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Several MRI measures have been developed in the last couple of decades, providing

a number of imaging biomarkers that can capture the complexity of the pathological

processes occurring in multiple sclerosis (MS) brains. Such measures have provided

more specific information on the heterogeneous pathologic substrate of MS-related

tissue damage, being able to detect, and quantify the evolution of structural changes both

within and outside focal lesions. In clinical practise, MRI is increasingly used in theMS field

to help to assess patients during follow-up, guide treatment decisions and, importantly,

predict the disease course. Moreover, the process of identifying new effective therapies

for MS patients has been supported by the use of serial MRI examinations in order to

sensitively detect the sub-clinical effects of disease-modifying treatments at an earlier

stage than is possible usingmeasures based on clinical disease activity. However, despite

this has been largely demonstrated in the relapsing forms of MS, a poor understanding

of the underlying pathologic mechanisms leading to either progression or tissue repair

in MS as well as the lack of sensitive outcome measures for the progressive phases of

the disease and repair therapies makes the development of effective treatments a big

challenge. Finally, the role of MRI biomarkers in the monitoring of disease activity and the

assessment of treatment response in other inflammatory demyelinating diseases of the

central nervous system, such as neuromyelitis optica spectrum disorder (NMOSD) and

myelin oligodendrocyte antibody disease (MOGAD) is still marginal, and advanced MRI

studies have shown conflicting results. Against this background, this review focused on

recently developed MRI measures, which were sensitive to pathological changes, and

that could best contribute in the future to provide prognostic information and monitor

patients with MS and other inflammatory demyelinating diseases, in particular, NMOSD

and MOGAD.

Keywords: MRI, multiple sclerosis, prognosis, neuromyelitis optica spectrum disorder, myelin oligodendrocyte

antibody disease

INTRODUCTION

Magnetic resonance imaging has become a key investigation in different scenarios of multiple
sclerosis (MS), including diagnosis, monitoring of disease course, and assessment of treatment
response (1). Identifying prognostic markers is critical for the management of MS patients at all
disease stages. Some valuable MRI measures of focal pathology (e.g., lesion number, volume, and
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distribution) are already available for predicting MS outcome,
and a number of additional measures of neurodegeneration and
functional organisation (e.g., brain and cervical cord atrophy,
functional MRI abnormalities) had been proposed as reliable
prognostic markers in MS, although their use in clinical practise
is still challenging (2, 3). Moreover, recent developments in
imaging acquisition protocols and post-processing contributed
to a better understanding of pathological processes occurring
in the central nervous system (CNS) diseases, thus providing
new imaging biomarkers which may be useful to rule out other
inflammatory demyelinating diseases that can mimic MS.

The aim of this review was to describe the prognostic role
of conventional and non-conventional advanced MRI measures,
with a particular focus on recently developed techniques, in
patients with MS and other inflammatory demyelinating diseases
of the CNS. Because of the overlapping clinical and MRI findings
with MS, special attention would be devoted to neuromyelitis
optica spectrum disorder (NMOSD) and myelin oligodendrocyte
glycoprotein (MOG) antibody-associated disease (MOGAD).

Neuromyelitis optica spectrum disorder is an autoimmune
astrocytopathy of the CNS with secondary demyelination, which
can be associated with a specific auto-antibody against the
antigen aquaporin-4 (AQP4) in 50–90% of cases (4). MOGAD is
an autoimmune disease of the CNS characterised by the presence
of serological antibodies against MOG, a CNS-specific protein
located in the outer layers of the myelin sheath (5). MOGAD
is a relatively new clinical entity (6) whose clinical phenotype,
disease course, and response to treatment are currently being
defined. Several clinical andMRI features overlap across the three
diseases (6, 7).

In this review, we gave an overview on the prognostic role of
MRI, moving from conventional and establishedMRI techniques
to more recently developed measures, which although not yet
considered established prognostic markers in MS, could provide
additional information about diseases pathogenesis. Finally, we
considered novel MRI developments, including the advent of
ultra-high field scanners, and suggested future areas of research.
For this purpose, this review included scientific literature of
the last 10 years from PubMed using the following search
terms: multiple sclerosis, neuromyelitis optica spectrum disorder,
myelin antibody glycoprotein associated disease, magnetic
resonance imaging, prognosis, and pathogenesis.

PROGNOSTIC MRI MEASURES OF
CONVENTIONAL MRI IN MS, NMOSD, AND
MOGAD

Several MRI measures obtained using conventional MRI
sequences have been suggested as prognostic markers in patients
with MS. Their ability to predict disease course was consistently
found to be higher than that of clinical measures (8). Evidence
suggests that white matter lesions (WML), brain, and spinal
cord atrophy can help to predict clinical outcomes and monitor
treatment response, and several studies over the last years have
advanced the field. In this section, we will present the recent

impact of these advances on the management of MS, NMOSD,
and MOGAD (Table 1, Figure 1).

Lesions
White matter lesions count and volume are the most used
MRI biomarkers for quantifying the inflammatory activity in
MS and represent the primary and secondary efficacy outcomes
in many MS clinical trials (9). In patients with the clinically
isolated syndrome (CIS), a higher number of T2 lesions at
baseline was associated with an increased risk of conversion to
clinically-defined MS and T2-lesion volume was able to predict
Expanded Disability Status Scale (EDSS) scores at up to 20
years (8, 10). Lesions along specific brain WM tracts involved
in motor function and near the corpus callosum were found to
be associated with a higher risk of clinical conversion to MS
at 1 year (11). In MS patients with at least 1 year of unilateral
motor progression and more than five CNS demyelinating
lesions, the motor deficit may be attributable to a single critical
(i.e., prominent by size and accompanied by focal atrophy)
corticospinal tract lesion. This finding supports the role of
spinal cord lesions as major contributors to MS clinical motor
progression rather than symmetric diffuse brain white matter
injury (12).

Recent evidence suggests that lesion topography and
gadolinium (Gd)-enhancing lesions are independent predictors
of long-term outcomes in patients with CIS. In a cohort of
patients with relapse-onset MS, spinal cord lesions, combined
with inflammatory activity on MRI at baseline, were found to
predict long-term disease outcomes. The presence of spinal cord
lesions and at least two Gd-enhancing lesions in CIS patients was
associated with a 45% risk of developing secondary progressive
(SP) MS after 15 years and with a worse EDSS (13). However,
the strongest early predictors, within 5 years of disease onset, of
developing secondary progressive multiple sclerosis (SPMS) after
30 years were the presence of infratentorial lesions at baseline
and deep WM lesions at 1 year (14).

In MS, especially in the progressive phases, some pre-existing
T2 lesions may show chronic activity, which can be associated
with clinical progression (15). Histopathologically, these lesions
exhibit expansion at the border, revealed by the presence of a rim
of iron-containing cells and reflecting tissue loss in the absence
of an ongoing acute inflammation (16). A higher number of rim-
positive lesions was associated with clinical relapses in relapsing-
remitting (RR) MS and patients with at least 4 rim-positive
lesions reached motor and cognitive disability at a younger age
(17), thus, suggesting that iron rim might represent a risk factor
for MS patients.

Recent MRI studies using deformation-based techniques (i.e.,
Jacobian maps), allowed us to identify in MS those WMLs
with a constant and concentric volume increase and defined
them as slowly expanding lesions (SELs). SELs represents a
promising marker for chronic active lesions, as they can be
detected on routinely acquired MRI scans, and may predict
clinical progression (18). Chronic lesion activity, as demonstrated
by increasing T1-hypointensity within existing lesions, was the
strongest predictor of disability progression rather than brain
volume loss or the rate of accumulation of new T1 or T2 lesions
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TABLE 1 | Conventional MRI measures with an established prognostic role on clinical disability in multiple sclerosis (MS), neuromyelitis optica spectrum disorder

(NMOSD), and myelin oligodendrocyte antibody disease (MOGAD).

MRI predictors of clinical measures MS NMOSD MOGAD

White matter

lesions

Number Conversion from CIS to MS:

Higher number at onset

NA NA

Volume Worse EDSS:

Higher volume at onset

NA NA

Location Conversion from CIS to MS:

Lesions located in the motor tracts and

corpus callosum at onset

Development of SPMS:

Lesions located in the spinal cord,

infratentorial region and deep white matter

at onset

Worse EDSS:

Lesions located in the spinal cord at onset

Long-term disability:

Long, acute spinal cord lesions and

symptomatic brain/brainstem

lesions

Risk of post-myelitis chronic pain:

Having thoracic (more than cervical)

cord lesions

Poor prognosis:

In paediatric patients,

leukodystrophy-like lesions and

extensive cortical lesions

Worse outcome:

Brainstem involvement at the

time of the transverse myelitis

Long-term sphincteric

dysfunction:

Lesions in the conus medullaris

Gd-enhancement Development of SPMS and worse EDSS:

At least two Gd-enhancing lesions at onset

Poor prognosis after an attack:

Persistence of

Gd-enhancing lesions

NA

Atrophy Whole brain Disability progression and cognitive

decline:

Reduced whole brain volume

NA NA

Regional brain Increased risk of disability progression:

Reduced deep grey matter volume

Cognitive impairment: Reduced

hippocampal volume

NA

Cervical cord EDSS progression and gait impairment:

Reduced cervical cord area

Increased number of myelitis

episodes, motor, and sensory

disability:

Reduced cervical cord area

Relapsing course (rather than

monophasic):

Reduced cervical cord area

CIS, clinically isolated syndrome; EDSS, expanded disability status scale; Gd, gadolinium; MRI, magnetic resonance imaging; NA, not available; SPMS, secondary progressive

multiple sclerosis.

in a large, prospective imaging study on over 500 patients with
primary progressive multiple sclerosis (PPMS) acquired during
the ORATORIO trial (18).

In patients with NMOSD, several MRI features, including
spinal cord T1-hypointensity, cavitation, or atrophy, were
associated with a higher risk of poor recovery, refractory
pain, and permanent disability, and lesions in the upper
cervical region extending to the brainstem carried a risk of
respiratory failure (19). In a recent multicentre study, the
presence of longer acute spinal cord lesions and symptomatic
brain/brainstem lesions were found as the primary contributors
to long-term disability in NMOSD, independently from
other factors, such as race and centre (20). Moreover, the
presence of thoracic cord lesions in NMOSD patients was
associated with a higher risk of post-myelitis chronic pain
than the presence of cervical lesions, independently of
the number of myelitis relapses, lesion length, and lesion
burden (21).

The persistence of Gd-enhancing lesions, due to the
breakdown of the blood-brain barrier, turned out to be an
important predictor of poor prognosis after an NMOSD attack,
a finding which can guide treatment options and suggests an
adequate short-term follow-up (22).

In a large French cohort of adult patients with MOGAD, those
presenting with an abnormal brain MRI had a higher disability

at onset than those with a normal brain MRI (23). In addition,
in a longitudinal English cohort of adult patients with MOGAD
who experienced at least one transverse myelitis episode, the
length of the spinal cord lesions was associated with disease
severity at onset while the involvement of the brainstem at the
time of the transverse myelitis was predicted a worse outcome,
and the presence of conus lesions was associated with long-
term sphincteric dysfunction (24). In a recent Spanish study on
paediatric MOGAD patients, ADEM-like relapses progressing to
leukodystrophy-like features, and extensive cortical encephalitis
evolving to atrophy were indicative of poor prognosis.

Atrophy
In addition to lesions visible on conventional MRI
sequences, inflammatory demyelinating diseases may
lead to neurodegeneration and consequent brain and
spinal cord atrophy, which are more related to disability
progression. MRI is also sensitive to the detection
of brain tissue loss, and this may be qualitatively
assessed in the form of macroscopic brain volume
contraction, ventricular enlargement, and widening of the
cerebral sulci.

MRI techniques able to assess the whole brain and grey
matter (GM) atrophy are now widely accessible using automated
analysis methods, and recommendations to improve their
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FIGURE 1 | Summary of the most common, clinically available MRI prognostic features in multiple sclerosis (MS), neuromyelitis optica spectrum disorder (NMOSD),

and myelin oligodendrocyte antibody disease (MOGAD).

measurement and interpretation have been suggested (25–27).
Furthermore, new approaches assessing longitudinal changes
of spinal cord volume with more precise segmentation-based
methods (28, 29) and allowing calculation of spinal cord atrophy
from brain MRI volumetric images have been developed, thereby
reducing scanning time (30).

Brain atrophy is an important feature of MS pathology,
mainly reflecting neuroaxonal loss within lesions and normal-
appearing tissue (31). It has been observed since the earliest
stages of MS and baseline measurements were found to correlate
with long-term disability progression (10, 31). Currently, brain
atrophy is the most commonly used imaging biomarker for
quantifying neurodegeneration in MS clinical trials, alone or in
combination with the absence of new T2 or Gd-enhancing T1
lesions (32). Similarly to whole-brain atrophy, GM atrophy is
an important prognostic factor in MS, occurring with a similar
pattern across all phenotypes and being faster in deep GM
followed by cortical lobes of the brain (33). A reduced deep
GM volume at baseline was associated with an increased risk of
disability progression over time. While relapse onset MS (CIS,
RRMS, and SPMS) firstly developed atrophy in cortical GM
(posterior cingulate and precuneus), thalamus atrophy seems
to appear early in PPMS (33). The thalamus is a central hub
connected with several brain regions and its damage is associated
with a variety of clinical manifestations in MS, including
fatigue, movement disorders, pain, and cognitive impairment

(34, 35). Thalamic volume declines consistently during the
disease course and is one of the most important predictors
of cognitive impairment in MS (36). The recent evidence of
slower thalamic volume loss in several recent randomised,
placebo-controlled trials, supports the incorporation of thalamic
MRI endpoints in future clinical trials (37). Using source-
based morphometry, a recent multicentre MAGNIMS study
showed that baseline normalised GM volume and cerebellar GM
atrophy independently predicted clinical worsening in all MS
phenotypes (38).

In addition to baseline measures, the rate of brain volume
loss at both whole and regional levels have been correlated with
subsequent disability in MS (39), although these changes should
not be confounded by the short-term “pseudoatrophy” that
may occur after initiation of some disease-modifying treatments
(DMTs) (40). Global brain and GM atrophy changes were
mild in a unique group of patients with long-standing (i.e.,
at least 30 years) disease and no or minimal disability, thus
supporting the relevant role of GM atrophy in characterising
MS patients who may have favourable long-term disease
evolution (41).

The so-called “brain-predicted age” (brain-PAD) paradigm
has been proposed as a potential prognostic biomarker in
MS, to capture the earliest progressive processes from MRI
data (T1-weighted images) using machine learning analysis.
Indeed, brain-PAD was independently associated with higher
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disability, younger age at diagnosis, and longer disease duration,
irrespective of disease phenotype (42).

In recent years, a number of studies have proposed spinal
cord atrophy as a strong predictor of clinical outcomes in
MS. Cervical cord area and volume are differently affected
in MS phenotypes, with the greatest changes in patients with
primary progressive (PP) MS and higher atrophy rates than
those detected in the brain (43). In PPMS, for each 1%
annual increase of atrophy, it was found a 28% risk of EDSS
progression, independently of brain volume loss (43). Some
studies highlighted in MS the presence of damage to specific
locations, such as cervical cord GM (44). In RRMS, the cross-
sectional area of the spinal cord GM was a strong predictor
of EDSS score, and a cut-off value of 11.1 mm2 was found to
be able to differentiate patients with progressive MS (below the
threshold) from those with relapsing MS (above the threshold)
(45). The inclusion of thoracic cord measurements improved the
correlation between cord atrophy and most clinical progression
measures and allowed for better subgrouping of spinal cord
phenotypes (46).

Differences in atrophy patterns seem to exist between
MS and NMOSD. Indeed, while MS patients showed more
whole brain and thalamic atrophy than NMOSD and healthy
controls, NMOSD patients showed more spinal cord atrophy
and milder brain atrophy, especially in the WM, than healthy
controls, thus supporting the presence of different underlying
pathogenic mechanisms (47). Therefore, spinal cord atrophy
has become a hallmark of NMOSD, being associated with the
number of myelitis episodes and lesion length. Spinal cord
atrophy on MRI was topographically associated with lesions
and correlated with motor and sensory disability (48) unlike
MS, where atrophy is only partially related to the presence
of focal lesions (49). In NMOSD, progression of spinal cord
atrophy was associated with disability worsening and for this
reason, it was suggested as a potential biomarker for clinical
trials (47).

Different patterns of brainstem atrophy were also observed
in the two diseases, with the midbrain being most severely
affected followed by pons in MS whereas only the medulla
oblongata was affected in NMOSD (50). GM atrophy is another
disease-related feature that has been assessed in NMOSD.
Indeed, Calabrese and colleagues found in NMOSD patients
some mild thinning in the post-, precentral gyri, and calcarine
sulcus, which was nonetheless significantly larger than in
MS (51). Duan et al. also found GM volume reduction in
several regions of the frontotemporal cortex, right inferior
lobules, and right insula but it was only significant without
correction for multiple comparisons (52). Similarly, a study
using voxel-based morphometry found a significant reduction
of GM volume in NMOSD patients when compared with
healthy subjects, especially in the visual and motor areas as
well as in the regions involved in language and executive
functions (53). In a study aimed to assess clinical and structural
MRI markers for predicting cognitive impairment, hippocampal
volume resulted from the main MRI predictor of cognition in
NMOSD (54).

Recently, distinct structural brain alterations were identified
in MOGAD. Indeed, they included atrophy in the fronto-
orbital cortex, temporal gyrus, and deep GM, with hippocampal
atrophy correlating with clinical and cognitive disability (55). A
significant volume loss in the deep GM structures in MOGAD
was found, which correlated with persistent brain lesions (56).
When considering the three diseases together, the greatest level of
atrophy in the cervical and thoracic cord, particularly in the cord
GM, was found in patients with AQP4-NMOSD. In MOGAD
patients, volumetric cord measures were lower in those with a
relapsing course, even in the case of relapses not involving the
spinal cord (57).

PROGNOSTIC MRI MEASURES OF
ADVANCED MRI TECHNIQUES IN MS,
NMOSD, AND MOGAD

Important pathological abnormalities occur in MS beyond MRI-
visible focal lesions and atrophy. These include neuroaxonal
dysfunction and loss, microglial activation, and astrogliosis
(58). A number of non-conventional MRI measures have
shown sensitivity toward such pathological findings and
might provide new prognostic biomarkers in inflammatory
demyelinating diseases. Although currently, these novel MRI
measures are not well-established as prognostic markers in
MS, the application of advanced structural, functional and
metabolic imaging techniques to such diseases helped to yield
important pathogenetic insights. This is particularly true in
NMOSD and MOGAD where, although longitudinal studies of
advanced MRI are lacking, some measures have shown clinical
relevance in cross-sectional studies. Therefore, in this section, we
will report recently developed and promising MRI techniques,
which have helped to detect different components of disease
pathogenesis in vivo, even when their prognostic role was not yet
demonstrated (Table 2).

Advanced MRI Techniques Assessing
Structural Changes
Over the past decade, the relevance of cortical GM pathology
in MS has become increasingly recognised. Cortical lesions
(CLs) detected at “clinical” field strengths using specific
MRI sequences (i.e., double inversion recovery [DIR] or
phase-sensitive inversion recovery [PSIR]) is an early and
frequent phenomenon in MS and correlate with a disability,
cognitive impairment, and a higher risk of transition to
the secondary progressive phase (59). Patients with at least
seven CLs at disease onset showed an aggressive disease
course and a rapid conversion to SPMS while none of the
patients without CLs at onset entered the SP phase (59).
However, the current detection of CLs in vivo is incomplete,
capturing only 10–15% of cortical demyelination, even at
ultra-high field (UHF) MRI (60). An important aspect to be
considered is that most of the lesions detected on MRI are
cortico-subcortical or intra-cortical while the most abundant
subpial lesions remain largely unrecognised. Cortical lesions
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TABLE 2 | Advanced MRI measures reflecting different pathogenic mechanisms with a potential prognostic role on clinical disability in multiple sclerosis (MS),

neuromyelitis optica spectrum disorder (NMOSD), and myelin oligodendrocyte antibody disease (MOGAD).

Advanced MRI techniques MS NMOSD* MOGAD*

Structural DIR/PSIR At onset, cortical lesions predict aggressive disease

course and rapid conversion to SPMS

Cortical lesions are typically

absent

NA

Diffusion imaging Altered DTI measures at onset in brain, spinal cord

and optic nerve predict worse EDSS, worse

recovery from relapses and decline in vision.

Altered QSI measures in early PPMS predict worse

postural stability, greater vibration dysfunction

and spasticity

Altered DTI measures at cord

level involved in the acute attack

and WM disruption in optic

radiation and corona radiata

White matter disruption

in optic radiation and

anterior/posterior

corona radiata.

No alteration in DTI

measures detected at

cord level

Myelin-sensitive imaging

Changes in MTR values may reflect demyelination

or remyelination, correlating with clinical worsening

or improvement, respectively.

MTR and T1/T2-ratio can be influenced

by treatments.

Reduced MTR in the cervical

cord (lesional and non-lesional).

NA

Connectomics Structural network disruption in CIS is associated

with early conversion to MS.

NA NA

Functional and Metabolic Functional MRI Functional impairment in the thalamus and between

thalamus and cortex are associated with cognitive

impairment.

Functional impairment and

adaption in the thalamus,

caudate nucleus and some

frontal brain regions.

Functional impairment

and adaption in the

posterior cerebellar

lobe and in the

temporal gyrus,

respectively.

PET Using different radiotracers, TSPO-PET, increased

uptake inside and around white matter lesions is

associated with disability worsening.

NA NA

*MRI measures showing relevance in cross-sectional studies are reported.

CIS, clinically isolated syndrome; DIR, double inversion recovery; DTI, diffusion tensor imaging; MTR, magnetisation transfer ratio; NA, not available; PPMS, primary progressive multiple

sclerosis; PSIR, phase-sensitive inversion recovery; QSI, Q-space imaging; SPMS, secondary progressive multiple sclerosis; TSPO-PET, positron emission tomography with radiotracers

targeting translocator protein.

are typically absent in AQP4-NMOSD (51), while a cortical
involvement in MOGAD has been initially described in the
context of ADEM (61). Then, a newly recognised phenotype
of benign, unilateral cerebral cortical encephalitis has been
recognised (62).

Despite the exact underlying mechanisms are not completely
understood, studies on the post-mortemMS brain tissue support
the idea that meningeal inflammation and the consequent
cortical microglia activation lead to progressive cortical
demyelination and neurodegeneration (63, 64). Recently,
using high-resolution 3D post-Gd T2-FLAIR images, it was
possible to non-invasively detect cortically-based leptomeningeal
infiltrates (LME), which in MS were associated with older age,
longer disease duration, higher EDSS, greater whole brain,
and cortical atrophy (65). However, meningeal enhancement
cannot be considered a specific feature of MS since it can
also be found in inflammatory, immune-mediated, and
infectious vasculitis.

A growing body of work has investigated the role of iron
in MS pathogenesis and evolution. The paramagnetic rim is
due to the presence of iron-laden activated microglia at the
lesion edge and can be easily seen on 7T phase images.
Using high-resolution susceptibility-based imaging, nearly all
7T paramagnetic rims can also be seen at 3T, suggesting the

possibility of implementing them as an outcome measure in MS
MRI-based clinical trials (66).

Moreover, quantitative MRI techniques allow iron
quantification in vivo. Using quantitative susceptibility mapping
(QSM) deep grey matter iron was found to be associated with
the secondary progressive course in (MS), independently of
tissue atrophy (67). In particular, an increased thalamic iron
content, as detected at 7T MRI, was found in patients with MS
when compared with healthy controls, which was associated
with higher disability scores (68). Several longitudinal studies
using advanced MRI techniques showed diffuse injury in the
MS normal-appearing brain and spinal cord from the symptoms
onset to the progressive stages of the disease (69, 70). Diffusion
imaging techniques have been extensively used in MS to assess
neuroaxonal integrity in both lesional and non-lesional tissue
and along specific WM tracts (71, 72). These techniques include
diffusion tensor imaging (DTI) and new models of diffusion.
DTI metrics can predict disability progression (73) and cognitive
decline (74). In relapsing-onset MS, altered DTI measures in
the normal-appearing white matter (NAWM) of the callosum
were able to predict disability progression over 4 years (73).
Moreover, in patients with CIS and early MS, reduction in
fractional anisotropy (FA), a marker of microstructural integrity,
in the cerebellum and the cerebral peduncles correlated with
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EDSS at 2 years (75). Thalamic DTI changes were found to
be predictors of disability score deterioration in MS patients
followed up for 15 months (76), and they can be used to predict
cognitive impairment at 5-years of follow-up (74). In the case of
acute spinal cord relapses, higher FA and lower diffusivity in the
direction perpendicular to the main fibre direction [i.e., radial
diffusivity (RD)] predicted better functional recovery from the
relapse (77).

Moreover, increased optic nerve RD was associated with a
decline in vision after optic neuritis (ON) and correlated with
clinical disability in patients with spinal cord lesions (78).

New diffusion imaging models have been developed in the
last years and showed interesting results in MS. An increase
over time in the RD of the cervical cord of early PPMS was
detected using Q-space imaging (QSI), an advanced model-
free diffusion imaging technique with higher sensitivity for
neuroaxonal alterations than standard DTI. In the same study,
higher RD of the cervical cord predicted worse disability at 3
years, thus suggesting ongoing neurodegeneration in the cord
independently of lesions (79). Neurite orientation dispersion and
density imaging (NODDI) is a multi-compartment model that
enables the estimation of more specific indices, such as neurite
density, orientation, and a free-water [cerebrospinal fluid (CSF)-
like] component (80). NODDI has shown inMS higher specificity
and sensitivity to neurodegeneration compared with traditional
DTI measurements. A recent study showed that patients with
RRMS had lower neurite density index (NDI), suggestive of
neurodegeneration, in the brain NAWM and spinal cord WM
than healthy controls. In patients, a lower NDI in the spinal
cord WM was associated with higher disability (81). If NODDI
can be used to predict disease outcome is still unknown, as no
longitudinal studies have been performed thus far.

Myelin-sensitive MRI measures are crucial to investigate MS
pathology. In a combined MRI-pathology study, magnetisation
transfer ratio (MTR) showed a strong association with myelin
content, especially in WM and cortical GM lesions (82). In MS
acute lesions, an initial decrease was followed by an increase
in MTR, thus reflecting a demyelination process followed by
partial remyelination. These changes are correlated with clinical
improvement and can be influenced by specific therapies (83, 84).

MTR values in NAWM and GM of MS showed a gradient
of abnormalities depending on the distance from the surface of
the brain (85). These gradients occur early, worsen with time
(86), and may improve after immunotherapy (87), suggesting
a remyelination ability of some treatments. However, although
sensitive to myelin, magnetisation transfer imaging can be
influenced by axonal density and oedema, which may reduce its
specificity (88).

Recently, the ratio between conventional T1-weighted (T1w)
and T2-weighted (T2w) sequences (i.e., T1/T2-ratio) has been
proposed as a reliable measure to evaluate myelin integrity as well
as dendrite density (89), which would be easily implementable
in clinical practise. A significant T1/T2-ratio increase in NAWM
andGMhas been demonstrated in RRMS patients during the first
2 years of treatment with disease-modifying drugs (90). Other
techniques, such as myelin water fraction and T2 relaxometry in
the brain and cervical spinal cord correlated inMSwith a physical

disability at follow-up (91–93) but their role as MS prognostic
measures needs to be further clarified.

In the last decade, approaches of network-based connectomics
MRI have been developed to explore the relationships between
changes in functional or structural networks and clinical
measures (94). For example, in a cross-sectional study, measures
of structural network disruption explained scores of EDSS and
symbol digit modality test (SDMT), a proxy for information
processing speed, above measures of tissue atrophy and WM
lesions in different MS clinical phenotypes (95). A longitudinal
assessment of specific brain networks (e.g., structural covariance
networks) further confirmed their relevance in MS, as their
alterations in CIS were associated with early conversion
to MS (96).

The application of advanced imaging in NMOSD and
MOGAD is emerging, but with many controversies and lack
of studies assessing changes in these new measures over time,
therefore limiting clinical application in the near future.

Several studies have investigated the presence of diffuse and
“occult” damage within the NAWM of patients with NMOSD
by applying different MRI techniques. Proton MR spectroscopic
imaging (MRSI) showed normal N-acetylaspartic acid (NAA),
creatine and choline levels within the NAWM, arguing against
occult neuroaxonal damage, inflammation, and gliosis (97). By
contrast, a recent study using magnetisation transfer imaging
showed in NMOSD an abnormal NAWM, with decreased myelin
signal than healthy controls (98).

DTI, which is sensitive to microstructural alterations, has
been performed in NMOSD and showed contrasting data. On
the one hand, no DTI abnormalities were reported in different
brain regions, except for the visual and motor WM pathways
where a selective trans-synaptic axonal degeneration may occur
secondary to destructive lesions in the optic nerves and spinal
cord, respectively (99, 100). On the other hand, other studies have
reported a decrease in FA within the NAWM of patients with
NMOSD (52, 101). Such DTI abnormalities were, however, rather
mild and not as severe as in patients with MS. Specifically, axonal
damage and diffusion abnormalities alongWM association fibres
were more severe in patients with MS than in those with
NMOSD (102). Using a multiparametric approach, diffuse WM
damage throughout brain concentric bands was demonstrated in
NMOSD, as reflected by reduced T1/T2 ratio and increasedmean
diffusivity, indicating astrocyte damage (48).

Some imaging and histopathological studies in NMOSD
showed abnormalities and neuronal loss in cortical GM
(103). Less is known about deep GM changes in NMOSD,
particularly the involvement of the thalamus is controversial.
An attack-related volume reduction of specific thalamic nuclei
was demonstrated in NMOSD patients with and without a
history of ON, which correlated with the number of clinical
episodes, retinal damage, and visual function, thus indicating an
anterograde degeneration in the afferent visual pathway (104).

In a MOGAD patient, longitudinal clinical and MRI follow-
up showed progressive neurologic deterioration without any
relapse associated with progressive WM changes, thus suggesting
a possible tissue loss over time. Using diffusion imaging,
WM disruption in the optic radiation and corona radiata was
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identified in both MOGAD and AQP4-Ab positive NMOSD,
although milder in the former condition (55).

Results from studies applying advanced MRI techniques
to the spinal cord in NMOSD are also controversial. When
using DTI analysis for the assessment of cervical spinal cord
damage in NMOSD, abnormal DTI-derived metrics (especially
FA) in the cervical cord of patients with NMOSD (even in the
absence of hyperintensities on T2-weighted imaging) were found
(105). Moreover, Klawiter et al. demonstrated higher RD within
damaged (as assessed on T2-weighted imaging) WM tracts in
NMOSD vs. MS, consistent with the more destructive nature of
the former condition (106).

Patients with AQP4-antibody disease showed a significant
reduction in the cervical cord MTR, FA, and increased mean
diffusivity, and the damage was localised to areas of the cord
involved in the acute attack. By contrast, MOGAD patients did
not show significant differences compared with healthy subjects
in any MRI modality (57).

Advanced MRI Techniques Assessing
Functional Changes
Functional MRI is a powerful tool for studying cortical
functional reorganisation and brain plasticity. Studies have
assessed functional connectivity (FC) abnormalities within the
various brain networks in patients with MS, with the aim
of identifying trajectories of changes over the disease course
and thus increasing the understanding of MS pathology (107).
Resting-state functional MRI (fMRI) has identified a number
of FC alterations in patients with MS (108). A decreased FC
between thalamus and cortical regions and an increased intra-
and inter-thalamic FC were demonstrated as the substrate for
early cognitive impairment in patients with MS, independently
from thalamic volume loss (54). Specific patterns of increased
static thalamic connectivity with the sensorimotor network have
been recently identified, which were related to disability in
MS (109). In patients with paediatric-onset MS with no or
minimal disability, FC was reduced in selective brain networks,
probably reflecting the exhaustion over time of functional
reserve (110).

Cognitive impairment has been demonstrated in NMOSD
patients, as a result of functional alterations within specific
neuronal circuits (47). Preliminary studies in NMOSD patients
demonstrated a reduced FC in the default mode network
(DMN) as well as an increased FC in the thalamus, caudate
nucleus, and some frontal regions (47). Recently, the cortical
functional reorganisation was shown in NMOSD patients
at the level of cognitive networks with an overall adaptive
role. Exhaustion of compensatory mechanisms is heralded by
an FC reduction in the left frontoparietal working memory
network (111).

Severe functional impairment in the visual areas and increased
FC in the temporal gyrus were also detected in MOGAD
(55), which indicates the presence of functional plasticity
trying to compensate for the structural damage, as previously
demonstrated in MS and NMOSD (112).

Optical Coherence Tomography
Neurodegenerative changes along the visual pathway are
common in bothMS (113) andNMOSD (114). Optical coherence
tomography (OCT) is an emerging imaging technique that
enables the measurement of the neural retina, whose layer
thinning reflects an axonal loss.

Cross-sectional studies of OCT have shown that peripapillary
global retinal nerve fibre layer (RNFL) and inner retinal layer
thicknesses are reduced in MS and correlate with clinical
disability and MRI-derived brain volume measures (115). These
findings have been confirmed by longitudinal studies showing
that RNFL is predictive of a clinical outcome (poor visual
recovery) (116) and they also correlate with imaging measures
of MS disease activity and severity (117). In addition, OCT also
allows measurement of the ganglion cell and inner plexiform
layer (GCIPL) complex, whose atrophy appears to mirror MRI-
derived whole-brain atrophy measures, particularly GM atrophy,
especially in progressive MS (118).

OCT has been extensively used in MS and NMOSD to detect
levels of axonal damage after an episode of ON as well as to
help to differentiate the two diseases (119). Retinal axonal loss
in NMOSD is more severe than in MS and is most commonly
related to ON attacks. Although signs of subclinical axonal loss
exist in the non-affected eyes of patients with NMOSD, a clear
neurodegeneration pattern has been detected in non-ON eyes in
MS patients, as a result of primary retinal neurodegeneration or
retrograde trans-neuronal degeneration due to lesions along with
the optic radiations. The inter-eye peripheral RNFL difference
between eyes with or without ONmay be useful in differentiating
NMOSD from MS (120). In MOGAD, subclinical ON may
occur and this may be associated with a significant reduction in
the RNFL thickness. Despite equally significant damage to the
optic nerve, patients with anti-MOG antibodies have relatively
preserved low contrast visual acuity (121).

Positron Emission Tomography
Other neuroimaging modalities such as positron emission
tomography (PET) have the potential to improve our
understanding of the mechanisms of progression in MS,
thus providing important prognostic information. PET is
a non-invasive molecular imaging technique enabling the
in-vivo detection of the molecular processes involved in
neuroinflammation and neurodegeneration (122). In a 4-year
follow-up study, increased radioligand uptake in the perilesional
NAWM predicted disability progression independent of relapse
activity in MS, using mitochondrial 18-kDa translocator
protein (TSPO)-PET, a marker of inflammation linked to
microglial and macrophage activation in neurodegenerative
and neuroinflammatory diseases such as MS (123). Using a
new generation TSPO tracer (F-DPA-714 translocator protein),
a novel approach to generate individual maps of WM innate
immune cell activation was developed. Strong activation of
the innate immune system inside WML and in the NAWM
correlated with a more severe trajectory of disability worsening
in all MS phenotypes (124). However, to date, the use of different
radiotracers, varying patient populations, local scanning
protocols, and various analysis methods, led to the heterogeneity
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of PET research, which currently limits the comparison across
different studies and reproducibility. Addressing these issues
would enable a multicenter approach and help progress PET
imaging from the field of research to a clinically relevant imaging
biomarker in MS.

FUTURE PERSPECTIVES

Ultra-High Field MRI
More recently, UHF MRI (i.e., seven Tesla and above) has
gained more interest in clinical imaging. Indeed, a number
of studies have shown the benefits from the application of
this powerful tool not only for research purposes but also in
clinical settings to facilitate a correct diagnosis, prognosis and
improve patient management. For example, using UHF MRI, it
has been demonstrated that the rate of CL accumulation was
higher in patients with RRMS who developed SPMS than in
those who remained RRMS (3.6 lesions/year vs. 1.1 lesions/year,
respectively), independently from the accumulation of WMLs
(125). In MS, the use of 7T MRI showed a significantly
higher number of focal MS lesions located in areas defined as
NAWM on magnetisation-prepared rapid acquisition gradient-
echo (MPRAGE) when compared with standard clinical 3T
FLAIR (126). These abnormalities might have contributed to the
pathological findings described below in the NAWMofMS. Also,
exploiting the increased spatial resolution and enhanced contrast,
UHF MRI can improve the detection and morphological
characterisation of GM lesions (63). In addition, it improves the
visualisation of the central vein sign (CVS) and the peripheral
paramagnetic rim on susceptibility-weighted imaging (SWI)
(127, 128). Imaging remyelination in MS lesions remains an
unmet need. A straightforward approach to evaluate mechanisms
of tissue repair and remyelination in chronic MS lesions has
been recently proposed. Interestingly, the combination of a
qualitative classification of lesions on MP2RAGE T1 maps with
susceptibility-based 7T MRI seems to classify chronic lesions
according to myelin content and to identify patients with a high
risk for worse outcomes (129).

The use of UHF MRI may also help understand disease
mechanisms. Indeed, in patients with NMOSD, a 7T MRI
study on the periventricular venous density did not report
alterations in the venous visibility on highly resolving T2∗-
weighted images, arguing against a widespread hypometabolism
in NMOSD (130). Quantitative T1 relaxometry at 7 T was applied
to assess structural alterations or damage in normal-appearing
lesion-free periependymal regions of patients with NMOSD. In
this study, a normal T1-relaxation time was found, which argues
against a severe diffuse or “occult” brain damage even in AQP4-
rich brain regions, thus supporting the findings from studies at
3T (131).

Unmet Needs
AlthoughMRI has gained an important role in the prognosis and
better understanding of inflammatory demyelinating diseases,
further research is warranted, particularly on MOGAD, for
several reasons.

First, a significant unmet need of the research on MS is
the discovery of mechanisms leading to disability worsening
and disease progression. Beyond the development of novel
imaging methods, the integration of multimodal data may
facilitate the discovery of neuroprotective agents. For example,
the rate of neurodegeneration may be assessed by integrating
MRI with blood and CSF markers of neurodegeneration (e.g.,
neurofilament [NFL] levels) and ophthalmological imaging (i.e.,
OCT). Serum and CSF NFL light- and heavy-chain proteins have
recently been proposed as reliable biomarkers of neuroaxonal
damage in MS due to the correlation with MRI biomarkers of
disability progression, such as brain and spinal cord atrophy
(132). Nonetheless, the performance of NFL as a biomarker of
neurodegeneration or neuroprotective treatment response in the
progressive forms of MS is still uncertain and requires further
research (133).

Second, although quantitative MRI techniques are technically
challenging at the level of the spinal cord, they are able to provide
valuable information on microstructural tissue damage. Multi-
parametric imaging models are very important for the future, in
order to look at the underlying driver of structural abnormalities.
Indeed, sodium-MRI is a promising new metabolic imaging
technique able to provide information on energy failure in vivo,
and a protocol to detect sodium concentration in the cervical
cord of MS patients has been recently developed, showing
correlation with diffusion metrics (134). It would be interesting
to combine structural and metabolic imaging measures in order
to understand the mechanisms of damage and repair. This would
be particularly useful in MOGAD, where a longitudinal study
in a cohort of patients recruited soon after clinical onset would
help understand the role of metabolic changes and myelin repair
in contributing to the complete disappearance of lesions on
conventional MRI.

Third, alongside neurodegeneration, remyelination is a
possible mechanism of tissue repair as it may contribute to
the shrinking of lesions in MS. Future longitudinal studies may
assess whether a reduction in lesion size or lesion disappearance
can be seen in MS and can be used as an outcome measure
for repair treatments. Lesions may evolve differently in the
two Ab-mediated disease diseases, and a complete resolution
of T2 lesions occurs more frequently in MOGAD than AQP4-
NMOSD and MS (135). Studying the evolution of lesions after
an attack in the three CNS demyelinating diseases may guide
treatment strategies, predict the disease course, and help to plan
future clinical trials. Using imaging modalities sensitive to myelin
changes (i.e., MTR, T1/T2 ratio), changes in myelin content
of disappearing/shrinking lesions might be assessed in layers
progressively further from the lesion core and inform about
differential pathological mechanisms underlying MS and the two
Ab-mediated diseases.

Moreover, when considering NMOSD, some previous studies
did not separately analyse results by antibody type, therefore
possibly including MOGAD patients which can also fulfil
criteria for seronegative NMOSD. The distinction between AQP4
seropositive and seronegative NMOSD is further emphasised
by recent prospective randomised clinical trials which included
both groups but had an effect only on seropositive patients
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(136, 137). Thus, more homogeneous studies focusing on AQP4-
seropositive cases are needed.

Finally, the role of new MRI biomarkers in the clinical
management of inflammatory demyelinating diseases still needs
to be established and the high cost of UHF MRI scanners makes
it unlikely this type of imaging to be routinely and widely used in
clinical practise in the near future.

CONCLUSION

Conventional and non-conventional advanced MRI measures
play an important prognostic role in inflammatory demyelinating
diseases. The growing application of advanced imaging in

MS, NMOSD, and MOGAD could improve the identification
and validation of new pathological hallmarks in large clinical
studies, leading to the development of novel diagnostic and
therapeutic strategies.
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