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