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ABSTR ACT: Spinal muscular atrophy (SMA) is an autosomal recessive motor neuron disease with a high incidence and is the most common genetic cause 
of infant mortality. SMA is primarily characterized by degeneration of the spinal motor neurons that leads to skeletal muscle atrophy followed by symmetric 
limb paralysis, respiratory failure, and death. In humans, mutation of the Survival Motor Neuron 1 (SMN1) gene shifts the load of expression of SMN protein 
to the SMN2 gene that produces low levels of full-length SMN protein because of alternative splicing, which are sufficient for embryonic development and 
survival but result in SMA. The molecular mechanisms of the (a) regulation of SMN gene expression and (b) degeneration of motor neurons caused by low 
levels of SMN are unclear. However, some progress has been made in recent years that have provided new insights into understanding of the cellular and 
molecular basis of SMA pathogenesis. In this review, we have briefly summarized recent advances toward understanding of the molecular mechanisms 
of regulation of SMN levels and signaling mechanisms that mediate neurodegeneration in SMA.
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Introduction
Spinal muscular atrophy (SMA) is an autosomal recessive 
neuromuscular disorder of early childhood caused by the dele-
tion or mutation of Survival Motor Neuron 1 (SMN1) gene. 
SMA affects 1 in 6,000 to 1 in 10,000 individuals worldwide.1 
Humans have two copies of SMN gene located on chromo-
some 5q13 that are identified as SMN1 (telomeric) and SMN2 
(centromeric).2 The SMN2 gene is almost identical to the 
SMN1 gene but is unable to produce sufficient amount of full-
length transcripts because of a C to T transition in the coding 
exon 7 that causes alternative splicing and skipping of exon 
7, resulting in a truncated protein lacking exon 7 (SMND7) 
that is not fully functional and degrades rapidly.2–4 However, 
SMN2 produces low levels (5%–10%) of the full-length SMN 
protein that are sufficient for survival but result in SMA. The 
severity of SMA disease inversely correlates with the SMN2 
copy number.5–7 Low levels of SMN protein result in the 
degeneration of spinal motor neurons and cause muscle weak-
ness that is followed by symmetric limb paralysis, respiratory 
failure, and death.8,9

Currently, there is no treatment for SMA. The devel-
opment of therapeutic treatments requires understanding 
of the molecular mechanisms involved in the regulation 
of gene expression and neurodegeneration. The molecular 
mechanisms of regulation of SMN2 gene expression and the 
mechanisms of motor neuron degeneration caused by low 

levels of SMN in SMA are unclear. However, recent studies 
have provided insights into the regulation of SMN2 gene 
expression that may help develop suitable therapeutic strate-
gies. In addition, recent advances toward understanding the 
signaling pathways activated by low levels of SMN that might 
mediate neurodegeneration in SMA have provided insights 
into non-SMN targets as potential therapeutic targets to pre-
vent neurodegeneration.

This review focuses on the role of cellular signaling path-
ways, extracellular regulated kinase (ERK)/ELK-1, JAK2/
signal transducer and activator of transcription 5 (STAT5), 
and AKT/cAMP response element-binding protein (CREB), 
in the regulation of transcription of SMN2 gene. In addition, 
this review discusses the role of Rho kinase (ROCK) and the 
recently identified c-Jun NH2-terminal kinase (JNK) signal-
ing pathways in mediating neurodegeneration associated with 
the pathogenesis of SMA.

Regulation of SMN2 Gene Expression
All forms of SMA are caused by insufficient levels of full-length 
SMN protein, ranging from the most severe type 0 (onset in 
utero), severe type I (onset 0–6 months), intermediate type II 
(onset ~6–18 months), mild type III (onset .18 months), and 
mildest type IV (onset .30 years).8–10 The onset and severity 
of SMA disease inversely correlate with the amount of full-
length SMN protein produced by varying SMN2 copy numbers 
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present in patients with severity ranging from type I to type IV.5–7 
Restoration of SMN levels within the central nervous sys-
tem (CNS), including spinal motor neurons, using transgenic 
expression of SMN results in the rescue of phenotype, allevia-
tion of SMA pathologies, and increase in lifespan of mice with 
SMA-like disease.11–14 These findings suggest that restoration 
of SMN levels in the CNS is sufficient to reduce the severity of 
disease and improve the SMA phenotype. The SMN2 gene rep-
resents a positive modifier and an attractive therapeutic target 
for producing higher amounts of SMN protein by manipulating 
the transcription of SMN2 gene.7,15 Understanding the mecha-
nisms of control of the transcriptional regulation of SMN2 gene 
is one of the important areas of investigation that may lead to 
identification of viable cellular therapeutic targets to generate 
sufficient amounts of SMN for the treatment of SMA.

Both SMN1 and SMN2 genes are regulated transcrip-
tionally during cell growth and differentiation.16 Analysis of 
promoter regions of SMN1 and SMN2 genes shows identi-
cal sequences consisting of common cis-regulatory elements 
required for the initiation and regulation of transcription.17,18 
However, both SMN genes show differential expression in neu-
rons and nonneuronal cell types.17 The differential expression 
of SMN genes in different cell types might be because of the 
presence of two transcription initiation sites: the first transcrip-
tion site is located 163 base pairs upstream of the translation 
start site and the second site is located 246 base pairs upstream 
of the translation start site.16 A regulatory region of approxi-
mately 5 kb upstream of the transcription start site might be 
involved in the transcriptional regulation of the SMN genes. 
The upstream regulatory regions (5′-UTR) of the SMN genes 
contain binding sites for known trans-acting factors, such as 
ELK-1 (E26 transformation specific [ETS] like or ETS domain 
containing), CREB, and STAT5 (signal transducers and acti-
vator of transcription) that could regulate transcription.17–20

Recent studies have indicated the role of modulation of 
ELK-1 and CREB activities by mitogen-activated protein 
kinase (MAPK) signaling pathways in the regulation of SMN2 
gene expression. The intracellular Calcium/calmodulin-
dependent kinase II (CaMKII)/phosphatidylinositol-3 kinase 
(PI3K)/AKT/CREB cascade that is known to be a down-
stream mediator of N-methyl-d-aspartate (NMDA) receptor 
signaling was found to be activated in the spinal cord explant 
cultures from mouse models with SMA-like disease, the 
Taiwanese SMA type II mouse model21 and the severe SMA 
type I mouse model,22 upon treatment with NMDA.23 Treat-
ments of the spinal cord cocultures with inhibitors for kinases, 
CaMKII (KN-93) and PI3K (LY294002), abolished NMDA-
mediated increase in the levels of SMN. However, treatment 
with NMDA and U0126, inhibitor of MEK/ERK/ETS like 
(ELK) pathway that is known to be a target for CaMKII, 
did not change the levels of SMN expression induced by 
NMDA. In vivo studies show that the treatment of mice with 
NMDA improved phenotype, including lifespan of the SMA 
type II mice.23

In vitro studies indicated that the presence of intracellular 
crosstalk between ERK and AKT pathways and shifting 
of balance of activation from ERK to AKT pathway by 
inhibition of MEK/ERK/ELK pathway result in increased 
SMN2 gene expression.24 In vivo inhibition of ERK pathway 
using the MEK inhibitor (U0126) resulted in the activation 
of CaMKII/AKT/CREB cascade and an increase in SMN 
levels in the spinal cords from severe SMA-like mice. Treat-
ment of severe SMA mice with U0126 resulted in improve-
ment of disease phenotype with reduced loss of motor neurons 
and increased lifespan.24 A recent study showed that the 
reduced expression of the insulin-like growth factor-1 receptor 
(Igf-1r) gene results in neuroprotection and improvement in 
the phenotype of SMA mice. Reduction in IGF-1R levels 
causes activation of the AKT/CREB pathway and inhibition 
of the ERK/ELK-1 pathway, which results in higher levels 
of SMN.25 Together, findings from these studies suggest that 
the activation of ERK/ELK-1 pathway negatively regulates 
SMN2 expression and the activation of AKT/CREB pathway 
stimulates SMN2 expression to increase the levels of full-
length SMN. Simultaneous inhibition of ERK pathway and 
stimulation of AKT pathway results in the upregulation of 
SMN2 expression in SMA. A graphical summary of signaling 
pathways regulating the SMN2 gene expression in SMA is 
presented in Figure 1.

The effect of different classes of small cell permeable 
compounds has been examined on increasing levels of SMN 
protein by enhancing transcription that improve disease phe-
notype in mice with SMA. These compounds include quin-
azoline compounds (eg, RG3039) that function as inhibitors 
of RNA decapping enzyme (DcpS)26–28 and have been shown 
to improve the disease phenotype, including the lifespan of 
mice with SMA in different SMA mouse models, severe 
SMAD7 model29–31 and intermediate Smn2B/- model.32 Ben-
efits of RG3039 treatment were observed in the improve-
ment of SMA phenotype, such as increase in the number of 
spinal motor neurons and increase in the number of SMN-
containing gems.31,32 However, in vivo increase in SMN levels 
was not significant in mice with SMA.32 Another set of com-
pounds known as histone deacetylase (HDAC) inhibitors are 
valproic acid (VPA), trichostatin A (TSA), LBH589, M344, 
suberoylanilide hydroxamic acid (SAHA), sodium butyrate, 
and phenylbutyrate that are shown to increase the levels of 
SMN.33–41 Other small compounds that have been shown to 
increase SMN levels include hydroxyurea,42,43 resveratrol,44 
and a new class of compound, LDN-76070, whose precise 
mode of action remains to be examined, which improved the 
phenotype of SMA mice.45 However, the detailed mechanism 
of action of these compounds on the regulation of SMN2 
expression remains to be studied.

The role of Janus kinase (JAK)/STAT signaling pathway 
is also shown in the regulation of SMN2 expression. The JAK 
tyrosine kinase interacts with cytokine and prolactin (PRL) 
receptors and relays signal downstream by phosphorylation of 
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STAT group of transcription factors; which regulates tran-
scription and are essential for mammalian developmental 
process, including cell survival, proliferation and differentia-
tion, migration, apoptosis, neuroprotection, and immune cell 
and mammary gland development.46–50 Cell permeable com-
pounds, sodium valproate, TSA, and aclarubicin, have been 
shown to activate STAT5 in SMA-like mouse embryonic 
fibroblasts and motor-neuron-like (NSC34) cells transfected 
with human SMN2 and induce SMN2 expression.20,51 In addi-
tion, a peptide hormone PRL that is known to activate JAK2/
STAT5 pathway52 is shown to increase SMN2 expression in 
neuronal (NT2) cells.19 In vivo activation of JAK2/STAT5 
pathway by administration of PRL in mice with severe SMA 
(SMAD7 mice) causes an increase in SMN levels that improves 
disease phenotype and increases the lifespan of SMA mice.19 
The role of JAK2/STAT5 pathway in the regulation of SMN2 
expression is presented in graphical form (Fig. 1).

An alternative method has been developed to generate 
full-length SMN from the SMN2 gene by modifying the 
processes involved in RNA biogenesis, such as transcription 
and pre-mRNA processing and splicing using transcriptional 
activators, small nuclear U RNA, small compounds, and 
antisense oligonucleotides (ASO) to correct splicing.53–59 

The small compounds, pseudocantharidins, a phospha-
tase (PP2A) activator, which dephosphorylates Tra2-β1, 
a splicing factor,60 and VPA, a drug approved by the U.S. 
Food and Drug Administration, which upregulates the levels 
of Tra2-β1, result in increased incorporation of exon 7 and 
enhances the levels of full-length transcripts by partially cor-
recting splicing.35 A new class of cell permeable compounds 
(SMN-C1, SMN-C2, and SMN-C3, developed by PTC 
Therapeutics) has also been shown to correct SMN2 splicing 
and improve the phenotype of SMA mice.61 The molecular 
mechanisms of splicing involved in the exclusion/inclusion 
of exon 7 in the transcripts generated by the SMN2 gene are 
recently reviewed elsewhere in detail along with the use of 
ASO in the correction of SMN2 gene splicing as a potential 
therapeutic strategy for the treatment of SMA.62–64 The ASO-
based approach to correct splicing and increase the levels of 
SMN is one of the promising therapeutic approaches currently 
under different phases of clinical trials.54,65

Intracellular Signaling Pathways that Mediate Motor 
Neuron Degeneration in SMA
In SMA, muscular atrophy is a result of degeneration of spinal 
motor neurons caused by low levels of SMN protein. SMN is a 

Figure 1. mechanisms of regulation of SMN2 gene expression in sma. sma is caused by low levels of smn protein translated from full-length transcripts 
(5%–10%) generated from the SMN2 gene. increase in the transcription of SMN2 gene generates higher levels of full-length smn protein. signaling 
pathways identified in SMA that may regulate expression of the SMN2 gene are presented. the mEK/ErK/ElK-1 pathway is activated in sma and 
negatively regulates SMN2 expression. inhibition of ErK pathway in vivo in sma mice using mEK inhibitor (u0126) results in the upregulation of SMN2 
expression by the activation of the pi3K/aKt/crEB pathway. treatment with nmDa also results in the activation of the aKt/crEB pathway that results in 
the upregulation of SMN2 expression. the activation of JaK2/stat5 pathway in vivo by treatment with peptide hormone prl results in an increase in smn 
levels in sma mice. solid up arrows (red box) show increase in phosphorylation and dotted down arrows (yellow box) show decrease in phosphorylation.
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ubiquitously expressed protein, but why selectively lower spinal 
cord motor neurons degenerate remains unclear.66,67 The degen-
eration of motor neurons suggests that the low levels of SMN 
are unable to support the essential cellular functions required 
for the survival and maintenance of neurons. The defects in cel-
lular functions, including mRNA biogenesis caused by reduced 
levels of SMN, might result in the activation of intracellular 
stress signaling pathways that mediate neurodegeneration in 
SMA. The intracellular mechanisms that are triggered by the 
low levels of SMN and mediate neurodegeneration remain 
unclear. However, a noticeable progress has been made recently 
to understand the intracellular signaling cascades activated by 
the low levels of SMN that might mediate neurodegeneration 
in SMA. The ROCK and the JNK signaling pathways have 
been shown to be activated by the low levels of SMN in in vitro 
and in vivo SMA models.

The RhoA/ROCK signaling pathway in SMA. The role 
of RhoA (a small GTPase) and the immediate downstream 
target ROCK, RhoA/ROCK signaling, is established in 
the regulation of cytoskeleton dynamics essential for neu-
ronal growth, differentiation, pathfinding, retraction, and 
degeneration.68–70 Alterations in the activity of ROCK and 
its downstream targets, including profilin IIa, cofilin, lim 
kinases (LIMK), myosin regulatory light chain, and myosin 
light chain phosphatase (MYPT), are associated with human 
diseases.71,72 SMN has been shown to interact with ROCK and 
profilin.73,74 It is suggested that the low levels of SMN result 
in a free pool of profilin IIa and cause an increase in ROCK/
profilin complexes that leads to hyperphosphorylation of pro-
filin IIa in SMA. In vitro studies with knockdown of SMN 
in neuron-like cells (PC12 and NSC34) indicated the activa-
tion of RhoA/ROCK and the phosphorylation of downstream 
targets, such as profilin IIa, cofilin, LIMK, and MYPT, and 
suggested that the ROCK pathway might be associated with 
the pathogenesis of SMA.75,76 It is clear that the low levels 
of SMN result in the activation of ROCK; however, there 
is some inconsistency in the literature on the modulation of 
downstream targets of ROCK that might be because of the use 
of different cellular and animal SMA models.77,78

The activation of both ROCK and ERK pathways in SMA 
indicates a possibility of crosstalk because ERK and ROCK can 
inhibit each other. However, in in vitro SMA cell model, acti-
vated ERK was unable to affect the levels of activated ROCK.79 
It is possible that in SMN-depleted neuronal cells, ERK acti-
vation contributes toward promoting neuronal outgrowth and 
negatively regulates SMN2 expression with phosphorylation 
of ELK-1, whereas hyperactivation of ROCK may inhibit 
neurite outgrowth. A possibility of crosstalk between neuro-
trophic growth factor signaling and ROCK pathway to regu-
late neurite outgrowth is also indicated in SMA.80,81 Another 
possibility of crosstalk exists between ROCK and phosphatase 
and tensin homolog (PTEN deleted on chromosome 10) path-
ways because ROCK interacts and phosphorylates PTEN.82 
PTEN hydrolyzes phosphatidylinositol (3,4,5)-triphosphate, 

a second messenger that activates PI3K, and inhibits the acti-
vation of AKT mediated by PI3K.83 The downregulation of 
phospho-AKT is shown in the spinal cords of SMAD7 mice 
and human SMA patients.84

Therefore, ROCK activation in SMA might be involved 
in the activation of PTEN that leads to inactivation of PI3K/
AKT cascade. However, in vivo modulation of PTEN activity 
under SMA conditions remains to be examined. Neverthe-
less, studies with the knockdown of PTEN in cultured SMN-
deficient motor neurons85 and in mice with SMA have shown 
beneficial effects on the growth of motor neurons, reduction in 
the severity of disease, and increase in the lifespan of SMAD7 
mice.86 A graphical model representing the activation of 
RhoA/ROCK pathway in SMA is shown in Figure 2.

Interestingly, pharmacological inhibition of ROCK 
using inhibitors (Y-27632 or Fasudil) resulted in a marked 
increase in the lifespan of an intermediate SMA mouse model 
(Smn2B/-) without any change in the SMN transcription and 
protein levels.87–89 However, ROCK inhibition did not result 
in an increase in the numbers of spinal motor neurons and 
did not prevent SMN-dependent neuromuscular junction 
(NMJ) denervation. The improvement in the SMA pheno-
type might be because of the improvement in the function-
ality of motor neurons and NMJs and the increase in the 
skeletal muscle (tibialis anterior) fiber size due to reduction 
in the levels of phospho-LIMK and phospho-cofilin in SMA 
mice treated with ROCK inhibitors. The reduction in the 
levels of ROCK downstream targets, phospho-LIMK and 
phospho-cofilin, may help stabilize the actin cytoskeleton 
and improve the functionality of SMN-deficient neuronal 
and nonneuronal cells.77

The JNK signaling pathway in SMA. The role of JNK 
group of kinases has been established in neuronal cell growth, 
differentiation and apoptosis, CNS morphogenesis, mem-
ory, and synaptic plasticity.90,91 The JNK group of MAPK is 
encoded by three genes, Jnk1, Jnk2, and Jnk3, that generate 
a total of 10 transcripts for multiple isoforms. The Jnk1 and Jnk2 
genes show ubiquitous expression, but the Jnk3 gene is mainly 
expressed in neurons, with some expression in the heart and 
testis.91,92 The role of JNK has been implicated in neurodegen-
eration caused by alteration of microtubule stability induced 
by JNK-mediated phosphorylation of microtubule-associated 
proteins, including MAP1B, MAP2, Tau, and stathmin 
(microtubule-destabilizing family of proteins); JNK pathway 
has been indicated as a potential therapeutic target for the 
treatment of neurodegenerative diseases, such as Parkinson’s 
and Alzheimer’s diseases.93–95

The low levels of SMN in neurons cause neurodegeneration 
in SMA. The stress-activated protein kinases are known to be 
activated by a variety of extracellular stress signals, such as 
growth factors, cytokines, and ultraviolet light.91 SMN defi-
ciency may result in intracellular stress that might activate 
intracellular signaling cascade and lead to neurodegeneration 
in SMA. We have recently shown the activation of the JNK 
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signaling pathway in the spinal cords of SMA patient and 
SMAD7 mice.84 JNK was activated in cultured spinal cord 
motor neurons from SMA mice. Knockdown of SMN using 
RNAi also resulted in JNK activation in cultured neurons. 
Reduced AKT phosphorylation in the SMA spinal cords is 
consistent with suppression of AKT pathway during JNK 
activation.96

Two MAPK signaling modules were identified that 
lead to the activation of JNK in SMA. These two MAPK 
signaling modules consist of three-tier of kinases, MAP kinase 
kinase kinase (MAP3K), MAP kinase kinase (MAP2K), 
and MAPK. Two MAP3Ks (ASK1 and MEKK1) and two 
MAP2Ks (MKK4 and MKK7) were activated to phosphory-
late JNK (MAPK) in the spinal cords from SMA. Activation 
of both MKK4 and MKK7 is shown to be required for full 
in vivo activation of JNK.97 Activation of ASK1 and MEKK1 
suggested the possibility of two signaling modules may be 
involved in the JNK activation because both MKK4 and 
MKK7 are known to be activated by ASK1 and MEKK1.98 
It has been shown that Gemin5, a part of the SMN complex, 
interacts with ASK1, MKK4, and JNK in 293T cells.99 
Gemin5 might act as a scaffold for ASK1/MKK4/JNK 

signaling module to maintain the specificity of signaling. 
Low levels of SMN complexes would result in a free pool of 
Gemin5 that might increase the levels of ASK1/MKK4/JNK 
complex resulting in higher levels of activated JNK in SMA 
neurons.

Scaffolding of MEKK1/MKK7/JNK complex by neuron-
specific JNK-interacting protein 3 may activate MKK7.100 The 
marked difference in the levels of activation of MKK4 com-
pared to MKK7 suggests the tight regulation and specificity 
of the activation of signaling modules. Preferential activation 
of neuron-specific isoform, JNK3 (MAPK), was detected 
in SMN-deficient neurons.84 JNK3 deficiency resulted in 
the protection of cultured neurons with low levels of SMN, 
suggesting that JNK3 may be a potential target for SMA 
therapeutic interventions. This study identified two signaling 
modules, ASK1/MKK4/JNK3 and MEKK1/MKK7/JNK3, 
that may mediate JNK activation and neurodegeneration in 
SMA.84 A graphical model representing the activation of JNK 
by two signaling modules in SMA is shown in Figure 2.

Furthermore, in vivo studies by genetic inhibition of 
JNK3 in SMAD7 mice resulted in the systemic rescue of 
SMA phenotype, including reduction in the loss of spinal 
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cord motor neurons and muscle degeneration, improvement 
in muscle fiber thickness, muscle growth, gross motor func-
tion and overall growth, and increase in lifespan.84 Interest-
ingly, genetic inhibition of the JNK3 did not alter the levels of 
SMN in mice with SMA. The findings from this study sug-
gest that the amelioration of SMA phenotype in SMA mice 
by JNK3 deficiency is SMN independent, and JNK3 rep-
resents a non-SMN target. Genetic elimination of the Jnk3 
gene in SMA mice validated JNK3 as a potential (non-SMN) 
therapeutic target.84

Other potential signaling molecules and pathways in 
SMA. A few other proteins have been identified that may be 
a part of the intracellular signaling mechanisms contributing 
toward SMA pathogenesis, including modifier proteins that 
alter disease phenotype. Humans with homozygous SMN1 
deletion and identical SMN2 copy numbers show discordant 
phenotypes compared to their siblings, suggesting the pos-
sibility of SMA modifier genes in addition to SMN2.101–103 
Recent studies have identified genes located outside of the 5q 
SMA locus, such as plastin 3 (PLS3, Chr Xq23) and zinc fin-
ger protein 1 (ZPR1, Chr 11q23.3), that have been shown to 
modify the severity of SMA disease.103,104 PLS3 levels were 
upregulated in unaffected female SMA patients compared to 
affected SMA patients (siblings). PLS3 is a calcium-dependent 
actin-bundling protein and shown to regulate axonogenesis by 
increasing the levels of F-actin.103,105 Overexpression of PLS3 
in cultured SMN-deficient neurons corrected axonal growth 
defects. PLS3 overexpression moderately improved the SMA 
phenotype by delaying axon pruning that resulted in improved 
NMJ functionality in Taiwanese SMA mouse model.106 In 
another study, PLS3 overexpression did not modify the sever-
ity of SMAD7 mouse model.107

The reasons for moderate to no improvement in different 
mouse models are unclear. It is possible that in addition to 
PLS3 overexpression in unaffected individuals, there would 
be other proteins/factors whose levels could be altered in 
a gender-specific manner that contribute to PLS3-dependent 
discordant phenotype in SMA type II/III patients. It is 
unclear whether PLS3 overexpression will also provide ben-
eficial effects in severe SMA but warrants further studies. 
However, identification of the molecular mechanism that 
upregulates PLS3 levels in unaffected individuals with homo-
zygous SMN1 deletion will provide insights into the alteration 
of levels of other potential targets that may be operating syn-
ergistically with PLS3 in SMA.

ZPR1 is an evolutionary-conserved essential protein108 
that is a component of the receptor tyrosine kinase signal-
ing pathways and interacts with the epidermal growth fac-
tor receptor and platelet-derived growth factor receptor in 
quiescent cells.109,110 Treatment of quiescent cells with mito-
gens or serum results in the formation of ZPR1 complexes 
with translation elongation factor EF-1a and SMN proteins 
and translocation to the nucleus.111,112 ZPR1 interacts with 
SMN and is required for accumulation of SMN in subnuclear 

bodies, including gems and Cajal bodies. Interaction of ZPR1 
with SMN is disrupted in SMA patients, and both ZPR1 and 
SMN fail to accumulate into nuclear bodies. The defect in 
nuclear accumulation of SMN is the cellular defect in SMA 
that may affect the biochemical function of SMN associated 
with its localization to nuclear bodies. Notably, the sever-
ity of SMA disease correlates negatively with the number of 
SMN bodies.6

ZPR1 is downregulated in SMA patients.104,113 The 
reduced expression of ZPR1 causes progressive loss of spinal 
motor neurons in mice.114 The low levels of ZPR1 increase 
the severity of disease and decrease the lifespan of mice with 
SMA.104 Overexpression of ZPR1 in fibroblast derived from 
SMA type I patients restores the accumulation of SMN in 
subnuclear bodies and increases the levels of SMN. ZPR1 
overexpression in spinal motor neurons from SMA mice res-
cues axonal growth defects.

The role of ZPR1–SMN complexes in the growth and 
maintenance of neurons is unclear. However, ZPR1 may con-
tribute to the functions of SMN, including mRNA splicing 
because ZPR1 is a part of the SMN containing cytoplasmic 
spliceosomal small nuclear ribonucleoprotein (snRNP) com-
plexes and interacts with snurportin 1.115 ZPR1 deficiency 
causes defects in cellular distribution of snRNPs and in pre-
mRNA splicing similar to SMN deficiency.112,116,117 In addi-
tion, ZPR1 complexes may also contribute to overall RNA 
biogenesis, including splicing and transcription.109,118

A recent study showed that ubiquitin-like modifier acti-
vating enzyme 1 (UBA1) interacts with SMN and disruption 
of ubiquitination pathway contributes to the severity of SMA 
disease.119 The ubiquitination pathway is shown to regulate 
the stability of SMN protein120 and is involved in mediating 
synaptic and axonal degeneration.121 Mutations in the human 
UBE1 (UBA1) gene cause X-linked infantile SMA.122 The 
reduced levels of UBA1 and the increased levels of β-catenin 
in SMA mouse models [severe SMA (Smn-/-; SMN2+/+) and 
Taiwanese SMA (Smn-/-; SMN2tg/0)] indicate an increase in 
β-catenin signaling that may influence the transcriptional 
regulation of critical genes.119 However, the expression of 
specific genes altered by the increased levels of β-catenin that 
may contribute to SMA pathogenesis remains to be exam-
ined. Interestingly, pharmacological inhibition of β-catenin 
with quercetin, a cell permeable flavonoid,123 improves neu-
romuscular pathology in different animal models, Drosophila 
SMA model,124 Zebrafish SMA model,125 and Taiwanese 
SMA mouse model21 by Gillingwater’ s group.119 However, 
the inhibition of β-catenin did not improve systemic pathol-
ogy in SMA mice. Nevertheless, the alteration of ubiquitin 
homeostasis and β-catenin signaling in SMA suggests that 
targeting of this pathway may have therapeutic potential to 
reduce the severity of SMA disease.119

Recent advances made to understand the molecular 
mechanisms that regulate the expression of SMN2 gene and 
the cellular mechanisms triggered by the low levels of SMN 
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that mediate neurodegeneration in SMA have provided 
insights into SMN-dependent and SMN-independent mech-
anisms and the potential non-SMN therapeutic targets that 
laid a foundation to develop new strategies for therapeutic 
intervention in SMA. A summary of the signaling pathways 
regulating SMN2 expression and the molecular mechanisms 
mediating the neurodegeneration in SMA is presented in 
Table 1. In addition, the molecular targets that have been 
tested to examine the therapeutic potential in preclinical stud-
ies using SMA animal models are identified. Recent studies 
have also provided insights into the complexity of SMA dis-
ease as a multisystem disorder, in which the primary pathogen-
esis is the degeneration of the spinal cord motor neurons and 
muscle atrophy, accompanied by complications in the develop-
ment and functioning of multiple nonneuronal organs, includ-
ing the heart, liver, pancreas, vasculature, respiratory system 
(lungs, diaphragm, and phrenic nerve), and gastrointestinal 
system reviewed in recent publications.84,126 Collectively, these 
advances in the field of SMA point to the development of 
combinatorial treatments to simultaneously increase the levels 
of SMN and prevent neurodegeneration using non-SMN tar-
gets and SMN-independent mechanisms to restore the normal 
function of neuronal and nonneuronal tissues and organs.
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