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Abstract: Bacteria can be adapted to adverse and detrimental conditions that induce general and
specific responses to DNA damage as well as acid, heat, cold, starvation, oxidative, envelope, and
osmotic stresses. The stress-triggered regulatory systems are involved in bacterial survival processes,
such as adaptation, physiological changes, virulence potential, and antibiotic resistance. Antibiotic
susceptibility to several antibiotics is reduced due to the activation of stress responses in cellular
physiology by the stimulation of resistance mechanisms, the promotion of a resistant lifestyle (biofilm
or persistence), and/or the induction of resistance mutations. Hence, the activation of bacterial stress
responses poses a serious threat to the efficacy and clinical success of antibiotic therapy. Bacterial stress
responses can be potential targets for therapeutic alternatives to antibiotics. An understanding of the
regulation of stress response in association with antibiotic resistance provides useful information for
the discovery of novel antimicrobial adjuvants and the development of effective therapeutic strategies
to control antibiotic resistance in bacteria. Therefore, this review discusses bacterial stress responses
linked to antibiotic resistance in Gram-negative bacteria and also provides information on novel
therapies targeting bacterial stress responses that have been identified as potential candidates for the
effective control of Gram-negative antibiotic-resistant bacteria.

Keywords: bacterial stress response; antibiotic resistance; antimicrobial adjuvant; stress adaptation;
therapeutic strategy

1. Introduction

Bacteria encounter a variety of adverse and harsh stresses in nature, such as nutrient
limitation, osmotic pressure, extreme temperature, acid, and antimicrobials [1]. Bacteria are
able to adapt to these unfavorable environmental stresses through protective mechanisms
(Figure 1). The regulation of bacterial stress responses occurs at the transcriptional, transla-
tional, and post-translational levels, leading to changes in gene expression, protein activity,
and cellular metabolism [1,2]. These bacterial stress responses mediate the resistance to
stresses and the repair of cellular damage [2]. Gram-negative bacteria that are resistant
to stresses possess various virulence factors, causing pneumonia as well as bloodstream
and gastrointestinal infections [3]. The mechanisms underlying antibiotic resistance in
Gram-negative bacteria include the reduction in membrane permeability, the alteration of
target sites, the production of antibiotic-hydrolyzing enzymes, the increase in efflux pump
activity, and the change in metabolic bypass [4]. In addition, multidrug resistance (MDR)
is associated with transcriptional regulators involved in bacterial stress responses, for
instance, marA, soxS, and sdiA [2]. The antibiotic resistance of Enterobacteriaceae is positively
regulated by global transcriptional activators, including the Ara/XylS superfamily and the
superoxide stress regulon [5,6].

Hence, stress response regulators can trigger the overexpression of efflux pump sys-
tems, such as the AcrAB system, that act as multidrug transporters for quorum-sensing
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signals and biofilm formation [7]. Nutrient limitation and amino acid starvation can lead
to the evolution of resistance to polymyxin B and fluoroquinolones in Gram-negative bacte-
ria [8,9]. Nutrient starvation can also induce biofilm formation, which leads to enhanced
antibiotic resistance and is involved in chronic infections [10,11]. Other growth-limiting
stresses, such as low pH and high temperature, induce several molecular rearrangements
at the cellular metabolic level that are involved in the regulation of bacterial responses to
antibiotics [12]. Bacterial stress responses not only encourage adaptation but also promote
the virulence responsible for bacterial survival in stressful environments [13]. Therefore,
bacterial stress responses may influence the development of antibiotic resistance in bacteria
exposed to stressful conditions [2,14]. However, there is still a lack of information about
the impact of bacterial stress responses on antibiotic resistance in bacteria. Presumably,
bacterial stress responses can be potential targets for the control of antibiotic resistance.
Therefore, this review discusses the role of bacterial stress responses in the development of
antibiotic resistance in Gram-negative bacteria.
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eral stress response can be mediated by several growth-limiting stresses, such as nutrient 
and oxygen deprivation, pH downshift, temperature changes, DNA damage, and high 
osmolality, involving more than 500 genes in Gram-negative bacteria [2]. The expression 
of stress-related genes is regulated by the RNA polymerase sigma factor (σs) [16]. The σs 
is a key regulator for the general stress response in Gram-negative bacteria [17]. The σs 
encoded by rpoS is primarily responsible for the transcription of genes necessary for 

Figure 1. Overall scheme of bacterial stress responses in association with antibiotic resistance mecha-
nisms. General stress response ( 1©), SOS response ( 2©), acid stress response ( 3©), temperature stress
response ( 4©), starvation stress response ( 5©), oxidative stress response ( 6©), envelope stress response
( 7©), and osmotic stress response ( 8©). Single strand DNA (ssDNA), DNA repair-mediated gene
(recA), horizontal gene transfer (HGT), adenosine diphosphate (ADP), adenosine triphosphate (ATP),
stress response sigma factor (RpoS), homologue proteins (RelA and SpoT), guanosine pentaphosphate
((p)ppGpp), regulatory protein (SoxS), superoxide response regulon (SoxR), nitric oxide (NO), outer
membrane protein (OMP), membrane anchored protease (DegS), anti-sigma factor (RseA), sigma
factor E (σE), and two-component systems (TCS).

2. General Stress Response

Adaptive responses to stresses lead to the induction of specific gene expression as
bacterial survival strategies. In addition, bacteria have general stress responses activated by
transcriptional regulators under unspecific stress conditions (Figure 2) [1,15]. The general
stress response can be mediated by several growth-limiting stresses, such as nutrient
and oxygen deprivation, pH downshift, temperature changes, DNA damage, and high
osmolality, involving more than 500 genes in Gram-negative bacteria [2]. The expression
of stress-related genes is regulated by the RNA polymerase sigma factor (σs) [16]. The
σs is a key regulator for the general stress response in Gram-negative bacteria [17]. The
σs encoded by rpoS is primarily responsible for the transcription of genes necessary for
bacterial replication and growth [15]. Different alternative sigma factors play an important
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role in bacterial adaptation under stressful environmental conditions (Figure 3). These
specific sigma factors direct RNA polymerase to recognize specific promoters of genes
corresponding to environmental stresses [18].
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The main role of the general stress response is to prevent and repair sub-lethal and
lethal damage. In Gram-negative bacteria, the general stress response promotes survival
under environmental stresses and also induces the expression of virulence factors [14,18].
For example, the σs acts like alternative sigma factors in Gram-negative bacteria, including
Burkholderia pseudomazei, Escherichia coli, Salmonella Typhimurium, and S. enteritidis, to
protect bacteria from different stress conditions and promote the expression of several
genes required for cell survival in the stationary phase [18,19]. The pathogenicity of S.
Typhimurium is associated with the σs-dependent transcription of the spv gene cluster
(Table 1) [18]. In addition, the expression of sigma factor 24, σ24, in Pseudomonas aeruginosa
may modulate the production of the mucoid envelope, which defends against antibiotics,
oxidative stress, and immunological assault [20]. Moreover, the extracytoplasmic function
(ECF) sigma factor 70 (σ70) in Neisseria gonorrhoeae and Caulobacter crescentus may protect
bacteria from oxidative damage through the expression of the gene that encodes MsrAB,
which is responsible for methionine sulfoxide reductase activity [21]. The presence of the σs

also affects the susceptibility of bacteria to antimicrobial agents and the induction of biofilm
formation. The expression of the sigma-factor-related genes pvdS and hasI is responsible for
iron acquisition and metabolism in P. aeruginosa and E. coli and can reduce susceptibility
to various antibiotics, including carbapenems and vancomycin [22]. The resistance to
carbapenems and vancomycin is due to the increased expression of the efflux pump, the
decreased expression of porin, and the overproduction of carbapenemase enzymes [22].
Therefore, the expression of pvdS and hasI by ECF sigma factors results in the overexpression
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of the multidrug efflux system (MaxAB–OprM) and eventually leads to carbapenem and
vancomycin resistance [22]. Furthermore, The ECF sigma factors also play a key role in
regulating antibiotic resistance in Klebsiella pneumoniae, leading to increased resistance to
cephalosporins and carbapenems [23].

Table 1. Virulence genes involved in stress-related sigma-factor-induced antimicrobial resistance in
Gram-negative bacteria.

Sigma Factor Virulence Genes Bacteria Species Virulence Reference

σ19 (FecI) pvdS, hasI Pseudomonas aeruginosa Activation of multidrug efflux pumps
such as MaxAB–OprM [22]

σ24 (RpoE) blaOXA Klebsiella pneumoniae

Reduction in the expression of porin
protein and regulation of the

transcription of the carbapenemase
gene

[23]

araC, xylS Salmonella Typhi
Downregulation of outer membrane

protein and activation of efflux pump
system

[24]

bipA Salmonella Typhimurium Resistance to antimicrobial peptides [25]
σ28 (RpoF) flbB, flaI, Escherichia coli Flagella synthesis [26]

fliA Dickeya dadantii, Vibrio cholera Flagella synthesis [27,28]

σ32 (RpoH) mtrE Neisseria gonorrhoeae Adhesion to host cells and activation
of multidrug efflux pump [29]

σ38 (RpoS) acrA, acrB, tolC Salmonella Typhimurium Regulation of the transcription of
multidrug-efflux-pump-related genes [30]

adhE Escherichia coli Biofilm formation [31]

bolA Escherichia coli
Biofilm formation and regulation of
the transcription of the β-lactamase

gene (ampC)
[26]

bpsl Burkholderia pseudomallei Acyl-homoserine lactone synthesis
and quorum sensing [32]

flhDC Yersinia pseudotuberculosis Flagella synthesis [33]

grxB Cronobacter sakazakii Acid tolerance, auto-aggregation, and
biofilm formation [34]

mutS Salmonella Typhimurium,
Pseudomonas aeruginosa

Antibiotic resistance by increasing
mutation frequency and generating

adaptive mutations
[35]

ndvB Pseudomonas aeruginosa Biofilm formation [36]
sefA Salmonella Enteritidis Fimbrial protein synthesis [37]

spv Salmonella Typhimurium
Increase in cytotoxic effect on host

cells and requirement for delayed cell
death by apoptosis

[38]

ycfR Salmonella Typhimurium,
Salmonella saintpaul

Induction of bacteria adhering to the
surface [39]

σ54 (RpoN) dbpA Borrelia burgdorferi
Regulation of biofilm formation by

facilitating the adherence of bacteria
to the extracellular matrix

[40]

hcp1 Vibrio alginolyticus
Regulation of the expression of

quorum-sensing-related genes and
biofilm formation

[41]

hrp Erwinia amylovora Flagellar motility and pilus-mediated
attachment [42]

lacZ Pseudomonas aeruginosa Quorum sensing [43]

qrr Vibrio parahaemolyticus
Regulation of quorum sensing, the

production of capsule polysaccharides,
and bacterial motility

[44]

σ70 (RpoD) ttgA, ttgB, ttgC Pseudomonas putida Activation of multidrug efflux pumps
such as TtgABC [45]
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Interestingly, sub-inhibitory concentrations of antibiotics, including aminoglycosides,
β-lactams, and quinolones, induce σs-dependent general stress responses and upregu-
late adaptive mutant genes in Gram-negative bacteria, resulting in the development of
multidrug resistance [35]. Sub-inhibitory concentrations of β-lactams increase the cellular
amount of the σs and induce RNA-polymerase-IV-dependent mutagenesis, which is respon-
sible for the generation of mutagenic oxidized nucleotides under antibiotic treatment [35].
The σs also contributes to distinct changes in fitness cost of resistance. Mutation as a cause
of antibiotic resistance is associated with fitness cost in Gram-negative bacteria due to
the dysfunction of ribosome biogenesis [46]. Surprisingly, the σs-mutant S. Typhimurium
grows faster in a low-carbon medium than wild-type strains. The induction of the σs in
wild-type bacterial cells retarded bacterial growth. However, the σs-mutant was more sus-
ceptible to heat stress than the wild type, suggesting that the σs may contribute to long-term
cell survival under growth-restricted conditions. On the other hand, a lower level of the σs

in bacteria contributes to increased growth at low nutrient concentrations and enhanced
susceptibility to external stress [46,47]. The fitness costs of resistance depend on growth
conditions and genetic background [46]. Thus, understanding the stress-induced σs in asso-
ciation with fitness costs may help in developing strategies to control antibiotic resistance.
Moreover, the σs is involved in flagellar synthesis, which is responsible for biofilm forma-
tion in the Gram-negative bacteria Edwardsiella tarda and Yersinia pseudotuberculosis [33]. As
a result, the general stress response sigma factor, σs, contributes to bacterial survival under
stressful conditions and influences the expression of antibiotic resistance-related genes in
Gram-negative bacteria (Table 1).

3. SOS-Response-Mediated Antibiotic Resistance

Environmental stresses, such as high pressure, acid, oxidants, nutrient limitation, and
antibiotic exposure, can induce DNA damage indirectly through the formation of reactive
oxygen species (ROSs) [48] or directly through interactions with DNA molecules [49].
The SOS response is a well-known bacterial stress response that is mainly induced by
DNA damage [50]. The SOS response is initially triggered by an abnormal single-stranded
DNA (ssDNA) that binds to RecA [51]. In fact, the SOS response is a DNA damage repair
system that is associated with bacterial adaptability and pathogenicity (Figure 4) [52]. The
ssDNA/RecA complex stimulates the proteolytic cleavage of the LexA repressor. LexA
and RecA are SOS regulators that trigger the expression of genes encoding various DNA
repair proteins [53]. In DNA-damaged bacterial cells, the accumulated recA single-stranded
DNA (ssDNA)–ATP complex activates lexA for self-cleavage, which reduces the LexA
protein in the bacterial cells and activates SOS gene expression (Figure 4) [53]. Accordingly,
the lexA gene is a repressor, while the recA gene is an inducer [54,55]. The recA gene is
also important for controlling swarming motility and bacterial behavior in biofilms and
promoting homologous recombination [53]. Therefore, SOS responses play a key role in
chronic bacterial infections by inducing biofilm formation and antibiotic resistance through
mutagenesis and genomic rearrangement [52]. The SOS response upregulates integron
integrases to increase cassette rearrangements carrying antibiotic resistance genes [56].

The damage in bacteria treated by fluoroquinolones induces the SOS response [57].
In addition, antibiotic pressure can increase the mutation rate in different pathways, in-
cluding general stress, oxidative stress, and SOS responses [58]. Sub-inhibitory concen-
trations of β-lactams and fluoroquinolones have been shown to induce SOS responses
and increase mutation rates in Gram-negative bacteria, including E. coli, P. aeruginosa, and
Vibrio cholera [59,60]. The treatment of E. coli with sub-inhibitory concentrations of fluoro-
quinolones induces mutagenesis by stimulating ROS production, resulting in increased
minimum inhibitory concentrations (MICs) for several antibiotics [61]. β-lactams can in-
duce the SOS response via the two-component signal transduction system, dpiBA, to reduce
antibiotic susceptibility by inhibiting cell division and increasing genetic variability [58].
In addition to mutations, horizontal gene transfer (HGT) can cause genetic variation in
bacteria; this allows bacteria to acquire foreign DNA sequences from other species. In
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fact, conjugative transposons, also known as integrative conjugative elements (ICEs), have
been found to be activated by the SOS response [62]. The ICEs efficiently transmit genes
from donor cells to recipient cells; this phenomenon is responsible for antibiotic resistance,
pathogenicity, and an alternate carbon metabolism [63]. Thus, HGT induced by SOS plays
an important role in the distribution of genes that increase virulence and antibiotic resis-
tance [64]. For example, the SOS response has been observed to activate HGT by activating
the mobile genetic element SXT. SXT is an ICE-related element derived from V. cholera
that confers resistance to several antibiotics, including chloramphenicol, streptomycin,
sulphamethoxazole, and trimethoprim [65]. In addition, bla-encoding β-lactamases that
hydrolyze β-lactam antibiotics can be transferred to antibiotic-sensitive bacteria through
HGT, resulting in the emergence of new antibiotic-resistant bacteria [66]. Consequently,
HGT plays an important role in the simultaneous transmission of numerous antibiotic
resistance genes between species and within species [64]. The development of antibiotic
resistance mediated by the SOS response may also be attributed to the induction of recom-
bination events. The SOS response has been shown to induce the expression of an integrase
that induces integrons, resulting in the activation of virulence genes encoding antibiotic
resistance [62]. The SOS induction directly upregulates the expression of antibiotic resis-
tance genes, such as qnr, which encodes quinolone resistance that directly targets DNA
gyrase. The expression of these genes is regulated by the SOS response, and they possess a
conserved lexA binding site in their promoters [67].
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Another interesting connection between the SOS response and antibiotic resistance
is the formation of biofilms and the induction of persistent cells. Antibiotic stress can
induce the SOS response and then lead to biofilm formation [68]. The extracellular matrix
of biofilms provides an antibiotic diffusion barrier so that bacteria are able to survive
at a high concentration of antibiotics [60]. Additionally, up to 1% of bacterial cells in
biofilms show a dormancy phenotype known as persistent cells that are highly resistant
to antibiotics [52]. The SOS response is associated with the generation of persistent cells
and an increase in antibiotic resistance in E. coli. The overexpression of SOS-inducible
genes is associated with a decrease in antibiotic susceptibility. Moreover, the sub-MIC of
SOS-activating antimicrobials can lead to resistance to unrelated antibiotics. In P. aeruginosa,
ROSs and DNA-damaging agents induce biofilm formation in the SOS response [69]. The
initial stage of biofilm formation is induced by the lexA regulon [70]. Furthermore, the
activation of the SOS response increases the recA concentration in Salmonella spp., which
subsequently impairs swarming motility [71].

The evolution of antibiotic resistance mediated by the SOS response requires the
cleavage of the SOS repressor lexA and the modification of transcription and translation
by recA in response to environmental stress. RecA is known as an SOS response inducer
involved in HGT. Therefore, RecA is an ideal target for blocking SOS responses and can be
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used to design a therapeutic strategy to control antibiotic-resistant bacteria. Previous study
has demonstrated that the deletion of recA showed a significant reduction in levofloxacin
susceptibility and delayed the development of resistance in Gram-negative bacteria [72]. In
addition, the combination of recA inhibitors and antibiotics enhanced antibiotic activity [73].
Moreover, small molecules that prevent the formation of ssDNA and recA filaments have
been proposed as SOS inhibitors. For example, recent study has found that the use of zinc
compounds could inhibit the recA regulon that binds to ssDNA, leading to the inhibition of
the SOS response and the blockage of the transmission of β-lactam resistance genes [74].
Thus, the impact of recA on the SOS response and antibiotic susceptibility provides useful
insights into a potential target in combating the emergence of antibiotic resistance. The
induction of the bacterial SOS response can be inhibited by anti-SOS factors such as plasmid
SOS inhibition (Psi) [51]. However, only a few previous in vitro screening efforts have been
performed using lexA inhibitor compounds [75]. Hence, the lack of small molecules that
inhibit lexA may be part of the challenge, which also includes the intramolecular nature of
self-cleavage and the lack of understanding of the interface between lexA and recA.

4. Acid-Stress-Induced Antibiotic Resistance

Acid stress is one of the most common environmental stresses, especially for Gram-
negative Enterobacteriaceae, which are the normal inhabitants of the large and small gastroin-
testinal tracts [76]. The phenomenon of pH homeostasis is the regulation of intracellular
and extracellular pH under acidic stress (Figure 5) [77,78]. Bacteria inhibit proton pen-
etration by modifying the cytoplasmic membrane and regulating the size of membrane
channels in an acidic environment [77]. Additionally, the expression of gadBC contributes
to pH homeostasis, which can protect bacteria from acidic conditions [79]. Interestingly,
the acid stress response is stimulated by antibiotics, leading to a decline in pH and the
induction of RpoS [79]. The induction of the rapid acid stress response to trimethoprim
protects bacteria exposed to acid by the expression of the GadBC operon responsible for
maintaining intracellular pH [79]. Moreover, acid-tolerant bacteria have impermeable mem-
branes to prevent proton influx into cells [80]. For example, Acidithiobacillus ferrooxidans
increased the size of its outer membrane porins to maintain internal pH [81]. In addition,
the proton-pumping ATPase (H+-ATPase) b is necessary for pumping protons out of bacte-
rial cells [82]. The pH homeostasis mechanisms also play an important role in antibiotic
resistance development due to involvement in antibiotic efflux and/or the alteration of
antibiotic targets [83]. Bacteria utilize the proton-pumping system to transport antibiotic
molecules out of the cell [84]. Additionally, the response to acid stress causes a change in
membrane fluidity [80]. The bilayer structure is altered depending on the ratio of saturated
and unsaturated fatty acids in the membrane of Gram-negative bacteria, resulting in the
modulation of membrane fluidity [80,85]. A high percentage of unsaturated fatty acids in
the bacterial membrane affects cell viability under acidic conditions [80]. Furthermore, the
changes in membrane fluidity and lipid composition can protect bacteria by reducing the
permeability of acids and antibiotics [86].

The bacterial efflux system induces cross-resistance to acids and antibiotics. Therefore,
the inhibition of efflux pumps can be a potential target for the control of acid and antibiotic
resistance in Gram-negative bacteria. For example, the efflux pump inhibitor promethazine
(PMZ) induced a bacterial stress response to acidic pH by upregulating several genes [87].
The inhibition of efflux pumps in bacteria is associated not only with antibiotic susceptibility
but also with the acid stress response [9,87–89]. Thus, it should be noted that the efflux
pump inhibitor (EPI) acts as an adjuvant in combination with antibiotics. Furthermore, the
EPI can disrupt the export of quorum-sensing molecules that modulate biofilm formation
and limit the HGT of multidrug-resistant bacteria [90]. In addition, the use of H+-ATPase
inhibitors, such as bicarbonate, transferrins, and N,N′-dicyclohexylcarbodimide, is able to
enhance antibiotic activity against several Gram-negative bacteria [91,92]. The inhibition
of ATPase activity and H+ translocation may cause the perturbation of intracellular pH,
resulting in the modification of the proton gradient and leading to cell death [92]. Therefore,
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bacterial H+-ATPase may be a target in the development of new therapeutic strategies
against antibiotic-resistant bacteria.
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5. Heat- and Cold-Stress-Associated Antibiotic Resistance

Heat and cold are two of the most common environmental stresses for bacteria. The
molecular responses of bacteria to sudden increases and decreases in temperature are called
the heat shock response (HSR) and the cold shock response (CSR), respectively [93]. The
HSR produces heat shock proteins (HSPs) when bacteria are exposed to heat (Figure 5) [94].
HSPs help restore the native structure of thermally unfolded proteins and induce proteaso-
mal protein degradation [95]. The production of cold shock proteins (CSPs) is triggered by
the response to a rapid temperature downshift (Figure 6) [48]. The CSP family consists of
nine homologous proteins, including CspA through CspI [96]. The CSPs act as nucleic acid
chaperones to promote bacterial translation initiation under cold stress [97]. A major HSP
ClpL affects cell wall biosynthesis, leading to an increase in β-lactam resistance [98]. A pro-
tease ClpXP acts as a protein quality control system that is induced by heat shock and other
stresses, which is associated with antibiotic resistance [99]. In addition, the HSR induces
an increase in the rate of genetic recombination and HGT in class one integrons, which
contribute to multidrug resistance in Gram-negative bacteria [100]. Therefore, heat stress
can stimulate HGT, resulting in the acquisition of antibiotic resistance [101]. Furthermore,
the CSPs improve bacterial translation at low temperatures, leading to the development of
antibiotic resistance in bacteria [102]. For example, CspD contributed to the formation of
biofilm and persister cells [103]. In addition, the alteration of porin expression blocked the
entry of antibiotics into bacterial cells and developed an adaptive resistance to β-lactam an-
tibiotics in Moraxella catarrhalis exposed to low temperature [104]. The expression of genes
encoding membrane fusion proteins of the RND family of multidrug efflux pumps (acrA
and acrB) was significantly increased in M. catarrhalis exposed to low temperature [105].

The heat- and cold-stress-induced HSPs and CSPs have gained attention as targets
for controlling antibiotic-resistant bacteria. In fact, CSP- and HSP-disrupting agents have
been developed to block the N-terminal ATP-binding pocket [106]. The DnaK belonging
to the Hsp70 family contributes to bacterial multidrug resistance [107]. Therefore, DnaK
inhibitors can effectively enhance antimicrobial activity and prevent antibiotic resistance.
For example, the disruption of DnaK resulted in an increase in the susceptibility of E. coli
to fluoroquinolones, oxacillin, and methicillin [108]. Consequently, the virtual screening
strategy and the selection of ligands that bind to the relevant residues may be used to
discover potential inhibitors that specifically degrade DnaK with high affinity. Moreover,
the sigma factor rpoS is required for the induction of the otsA and otsB genes that upregulate
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CSPs through a CspA-independent pathway. In fact, the rpoS gene is responsible for the
synthesis of CSPs and HSPs. Hence, the inhibition of rpoS can also be considered as an
alternative target for the control of CSP and HSP synthesis and, by extension, antibiotic
resistance.
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6. Starvation-Stress-Associated Antibiotic Resistance

Amino acid deficiency stimulates an adaptive response mechanism known as the
stringent response (SR) [109]. The SR is mediated by (p)ppGpp, i.e., alarmones such
as guanosine 50′-(tri)diphosphate and 30′-diphosphate, that act as messengers of amino
acid starvation [110]. In the SR, these hyperphosphorylated guanosine derivatives are
the key effector molecules synthesized or hydrolyzed by the RelA/SpoT homolog (RSH)
superfamily (Figure 7) [111]. The alarmone (p)ppGpp plays a vital role in regulating
the transcription of genes required for bacterial virulence, pathogenicity, and long-term
survival [112]. Importantly, (p)ppGpp is also associated with antibiotic tolerance and
biofilm formation in Gram-negative bacteria under nutrient deprivation [9]. In addition,
(p)ppGpp plays an important role in β-lactam resistance. The roles of (p)ppGpp in the
development of β-lactam resistance include the inhibition of peptidoglycan metabolism and
the elimination of penicillin-binding proteins [110]. Other antibiotic-resistance-inducing
mechanisms include endogenous mutations and the acquisition of foreign DNA [113].
Therefore, the deletion of the relA and spoT genes reduced mutation rates in E. coli and
suppressed fluoroquinolone-resistant colonies in P. aeruginosa [4,9,114].

The activation of the SR leads to a reduction in metabolic processes and enhanced
antibiotic resistance in Gram-negative bacteria. Therefore, (p)ppGpp has led to a growing
interest in the development of SR inhibitors. Relacin, a 2′-deoxyguanosine-based analog
of ppGpp, inhibits Rel-mediated (p)ppGpp synthesis, leading to bacterial cell death and
the inhibition of biofilm formation [115]. Interestingly, vitamin C is a potential substrate
for (p)ppGpp inhibitors and can competitively bind with Rel [116]. Recently, a high-
throughput screening method was used to discover Rel inhibitors by using Rel from
Mycobacterium tuberculosis and a new (p)ppGpp synthesis assay based on the quantification
of adenosine 5′-monophosphate (AMP) [117]. Therefore, this approach can be used to
design new anti-(p)ppGpp compounds that can control antibiotic-resistant bacteria. An
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alternative strategy for controlling the SR is to inhibit the accumulation of (p)ppGpp.
The synthetic cationic L-amino acid peptide effectively degrades (p)ppGpp and prevents
biofilm formation in Gram-negative bacteria, including E. coli, P. aeruginosa, K. pneumoniae,
and A. baumannii [118]. The newly synthesized peptides can prevent the accumulation of
(p)ppGpp and promote the degradation of (p)ppGpp by directly binding to (p)ppGpp [119].
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7. Oxidative-Stress-Associated Antibiotic Resistance

Adaptive oxidative stress responses are the survival strategies of bacteria when ex-
posed to high levels of ROSs, such as peroxides, superoxide, the hydroxyl radical, and
singlet oxygen [109,120]. Oxidative stress triggers the efflux pump systems that contribute
to antimicrobial resistance [109]. The adaptive superoxide (SO) stress response is regu-
lated by SoxRS that is activated by oxidized SoxR (Figure 8). The AcrAB–TolC multidrug
efflux system plays a major role in the SoxRS-mediated response as a redox-responsive
regulator. Indeed, the AcrAB–TolC system contributes to the response to redox-cycling
agents mediated by SoxRS [121]. Not surprisingly, SoxS regulates the expression of acrAB
in Gram-negative bacteria [121,122]. SoxS also regulates small interfering RNA (siRNA;
micF) to repress the translation of outer membrane protein F (OmpF), leading to reduced
antimicrobial uptake [121]. Moreover, the SoxRS-mediated response is also involved in the
expression of genes encoding the core oligosaccharide of lipopolysaccharides (LPSs), result-
ing in enhanced resistance to β-lactams, fluoroquinolones, and macrolides [109]. Another
multidrug efflux system regulator associated with oxidative stress is the global regulator
MrgA, which regulates certain efflux transporters, namely norA, norB, norC, norD, mdeA,
lmrS, and sdrM, belonging to the major facilitator superfamily (MFS) [123]. This implies that
oxidative stress activates antibiotic resistance through an MgrA-mediated redox sensing
pathway. Therefore, ROSs and low pH induce an MrgA-associated increase in multidrug
efflux pumps, leading to enhanced antibiotic resistance [124]. In addition, it has been
demonstrated that oxidative stress induces the RND family in Gram-negative bacteria [125].
The overexpression of MexXY genes induced by oxidative stress and ribosome-targeting an-
tibiotics is associated with increased resistance to fluoroquinolones, β-lactams, macrolides,
tetracycline, and aminoglycosides [126,127]. The CmeABC multidrug efflux pump is also
induced by ROSs in Campylobacter jejuni [128]. Accordingly, the ROS-mediated efflux pump
system can be a possible target in the effort to overcome antibiotic resistance in bacteria.
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The suppression of efflux pumps, such as AcrAB–TolC system, increases the tolerance
of oxidative stress and the susceptibility to antibiotics in bacteria. Therefore, efflux pump
inhibitors (EPIs) are a very attractive target in the search for antimicrobial drugs to control
antibiotic-resistant bacteria. Several efflux systems have been demonstrated to be inhibited
by Phe-Arg β-naphthylamide (PAβN), and arylpiperazines have a strong inhibitory effect
on RND efflux pumps [129]. Furthermore, a variety of antimicrobial discovery techniques
were employed to find safe and effective inhibitors of the AcrAB–TolC system. For example,
ligand docking studies were used to investigate the binding ability of ArcAB substrate
and inhibitor compounds in different AcrAB crystal structures. According to the ligand
study, diaminoquinoline acrylamide was demonstrated as a potent AcrAB–TolC inhibitor
by binding to the membrane fusion protein AcrA and enhancing the antibacterial activi-
ties of novobiocin and erythromycin [130]. In addition, the well-known antiemetic drug
domperidone is considered a promising ArcB inhibitor because it increases the antibiotic
susceptibility of MDR E. coli strains to levofloxacin and ciprofloxacin [131]. Therefore, di-
aminoquinoline acrylamide and domperidone can be considered alternative EPIs and may
be used as adjuvants with conventional antibiotics in order to control antibiotic-resistant
bacteria. Another interesting observation was that the expression of the AcrA and SoxS
genes was significantly reduced in the combination of honey, plant alkaloid extract, and
ciprofloxacin compared to ciprofloxacin treatment alone [132]. It has been shown that
plant alkaloid extracts have EPI activity, while the flavonoids and carotenoids in honey
have antioxidant activity [133]. This fact may imply that the presence of these exogenous
antioxidants in honey samples leads bacteria cells to reduce the expression of endogenous
antioxidant genes, such as soxS [132]. Thus, the synergistic effect between honey and plant
alkaloid extract can improve ciprofloxacin activity by inhibiting efflux pump AcrAB–TolC
and reducing the oxidative stress response. This observation opens the way for the devel-
opment of novel antibiotic combinations. Although there is a risk of impaired antibiotic
efficiency due to an induced expression of efflux pumps, the combined use of antibiotics
with compounds that disturb cellular redox homeostasis could nevertheless significantly
enhance antibiotic activity.

8. Envelope-Stress-Mediated Antibiotic Resistance

The Gram-negative bacterial envelope, consisting of the cytoplasmic membrane (sym-
metric phospholipid bilayer), the periplasm (peptidoglycan), and the outer membrane
(phospholipid and lipopolysaccharide), is the target site of antibiotics, bacteriophages,
and host immune systems; it is also the region of sensing and responding to pH, protein
misfolding, and oxidative stress [134,135]. The major mechanisms of the bacterial envelope
are the production of lipopolysaccharides (LPS) as well as capsule and outer membrane
proteins [43]. Nevertheless, physiological functions such as permeability and efflux con-
tribute to enhanced resistance to exogenous stresses. Bacterial envelope stress responses
(ESRs) play an important role in the maintenance of membrane homeostasis, the sensing of
environmental changes, and the repair of cellular damage [136]. The ESRs induce the disso-
ciation of CpxP from the transmembrane sensor kinase (CpxA) that phosphorylates the
cytoplasmic transcription (CpxR) and changes the expression of chaperons, foldases, and
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proteases; this influences antibiotic resistance [136,137]. The regulatory cascades of ESRs
are induced by independent and overlapping stimuli, including the two-component signal
transduction system (TCS) and RNA polymerase-associated alternative σ factor [136,137].

There are Cpx- and σE-regulated ESRs to inner membrane and periplasmic/outer
membrane stresses, respectively [134,136]. The Cpx-TCS is activated by defects in pro-
tein secretion across the inner membrane and the misfolding of secreted cytoplasmic and
periplasmic proteins (Figure 9A) [134]. The outer-membrane lipoprotein NlpE activates
the Cpx-TCS in E. coli [138]. The factors that activate the Cpx-TCS include increased pH,
altered osmotic pressure, cell adhesion to hydrophobic surfaces, and abnormal peptidogly-
can production [139]. The maintenance of inner membrane homeostasis is associated with
the transcriptional upregulation of peptidoglycan-modification-, efflux-, and redox-related
genes triggered by the Cpx response [140]. The σE is activated by an aggregation of mis-
folded outer membrane proteins and lipopolysaccharides in the periplasm [141]. Therefore,
the extracytoplasmic σE plays an important role in the maintenance of the bacterial outer
membrane (Figure 9B) [142].
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The ESR systems are responsible for the increase in antibiotic resistance that pro-
tects bacteria from cell-wall-synthesis-inhibiting and protein-synthesis-inhibiting antibi-
otics [143,144]. Additionally, the efflux pump systems that are activated by the ESR enhance
the resistance to different classes of antibiotics, such as fluoroquinolones and aminoglyco-
sides [145]. This suggests that the activation of Cpx is associated with the overexpression
of efflux-pump-related genes, such as tolC, mdtABC, and acrD, leading to resistance to
β-lactam, fluoroquinolone, and aminoglycosides [146]. RND efflux pumps such as AcrAB–
TolC play a role in reducing antibiotic accumulation in the periplasmic space [122]. Addi-
tional mechanisms conferring antimicrobial peptide resistance in Gram-negative bacteria
are related to a novel transcriptional regulatory pathway, the double-arginine translocation
(Tat) system, which is regulated by the CpxR/CpxA system [147]. In addition, ESRs can
reduce the accumulation of intracellular antibiotics by altering outer membrane perme-
ability [148]. Furthermore, because the σE and its gene products are involved in vesicle
formation, the outer membrane vesicles can transport antibiotics out of bacterial cells,
resulting in enhanced antibiotic resistance [149,150]. Consequently, the σE-regulated ESRs
can protect bacterial cells from antibiotics by increasing the formation of outer membrane
vesicles [151]. The σE- and Cps-dependent ESRs are involved in the modulation of the cell
membrane, conferring bacterial resistance to antibiotics. In the literature, the susceptibility
of Cpx-deleted S. Typhimurium to β-lactams was increased due to the loss of envelope
permeability [151]. Thus, ESRs can be considered potential targets in the effort to control
antibiotic resistance. Transcriptional factor engineering has been proposed as a tool for
regulating σE activity [152]. An inner membrane protein, RseA, negatively regulates σE
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as an anti-σ factor [153]. The N-terminal cytoplasmic domain of RseA inhibits σE activity,
suggesting anti-σ factors can be used to design synthetic regulatory networks [154].

9. Osmotic-Stress-Induced Antibiotic Resistance

Osmotic stress has significant effects on bacterial structure and physicochemical prop-
erties [155]. The cytoplasmic membrane acts as a permeability barrier, and it is involved in
rapid solute fluxes through the transmembrane in response to osmolality changes [156].
Bacteria evolve mechanisms that underlie the changes in external osmotic stress [155]. Bac-
terial cells respond to osmotic stress at two different levels, including protein activity, which
is an immediate response, and gene transcription, which is a long-term response [157].
The membrane-bound histidine kinases (TCSs) and membrane-bound chemoreceptors
(chemotactic system) are common mechanisms responsible for the responses to bacterial
osmotic stress [158,159]. The TCSs, consisting of membrane-bound sensor histidine kinases
and soluble response regulator proteins, play an important role in bacterial survival and
virulence in the cytoplasm [160]. The sensor histidine kinases detect specific signals from
the periplasm, membrane, and cytoplasm. Subsequently, the signals are transferred to be
auto-phosphorylated at a conserved histidine residue. The phosphate group is transferred
to an aspartate residue in the soluble response regulators, leading to changes in gene
expression (Figure 10A) [161].

TCSs may be associated with the development of antibiotic resistance [162]. TCS-
induced antibiotic resistance can be explained by several processes, including the modifica-
tion of cell surface components, a decrease in drug influx, an increase in drug efflux, the
activation of antibiotic-degrading enzymes, and the formation of biofilms (Figure 10B) [162].
Positively charged antibiotics, such as aminoglycosides, colistin, and polymyxin B, exploit
the negatively charged outer membrane of Gram-negative bacteria to induce membrane
rupture and lead to bacterial cell death [163]. However, the TCSs, such as PhoPQ and Pm-
rAB, are involved in the remodeling of bacterial surface components, leading to a decrease
in antibiotic permeation due to the change in bacterial surface charge [164]. Furthermore,
the colistin resistance in E. coli and S. Typhimurium is regulated by the PmrAB and PhoPQ
regulatory systems [147]. In fact, colistin is able to bind to the phosphate group of LPS
lipid A and then disrupt the outer membrane by removing the divalent cations Ca2+ and
Mg2+, resulting in cell death [165]. However, the loss of these cations activates the TCSs
PmrAB and PhoPQ, leading to the synthesis and transfer of cationic groups such as phos-
phoethanolamine (pEtN) and 4-amino-4-deoxy-L-arabinose (L-Ara4N). As a result, the LPS
modifications reduce the negative charge on the outer membrane and hinder the binding
site of colistin [165].

In the EnvZ/OmpR TCS, EnvZ, as a histidine kinase, detects osmolality changes and
regulates the expression of the outer membrane porins (OmpC and OmpF), and OmpR,
as a response regulator, activates the AcrAB–TolC MDR efflux pump and regulates the
expression of OMPs [167,168]. The upregulation of transcriptional activators induces the
activation of efflux pumps and the suppression of porin channels [169]. The repressor
OmpX, triggered by environmental factors, negatively regulates the expression of OmpC,
which is responsible for increased resistance to β-lactams and fluoroquinolones [6]. In
addition, the AmgRS sensor kinase can prevent bacterial cell damage from aminoglycosides
by upregulating the MexAB–OprM MDR efflux pump [170]. Another example of TCSs as-
sociated with antibiotic resistance is the production of antibiotic-hydrolyzing enzymes. The
CreBC TCS activates the chromosomal ampC, encoding β-lactamase in P. aeruginosa [171].
The BlrAB TCS in Aeromonas also regulates the production of several β-lactamases, such as
carbapenemase and penicillinase, through the phosphorylation of BlrA [172]. In addition,
SagS and BfiSR regulate biofilm formation and promote antibiotic resistance [173]. Thus,
the inhibition of TCSs can extend the spectrum of antibiotic activity [174]. The halogenated
pyrrolo benzoxazines isolated from Streptomyces rimosus inhibit the auto-phosphorylation
of histidine kinases and enhance antibacterial activity against E. coli [175]. In the literature,
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the inhibition of VanSR TCS by using cyanoacetoacetamide contributed to an increase in
bacterial susceptibility to vancomycin [176].
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10. Concluding Remarks

Adaptive stress responses are the survival strategies of bacteria when exposed to detri-
mental conditions and can mediate antibiotic resistance mechanisms. For example, the SOS
response is induced by DNA damage that is repaired through recombination and mutagen-
esis, promoting horizontal gene transfer (HGT), which is responsible for the distribution of
genes that increase virulence and antibiotic resistance. The heat shock response upregulates
molecular chaperones and proteases for bacterial survival in the presence of antibiotics. The
stringent response is mediated by (p)ppGpp and regulated by RelA and SpoT, which affect
antibiotic susceptibility. Oxidative stress triggers the efflux pump systems that contribute
to antimicrobial resistance. The cell envelope stress response is induced by antibiotics and
regulated by alternate sigma factors and TCSs. It has been demonstrated that bacterial
cells respond to osmotic stress through TCSs and membrane-bound chemoreceptors. In
addition, there are several mechanisms induced by TCSs that relate to antibiotic resistance
development. For example, TCSs are able to modify cell surface components, induce antibi-
otic efflux pump systems, produce antibiotic-degrading enzymes, and promote a bacterial
antibiotic resistance lifestyle (biofilms). Consequently, the link between bacterial stress
responses and the emergence of antibiotic-resistant bacteria shows that stress response
regulators are involved in the development of resistance phenotypes. Therefore, it should
be noted that stress response systems are associated with antibiotic resistance through a
cascade of events. As a result, stress response pathways may be an appropriate target for
therapeutic interventions. Therefore, it should be noted that the anti-regulation of bacterial
stress responses can be a potential target in the effort to overcome the development of
antibiotic resistance in bacteria. Further in-depth studies on the discovery of novel stress
response inhibitors are essential to combat antibiotic resistance.
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