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Abstract: Three-directional cine multi-slice left ventricular myocardial velocity mapping (3Dir MVM)
is a cardiac magnetic resonance (CMR) technique that allows the assessment of cardiac motion in
three orthogonal directions. Accurate and reproducible delineation of the myocardium is crucial for
accurate analysis of peak systolic and diastolic myocardial velocities. In addition to the conventionally
available magnitude CMR data, 3Dir MVM also provides three orthogonal phase velocity mapping
datasets, which are used to generate velocity maps. These velocity maps may also be used to
facilitate and improve the myocardial delineation. Based on the success of deep learning in medical
image processing, we propose a novel fast and automated framework that improves the standard
U-Net-based methods on these CMR multi-channel data (magnitude and phase velocity mapping) by
cross-channel fusion with an attention module and the shape information-based post-processing to
achieve accurate delineation of both epicardial and endocardial contours. To evaluate the results, we
employ the widely used Dice Scores and the quantification of myocardial longitudinal peak velocities.
Our proposed network trained with multi-channel data shows superior performance compared to
standard U-Net-based networks trained on single-channel data. The obtained results are promising
and provide compelling evidence for the design and application of our multi-channel image analysis
of the 3Dir MVM CMR data.

Keywords: cardiovascular; segmentation; deep learning

1. Introduction

Three-directional cine multi-slice left ventricular myocardial velocity mapping (3Dir
MVM) is a promising cardiac magnetic resonance (CMR) technique to assess cardiovascular
conditions. In addition to conventionally available magnitude data, this technique also
acquires velocity-encoded phase velocity mapping data from the phase-contrast MRI
without ionizing radiation [1–3]. These phase velocity mapping data are used to generate
velocity maps in three orthogonal directions throughout the cardiac cycle to gather both
spatial and temporal information from the cardiac movement. The cine data also provided
us with an opportunity to observe the cardiac movements and segment the left ventricular
myocardium by employing the available temporal data.

Delineating the left ventricle (LV) myocardium from the CMR data is crucial in the
determination of the myocardial motion from this data. Manual segmentation of both
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endocardial and epicardial borders of the LV myocardium is a very tedious process taking
up to an hour for an experienced clinician to complete a single-slice 50-frame study. There
can also be subjectiveness and variations in the manually segmented myocardium when
the myocardium of the same subject is segmented when repeated over time or by another
experienced clinician.

Following successful applications of deep convoluted neural networks (CNNs) [4], in
particular the U-Net [5], for natural image [6] and medical image processing [7–9] for the
brain [10–12], liver [13], breast [14], lung [15,16] and other regions [17], we here assess and
prove that the U-Net-based model can be applied to 3Dir MVM CMR single-channel phase
velocity map images and single-channel magnitude images. Furthermore, motivated by
the growing interests in medical image fusion [18], especially in multi-channel processing
in biomedical imaging and architectural modifications to encoder-decoder to improve the
performance of neural networks [19], we advance our method to encode both magnitude
and phase velocity mapping data from 3Dir MVM CMR with the implementation of
attention modules, so the model can observe these multi-channel images with focuses.
Moreover, the traditional strategy assumes simple (e.g., linear) relationships between
channels, which may not represent the reality correctly [20]. Therefore, we propose a model
to incorporate dense connections on all layers of depth of CNNs instead of the traditional
single-layer fusion to model the relationships among all channels. This model is able to
load and infer on each cine slice within less than 15 s using a graphics processing unit
(GPU) specified in Section 2.

In evaluating LV contours (i.e., the LV epicardial and endocardial contours) gen-
erated against the manually delineated ground truth (initialized via an active contour
segmentation), we employ both the widely used method of Dice Scores and our novel
comparison methodology using the quantitative myocardium CMR velocity mapping
(MVM) [21,22] data generated. By employing both metrics, we can observe the accuracy of
the segmentation by not only overlaps of each image array but also the time derivatives
of the movements of the segmented myocardium, i.e., their velocities, within an electro-
cardiogram (ECG) R-R cardiac cycle by taking advantage of the cine MRI acquired. By
evaluating model generated segmentation based on the accuracy of the CMR MVM results,
we can observe and further compare the segmentation performance on clinically important
markers derived from these velocity curves.

Despite the remarkable performance of existing methods in LV myocardial segmen-
tation of CMR single-channel magnitude images, the combination of multi-channel data
of 3Dir MVM CMR at various levels of abstraction has not been exploited. Our work
addresses this problem by assessing, investigating and comparing different strategies of
incorporating and analysing CMR multi-channel data using both Dice Scores and clinically
relevant CMR MVM results.

Additionally, we also invited a second human observer to conduct an inter-observer
study between the second and the first observers and between the model and the first
observer, to see the human inter-observer variations and reproducibility compared to the
model vs. human operator performance on CMR MVM.

To summarize, the novelties of this work are of 3-fold: (1) we assessed and proved
that U-Net can be applied to single-channel magnitude data, single-channel phase velocity
mapping data and their combination, as multi-channel data, respectively, from 3Dir MVM
CMR for automated LV myocardium segmentation; (2) we designed and proposed a novel
multi-channel attention block (MCAB) and a novel segmentation framework to better
incorporate and segment the multi-channel data from 3Dir MVM CMR; (3) we evaluated
the clinical accuracy of the novel segmentation framework by comparing outputs with
the myocardial velocities and widely clinically applied markers obtained from manual
segmentation, to assess the segmentation results from the LV myocardium velocity curves
and markers by taking advantage of the cine MRI acquired. In addition, we further
compared the variation and reproducibility of the segmentation between the model and
a second clinical human observer from the first observer. We also provided a reference
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of human inter-observer variations in the myocardium segmentation in terms of their
Dice Scores.

2. Materials and Methods
2.1. Data Acquisition and Pre-Processing

The CMR data were acquired from 18 healthy subjects (8 of them were acquired twice,
giving 26 datasets in total) at the Royal Brompton Hospital. There was an additional
subject acquired twice for independent testing (Section 3.2). All 19 subjects (18 for training
(26 datasets) and 1 for independent testing (2 datasets)) had normal sinus rhythms. Further
demographic information of these 19 subjects is included in Table 1.

For each subject, high temporal resolution (reconstructed to 50 frames per cardiac
cycle, i.e., per R-R interval in the electrocardiogram (ECG)) cine spiral MVM with non-
Cartesian SENSE reconstruction and 3 orthogonal directions of velocity encoding were
acquired in a single breath-hold [21]. There were 121 cine slices (giving 6050 cine frames
in total) in total from all these datasets (3–5 cine slices for each dataset). The acquired
spatial resolution was 1.7 × 1.7 mm2, and data were reconstructed into a 512 × 512 matrix
(reconstructed spatial resolution 0.85 × 0.85 mm2). Data were acquired in short-axis slices
from base to apex of the left ventricle.

All subjects gave their informed consent for inclusion before they participated in
the study with approval from the local institutional review board (in accordance with
the Declaration of Helsinki). The institutional review board approved the CMR scanning
(Development of Cardiovascular Magnetic Resonance Sequences for Future Clinical Use
V3.0 October 10, 2018, approved by the NRES London East Research Ethics Committee).
The ground truth of the myocardium segmentation was performed by a senior CMR
physicist with 20+ years’ experience in CMR.

We augmented the data by a random horizontal flipping (probability of 0.5) and a
random rotation (angle = [0, 90◦]) before the training.

Table 1. Demographic information of the 19 subjects (18 for training and 1 for independent testing). ECG R-R intervals
were approximately +/−100ms. For 10 of the subjects, volunteers were asked to provide their weights and heights without
having them actually measured.

Age (year) Weight (kg) Height (m) ECG R-R Interval (ms) Gender

Minimum 25 57 1.63 780

14 Males
5 Females

Maximum 59 90 1.95 1500

Mean 38.1 73.9 1.78 1003

Standard Deviation 11.4 9.3 0.09 184

2.2. Network Architectures for the Myocardium Segmentation

We summarized the available standard strategies on supervised learning-based deep
learning as below, where they are all U-Net-based approaches.

[a] U-Net with CMR single-channel magnitude data (512 × 512 × 1), abbreviated as
U_M below;

[b] U-Net with CMR single-channel phase velocity mapping data (512 × 512 × 3),
abbreviated as U_P below;

[c] U-Net with CMR multi-channel data, where we stacked the magnitude (512 × 512
× 1) and phase velocity mapping (512 × 512 × 3) data on the channel axis of the input
image, abbreviated as U_MP below.

In addition, we designed the strategies below, allowing the model to understand the
more latent relationships between different channels.

[d] We proposed a novel network structure (Figure 1) based on standard U-Net
structures and its encoders and decoders, where we input the magnitude (512 × 512 × 1)
and phase velocity mapping (512 × 512 × 3) data separately into the network. Each input
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had its respective encoder to allow the model to extract information that would otherwise
be fused at early stages. We then added a novel MCAB to disentangle the multi-channel
information better before it entered the decoder following standard U-Net structure at each
depth of the network. This model is abbreviated as AMU_MP below.

Within MCAB, we firstly concatenated the outputs of two encoders at each depth
and added a convolutional block that was of the same setting as the encoder to allow the
model to disentangle the latent relationship between the information between the two
channels. Then, the convoluted data stream went through an attention block [23] before
being delivered to the decoder at each depth.
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Figure 1. Network architecture of our proposed myocardium segmentation in three-directional cine multi-slice left
ventricular myocardial velocity mapping (3Dir MVM) cardiac magnetic resonance (CMR) (i.e., model [d] in Section 2.2).

2.3. Training Procedure

For the 121 CMR cine slices (each of 50 frames, giving 6050 2D cine frames in total)
introduced in Section 2.1, we augmented each cine slice 4 times. Then, we stacked all
augmented cine CMR cine frames and the original cine CMR cine frames on their frame
axis, giving a total of 30250 stacked frames (6050 × 4 + 6050 = 30250) for training. All
models specified in Section 2.2 were trained from scratch and evaluated using a five-fold
cross-validation scheme. As 121 is not a multiple of 5, each validation round takes 23–25
original CMR cine slices (1150, 1200 or 1250 testing frames) for testing and the augmented
and original cine frames corresponding to the rest of the cine slices for training. We trained
our network with cross-entropy loss using the Adam optimizer [24]. For hyperparameters
per Kingma et al. [24] we set α = 0.001, β1 = 0.9, β2 = 0.999, ε = 1× 10−7.

For all experiments, we defined the batch size as 8 to accommodate the high image
resolution of 512 × 512. The model was trained for 5 epochs. The training was completed
with an NVIDIA TESLA V100 GPU.

2.4. Testing Procedure

The input for testing was prepared in the same way as training as part of the five-fold
cross-validation. The testing was firstly performed on an NVIDIA TESLA V100 GPU and
then repeated on a machine without a GPU to test its efficiency on a modern computer
without a powerful GPU. This can also prove the feasibility of our model to be deployed in
a clinical environment, in which normally a decent GPU may not be available.
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2.5. Post-Processing

For healthy subjects, the endocardial and epicardial borders of their CMR short-axis
data were expected to be approximately ellipsoid. Any “broken” segmentations, which
did not conform to this shape constraint, passed through an additional postprocessing
stage. Examples of “broken” segmentation included semi-ellipses and ellipses that were
not closed.

At the post-processing stage, we followed Halir et al. [25] to regress the predicted
segmentation around the centre of the segmentation into a 3-pixel width ellipse, and
we output the final prediction as the regressed ellipse on top of the originally predicted
segmentation so that any “broken” segmentation could be rectified. Then, the largest
and the second largest contours obtained were considered as the final coordinates of the
epicardium and the endocardium layer, respectively, for the generation of CMR MVM.
A flow chart is included (Figure 2) for a clearer explanation of the workflow.

In addition, the analysis of the myocardial velocities in Section 2.6.2 requires the
segmentation results generated to be a close ring-like shape, so it can calculate the velocity
of movement for the whole myocardium. Therefore, this post-processing also helped to
shape the model-generated results to be an acceptable input into the myocardium velocity
analysis tool, so we can analyse these velocity data and markers as described.
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2.6. Evaluation Metrics
2.6.1. Dice Similarity Coefficient (or Dice Scores)

Dice Similarity Coefficient (DSC) is a broadly used metric to evaluate the segmentation
performance based on the overlap between the automated segmentation result and the
ground truth [26,27]. Let Sauto and Sgt be the automated segmentation result and the
manually annotated ground truth, respectively; the DSC can be defined as the Equation (1)
below [26,27].

DSC
(
Sauto, Sgt

)
=

2 | S auto ∩ Sgt |
| Sauto | + | Sgt |

. (1)

To assess and compare the performance of each model, we first evaluated the accuracy
of predictions using Dice Scores on raw predicted segmentation data before post-processing
(1) per cine frame, (2) per cine slice (50 cine frames) and (3) per subject (3–5 cine slices).
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The three Dice Score metrics allowed a comprehensive observation and examination of the
model’s performance.

2.6.2. CMR MVM Velocity Data

While the Dice similarity coefficients examine the overlaps per segmentation data
array, the CMR MVM velocity analysis observes the temporal derivatives of the 3D move-
ments of the segmented LV myocardium, i.e., velocities, by three axes—the longitudinal,
radial and circumferential [21].

The LV myocardial velocity analysis, especially regionally, has the potential to be
recognised under clinical settings to analyse the function of the myocardium in terms of its
temporal movements (i.e., LV contraction and relaxation).

After segmentation, global longitudinal, radial and circumferential LV myocardial ve-
locities were calculated and recorded from simulated temporal LV myocardial movements
within a cardiac cycle according to the LV myocardial segmentations. By analysing the
curves, global peak radial/longitudinal velocities were recorded for systolic (PS), diastolic
(PD) and atrial systolic (PAS) velocities at all slices across the axial direction. Additionally,
from the circumferential velocity–time curves, we recorded the typically shown two early
circumferential systolic peaks (C1 and C2) and a third circumferential early diastolic peak
(C3). All these peaks are widely applied as markers in the myocardial movements under
clinical settings and in reproducibility and reliability analysis [28,29]. In addition to the
global velocity data, we split the myocardium into 6 regions in accordance with the advice
from the American Heart Association [30]—anterior (A), mid anteroseptal (AS), inferosep-
tal (IS), inferior (I), inferolateral (IL) and anterolateral (AL), and reported all peak velocities
for each region as well. From these peak velocity data collected, we can see how these
variations may be able to help to form clinically valuable evidence for diagnosis.

In this study, we were able to evaluate these velocity curves and markers for a total
of 8 subjects, each of whom was scanned twice, giving 16 datasets. We were not able to
analyse the rest of subject population, since these datasets were acquired and processed
by another system, which was incompatible with our current CMR MVM myocardium
velocity analysis tool. However, the analysed 16 datasets are representative.

To assess the clinical significance of the predicted segmentation and its accuracy for
obtaining clinical measurements, we compared the longitudinal, radial and circumferential
markers of peak velocities from the LV myocardial velocity curves generated from the
manual segmentation and the model-generated delineation using two-way mixed, single
score inter-class coefficients (ICCs) [31–33] and also the Bland–Altman analysis. For ICC,
we classified them as excellent (>0.75), good (0.6 < ICC ≤ 0.75), fair (0.4 < ICC ≤ 0.6) and
poor (<0.4) per each region for regional peak values and per whole myocardium for global
peak values [31].

2.7. Inter-Observer Study

We then invited another very skilled and experienced clinician (10+ years in CMR) as
our second observer to delineate two randomly picked datasets independent of the first
observer who previously defined our ground truth.

We compared the Dice Score distributions between the first observer and the sec-
ond observer and the Dice Score distributions between the first observer and our best
performing model (model [d] as defined in 2.2) in terms of their mean Dice Scores.

The model employed for testing here refers to one of the five cross cross-validation
trained models. This model is trained by the corresponding augmented cine frames and
original cine frames of 97 CMR cine slices.

This comparison can help us to see the variability of segmentation results of the model
and the second human observer compared to the first human observer in terms of their
segmentation overlaps by Dice Scores.
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3. Results
3.1. Cross-Validation Testing

We cross-validated all four models (Section 2.2 [a]–[d]) to demonstrate their capabilities
in CMR MVM myocardium segmentation using the two evaluation methodologies. Then,
we compared the results of different models by the mean and standard deviation. Results
were tested for statistically significant differences using the Wilcoxon signed-rank test, and
the tests were considered significant if associated p values were <0.05.

The quantitative results of the models validated by Dice Scores can be found in Table 2
and Figure 3. As the differences between models are relatively small, we conducted
statistical tests to evaluate the differences more critically. By comparing the results between
single-channel input-based models in Section 2.2 [a] and [b] and the multi-channel input-
based models in Section 2.2 [c] and [d], we can see that the multi-channel models [c] and
[d] yielded higher Dice Scores, where model [d] resulted in the highest in particular. The
performance of models [c] and [d] is confirmed by the statistical significance (p < 0.05)
when comparing the per cine frame Dice Scores of [c] and [d] against the results of [a] and
[b] (Table 3c). Our proposed model [d] yielded the highest mean Dice Scores, confirmed
by the statistical significance (p < 0.05) when comparing the per cine frame Dice Scores
between models [c] and [d] (Table 3).

Table 2. Statistics (mean and standard deviation) Dice Scores of different models prior to post-processing (Bold values
indicate the best performance).

Single-Channel Data Multi-Channel Data

Model Type
(2.2)

Dice Score Type

[a] U-Net with
Magnitude Data

(Dice Score Mean,
Standard Deviation)

[b] U-Net with
Velocity Data

(Dice Score Mean,
Standard Deviation)

[c] U-Net with Magnitude
and Velocity Data
(Dice Score Mean,

Standard Deviation)

[d] Proposed MCAB
(Dice Score Mean,

Standard Deviation)

Per subject 0.8604, 0.0324 0.8513, 0.0292 0.8672, 0.0271 0.8679, 0.0290

Per cine slice 0.8615, 0.0687 0.8492, 0.0784 0.8688, 0.0551 0.8692. 0.0489

Per cine frame 0.8596, 0.0850 0.8455, 0.0977 0.8666, 0.0713 0.8668, 0.0747
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Table 3. Wilcoxon signed-rank tests to compare models using Dice Score distribution pattern per
subject (a), per cine slice (b) and per cine frame (c) of the comparison study results in five-fold
cross-validations using different methods.

(a) Per Subject (b) Per Cine Slice (c) Per Cine Frame

Model x Model y p-value p-value p-value

[a] [d] 0.016 0.004 <0.001

[b] [d] <0.001 <0.001 <0.001

[c] [d] 0.809 0.367 <0.001

[a] [c] 0.046 0.005 <0.001

[b] [c] 0.001 <0.001 <0.001
Bold: values exhibit statistical significance.

Following the segmentation outputs from the model, we performed CMR MVM
velocity analysis for each model in the framework, where we considered the segmentation
model and the post-processing stage as one segmentation framework. We excluded four
cine slices whose myocardial velocities could not be generated from their segmentation
from any of the models by the myocardial velocity analysis tool in the below comparison
study. We firstly conducted ICC tests (Supplementary Table ST1) for each of these peak
myocardial velocity values (PD, PA and PAS for the longitudinal velocity; PD, PA and
PAS for the longitudinal velocity; and C1, C2 and C3 for the circumferential velocity, as
specified in Section 2.6.2) generated from segmentation results. We then classified all ICCs
per method specified in Section 2.6.2 (Table 4). We were able to observe that all ICCs of
global values and the majority of the ICCs of regional values are classified as excellent.
Additionally, we also made Bland–Altman plots for each of these peak myocardial velocity
values (PD, PA and PAS for the longitudinal velocity; PD, PA and PAS for the longitudinal
velocity; and C1, C2 and C3 for the circumferential velocity, as specified in Section 2.6.2)
generated from different models (Supplementary Figure SF1).

Table 4. Classification of inter-class coefficients (ICCs) of CMR MV markers across models.

[a] U_M [b] U_P [c] U_MP [d] AMU_MP

global excellent >0.75 9 9 9 9

good 0.6 < x ≤ 0.75 0 0 0 0

fair 0.4 < x ≤ 0.6 0 0 0 0

poor ≤0.4 0 0 0 0

AS anteroseptal excellent >0.75 9 8 9 7

good 0.6 < x ≤ 0.75 0 1 0 2

fair 0.4 < x ≤ 0.6 0 0 0 0

poor ≤0.4 0 0 0 0

A anterior excellent >0.75 9 8 9 8

good 0.6 < x ≤ 0.75 0 1 0 1

fair 0.4 < x ≤ 0.6 0 0 0 0

poor ≤0.4 0 0 0 0

AL anterolateral excellent >0.75 8 8 9 8

good 0.6 < x ≤ 0.75 1 1 0 1

fair 0.4 < x ≤ 0.6 0 0 0 0

poor ≤0.4 0 0 0 0
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Table 4. Cont.

[a] U_M [b] U_P [c] U_MP [d] AMU_MP

IL inferolateral excellent >0.75 9 9 9 8

good 0.6 < x ≤ 0.75 0 0 0 1

fair 0.4 < x ≤ 0.6 0 0 0 0

poor ≤0.4 0 0 0 0

I inferior excellent >0.75 9 8 9 9

good 0.6 < x ≤ 0.75 0 1 0 0

fair 0.4 < x ≤ 0.6 0 0 0 0

poor ≤0.4 0 0 0 0

IS inferoseptal excellent >0.75 9 9 9 9

good 0.6 < x ≤ 0.75 0 0 0 0

fair 0.4 < x ≤ 0.6 0 0 0 0

poor ≤0.4 0 0 0 0

3.2. Independent Testing

In addition, the trained model with the highest Dice Score (model [d]) also performed
well on further two independent testing datasets, which were not included in the training
and cross-validation process (Figures 4 and 5) with high Dice Score distributions (Figure 6).

The independent testing by these two datasets further confirms the performance of
our model [d] in addition to the cross-validation.
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3.3. Inter-Observer Study

With the segmentation from the second observer (as specified in Section 2.7), we
can calculate the Dice Scores between the first and the second observers as specified in
Section 2.6.1, who are both very experienced CMR clinicians/physicists, as specified in
Sections 2.1 and 2.7. This provides a reference for inter-observer manual variation of the
myocardium segmentation in terms of the Dice Scores.
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Figure 5. Global velocity curves of the longitudinal, radial and circumferential myocardium velocities
per cine slice for a sample cine slice from a subject generated from the manual segmentation and our
automated segmentation system.

We then extracted the automated segmentation of the corresponding subjects by model
[d] (highest performing as per Section 3.1) from Section 3.1 and calculated its distribution
of Dice Scores against the first observer as per Section 2.6.1.
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We were then able to observe a significantly higher distribution of Dice Scores per
subject and per cine slice in the automated segmentation from their box plots of Dice Scores
(Figure 7). Although in the box plot for per cine frame Dice Scores, we have a few outliers
that fall below the distribution of the second observer, it did achieve statistical significance
by Wilcoxon signed-rank tests against the distribution obtained from the second observer
(Figure 7).

3.4. Processing Time

By testing all models on an NVIDIA TESLA V100 GPU or using the option without
the GPU as per Section 2.3, we were able to measure their processing time, respectively
(Table 5). Within the processing time, the process of data loading and model loading solely
takes less than 6 seconds for each of the models regardless of the employment of the GPU.
We can conclude that all models are able to load and infer on a cine slice within 10.5 s on
average using an NVIDIA TESLA V100 GPU as per Section 2.3. Even without the GPU, all
models are able to complete segmentation of a single cine slice within 60.7 s on average.
Thus, it is also worth noting that even without the GPU, the model is still able to infer each
cine slice within a minute or slightly over a minute, as per the methodology mentioned in
Section 2.4. This implied that a typical modern computer can also perform the automated
segmentation within an acceptable period of time once the model is trained.

Its efficiency in segmentation, together with its efficacy and accuracy compared to the
currently highly tedious and time-consuming manual segmentation processes, makes the
developed framework welcomed for use by clinicians.

Table 5. Processing time of different models with or without the GPU. The time here is inclusive of
data loading, model loading and inference.

Processing Time (s)/#Cine
Slices Tested

(Mean Time Per Cine Slice (s))
Model [a] Model [b] Model [c] Model [d]

With GPU 21.1/3 (7.03) 21.8/3 (7.27) 21.5/3 (7.17) 31.4/3 (10.5)

Without GPU 96.1/3 (32.0) 96.1/3 (32.0) 96.4/3 (32.1) 182/3 (60.7)
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4. Discussion

Our current work has served as a proof-of-concept study to introduce deep learning
networks into the segmentation of left ventricles in 3Dir MVM CMR data.

Sections 3.1 and 3.2 have provided evidence from both methodologies of cross-
valuation and independent testing to evaluate the performance of the models. The results
from Sections 3.1 and 3.2 have provided statistically strong evidence that the multi-channel
can outperform the previously existing single-channel segmentation models. They have
also proved that the integration of different channels (magnitudes and velocities) can
provide more information and thus better performance for the automated segmentation
framework. Our experiments have also provided evidence for the usefulness of these
attention modules when integrating and processing multi-channel data.

Additionally, we performed myocardial velocity analysis, where we analysed the
segmentation results in terms of the time derivatives of temporal physiological movements
of the segmented myocardium, so we can see how similar the automatically segmented
myocardium to the manually segmented myocardium when pumping blood across time
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frames across all three axes during an R-R interval in the ECG. From the very low bias
(close to 0) and small limits of agreements in velocity curves and all peak values derived
across all the longitudinal, radial and circumferential directions, we were then able to prove
the efficacy and accuracy of our automated segmentation by the velocities derived from
simulated temporal LV myocardium movements in addition to the Dice Scores evaluating
the overlaps in the automated segmentation results.

Although we were not able to compare the segmentation results on all slices by
myocardial velocity analysis as our myocardium velocity analysis tool has a very strict
temporal and shape restriction on the segmentation result input, we could still analyse
the majority of the cine slices and provided promising results as supporting evidence
to our proposed method. We also believe that with the advancement of the algorithm
with temporal and shape constraints on its output, we can mitigate this problem in future
versions of this segmentation framework. From the inter-observer study, we are now
able to observe the variability among human observers and have provided a reference
for future technicians regarding the variation they should expect in the ground truths
from different observers. The results have also provided strong evidence to suggest lower
variations of our model [d] against its training dataset (or the first observer) than the
second observer’s and have further confirmed evidence regarding the existence of minor
inter-observer variation in manual segmentation, which can be compensated and rectified
by our automated segmentation framework. However, the inter-observer study can be
applied to a greater number of subjects to supplement the generality of this study.

At the current stage, our proof-of-concept study has assessed the performance of the
proposed deep neural networks on healthy subjects only. We expect that a more diverse
group of subjects will be introduced in further development, where 3Dir MVM CMR
images will be collected from patients with cardiac disease (e.g., dilated cardiomyopathy)
and further analysis will be conducted. With a more diverse group of subjects, we will be
able to critically evaluate and report the benefits and shortcomings of this methodology.
Additionally, with the introduction of a more diverse range of subjects, we may need to
adjust and re-design the post-processing stages, as the current design of the post-processing
workflow is based on the assumption that all subjects are healthy and thus that the shapes
of their LV myocardium should be ellipse-like. This may be considered as a limitation of
our current work and may require another layer of post-processing to mitigate any “broken”
segmentations. In this paper, we were able to assess the performance of models in our very
unique data with a limited number of subjects. However, more experiments on multi-centre
and multi-scanner datasets with a greater number of subjects may be needed to assess
the generality and reproducibility of the proposed model design. Moreover, to facilitate a
larger clinical trial, more comprehensive inter- and intra-observer study will be carried out
that will involve manual labelling for the clustering of clinicians with various experience.

Another limitation of our work is that as the results show in Table 5, we have similar
inference time per slice, and the inference times are model [a] ~ = model [b] ~ = model [c] <
model [d]. It is of note that although our model [d] outperformed model [a] and model [b]
with statistical significance, variances of model performance were small and model [d] also
required more computing time.

For the design of the model network, we have noticed that there are plenty of directions
for further developments. This can include the incorporation of Long Short-Term Networks
(LSTM) and/or Recursive Neural Networks (RNN) into our framework to process the
temporal information of the cine slices.

5. Conclusions

In this study, we proved that the standard U-Net-based structure can be used for
myocardium segmentation in 3Dir MVM CMR. Additionally, we proposed a multi-channel
attention block to better incorporate the multi-channel information and used that to design
our novel network architecture with post-processing stages to enhance the segmentation
accuracy. In order to assess the performance of the designed frameworks, we evaluated
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them with relation to quantitative CMR MVM velocity peaks in addition to the Dice Scores.
Our experiment results demonstrated the high efficacy and efficiency of our proposed
automated segmentation framework.

Supplementary Materials: The following are available online at https://www.mdpi.com/2075-441
8/11/2/346/s1, Supplementary Table ST1—Inter-class coefficients (ICCs) of CMR MVM markers
across the models (ST1.xlsx). Supplementary Figure SF1—Bland–Altman figures (SF1.png)
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