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The diamondback moth Plutella xylostella is a serious pest of crucifers. It has high

reproductive potential and is resistant to many insecticides. Typically, the last-instar

larvae of P. xylostella, before pupation, move to the lower or outer plant leaves to make

a loose silk cocoon and pupate inside for adult formation. To better understand this

pivotal stage we studied the cocoon-spinning behavior of P. xylostella and measured

three successive phases by video-recording, namely the selection of a pupation site,

spinning a loose cocoon and padding the scaffold cocoon. Subsequently, we cloned

three fibroin genes related to cocoon production, i.e., fibroin light chain (Fib-L), fibroin

heavy chain (Fib-H), and glycoprotein P25. A spatio-temporal study of these three

fibroin genes confirmed a high expression in the silk glands during the final larval instar

silk-producing stage. In parallel, we did an exogenous treatment of the insect molting

hormone 20-hydroxyecdysone (20E), and this suppressed fibroin gene expression,

reduced the normal time needed for cocoon spinning, and we also observed a looser

cocoon structure under the scanning electronmicroscope. Hence, we demonstrated that

the expression levels of key genes related to the synthesis of 20E [the three Halloween

genes Spook (Spo), Shadow (Sad), and Shade (Shd)] decreased significantly during

spinning, the expression of the 20E receptor (EcR and USP) was significantly lower

during spinning than before spinning, and that the expression levels of CYP18-A1 related

to 20E degradation were significantly up-regulated during spinning. The significance

of the cocoon and the effects of 20E on the cocoon-spinning behavior of P. xylostella

are discussed.
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INTRODUCTION

Cocoon spinning behaviors have been described in many insect species before like, the
domesticated silkworm Bombyx mori (Yokoyama, 1951; Kiyosawa et al., 1999; Chen et al.,
2012a,b; Guo et al., 2016), the giant silkworm Hyalophora cecropia (Van der Kloot and
Williams, 1953), and the Chinese oak silkworm Antheraea pernyi (Lounibos, 1975, 1976).
These authors described the major features of the stereotyped spinning movements and the
effects of environmental conditions on the morphology, structure and mechanical properties.
Yagi (1926) classified cocoons into four types by their formation of the exit hole of
the adults and the modes of attachment. They were: (1) stalked and closed, (2) stalkless
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and closed, (3) stalkless and open, and (4) stalked and open. The
cocoon of P. xylostella belongs to the third type.

The fibrous silk core is generally comprised of a three-protein
complex, including fibroin light chain (Fib-L), fibroin heavy
chain (Fib-H) and glycoprotein P25 (Sehnal and Zurovec, 2004;
Sutherland et al., 2010). The development and function of the
silk gland are under hormone control (Chaitanya and Aparna,
2010; Boulet-Audet et al., 2016). Ecdysone is the fundamental
steroid hormone, released from the prothoracic glands in insects.
The dormant state of ecdysone is discharged into the hemolymph
and converted into 20-hydroxyecdysone (20E) in the peripheral
tissues (Li et al., 2019). Most hormonal studies on Fib-H, Fib-L
and P25 are limited to B. mori, Corcyra cephalonica and Sylepta
derogate (Miao et al., 2004; Chaitanya and Aparna, 2010; Su et al.,
2015). In B. mori, the ecdysteroids are essential for appropriate
function of silk gland. In C. cephalonica, studies revealed that 20E
modulates the expression of the Fib-L, Fib-H, and P25 genes at the
mRNA level. These reports indicated that larval development and
silk gland function in these insects are regulated by 20E. Although
the synthesis and secretion of silk fibroin have been studied in
detail inmodel insects like B. mori, the cocoon behavior, these silk
genes and the hormonal regulation have not been uncleared in
the diamondback moth, which is an agricultural pest that causes
high damage to cruciferous vegetables. It has a high reproductive
potential, a wide distribution in the world, and is resistant to
many insecticides.

In this study, we therefore studied the cocoon-spinning
behavior of P. xylostella larvae by video-recording, and
subsequently we examined the silk genes Fib-L, Fib-H, and P25
by cloning and a spatio-temporal molecular characterization,
and tested the effect of an exogenous treatment of 20E
on their expression and the cocoon formation under the
scanning electron microscope (SEM). Finally, we measured the
expression of three 20E-related genes for synthesis [namely the
Halloween genes Spook (Spo), Shadow (Sad), and Shade (Shd)], its
receptor (the ecdysone receptor EcR and Ultraspiracle USP) and
degradation (CYP18-A1) at the moments of before, during and
after the spinning behavior. We selected Spo (Cyp307a1) and Sad
(Cyp315a1) encoding cytochrome P450 enzyme needed for 20E
biosynthesis (Namiki et al., 2005; Gilbert, 2008). Shd (Cyp314a1)
is the final step in the biosynthetic pathway for an ecdysone 20-
monooxygenase enzyme responsible (Petryk et al., 2003). On EcR
and USP, they form the functional nuclear heterodimer receptor
for 20E, which modulates insect molting and metamorphosis
(reviewed in Fahrbach et al., 2012). Finally, CYP18-A1 encodes
a P450 enzyme ecdysteroid 26-hydroxylase that is a major 20E
hormone inactivation enzyme (Guittard et al., 2011; Li et al.,
2014). We believe these data should allow to better understand
the significance of the cocoon, the effects of 20E on cocoon
spinning behavior of P. xylostella, and the possible use of cocoon
manipulation for pest management.

MATERIALS AND METHODS

Insect Rearing and Cocoon Collection
The P. xylostella used for this works were collected from a
cabbage (Brassica rapa L. ssp. pekinensis) field in Jiaozhou,

Qingdao (36◦16′39′′N, 120◦00′41′′E) in 2018, and has since
been reared in laboratory at the Qingdao Agriculture University.
Plutella xylostella were rearing in a 16:8 h (L: D) photoperiod
maintained insectary cages at 20–25◦C and 50–70% relative
humidity (RH). Adults were fed 10% honey solution, and
larvae were fed with fresh Chinese cabbage (Brassica rapa L.
ssp. pekinensis) leaves until they started to spin cocoons. For
collecting cocoon, we used dissecting scissors to gently peel off
the pupa from the cocoon to observe using electron microscope.

Observation of Cocoon-Spinning Behavior
The cocoon-spinning behavior of P. xylostella larvae was
recorded using a Canon video camera (HFR86, Canon, Tokyo,
Japan) and analyzed by playing the video recordings back on a
computer. Each larval cocoon-spinning behavior was recorded
from the time when the larva started selection of its pupation
site and scaffolding until the completion of the inner cocoon. For
the observation and recording of cocoon, we totally recoded 15
larvae cocooning.

Sequence Alignment and Phylogenetic
Analysis
DNAMAN 6.0 software was used to predict the open reading
frame (ORF). NCBI CDD database was applied to identify the
conserved domains. The amino acid sequences of homologous
Halloween genes and ecdysone receptor genes were aligned
with Clustal W2.0. Phylogenetic tree was constructed using
the method of neighbor-joining (NJ) with a bootstrap
value of 1000 replicates.

Cloning and Real-Time Quantitative PCR
(RT-qPCR)
Using the genome database and transcriptome of P. xylostella
(Tang et al., 2014) and identified gene sequence in B. mori,
the partial gene of fibroin-H and the open reading frame of
the fibroin-L, P25, the three 20E-biosynthesis Halloween genes
Spo (Cyp307a1), Sad (Cyp315a1), and Shd (Cyp314a1), and
the ecdysone receptor (EcR), Ultraspiracle (USP) and the 20E-
catabolizing CYP18-A1 genes were identified by performing
a homologous search. RNA was extracted from the final
instar larvae using Trizol reagent (Promega, Beijing, China).
Single-strand cDNA was prepared using the PrimeScript first-
strand synthesis system (Promega, Beijing, China). Primers
were designed based on the genome data of P. xylostella
(Supplementary Table 1). Using high-fidelity DNA polymerase
PrimeSTAR (Takara, Dalian, Liaoning, China), the partial of fib-
H and the open reading frame of fib-L and P25 were amplified.
We refer to Shi et al. (2017) for the setting of the amplified
PCR program. Subsequently, PCR products were purified and
cloned into vector and sequenced (TsingKe, Qingdao, China).
Total RNA of four replicates was obtained for the 20E
treatment and the control. Single-strand cDNA was prepared
using the PrimeScript first-strand synthesis system (Takara). We
performed the RT-qPCR with the protocol as described by Shi
et al. (2017), and Actin and rpl32 were used as reference genes
(Sun et al., 2013). Four biological replicates and each replicate
including 3 individuals were performed for each developmental
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FIGURE 1 | Photographs of the three successive phases for cocoon construction by Plutella xylostella larvae. (A) Selecting a pupation site and building a foundation.

(B) Formation of the scaffold cocoon; (C) Padding the scaffold cocoon; and durations (D). Different letters indicate statistical differences. The left y-axis indicates the

time spent in each phases of cocooning; the x-axis shows three phases of cocooning.

stage (egg, larva, pupa, and adult), larval tissue (midgut, central
nervous system, silk gland, cuticle, and Malpighian tubules),
before and after spinning, and the data were analyzed with the
2−11Ct method (Pfaffl, 2001).

Effect of 20E on the Expression of
Fibroin-H, Fibroin-L, and P25
A 5 µg/µL solution of 20E (Sigma-Aldrich, St. Louis, MO, USA)
was dissolved in 95% ethanol. Each 3th instar larva in the 20E-
treatment group was injected with a dose of 500 ng 20E solution
by micro 4 injector (World precision instruments). Each larva in
the control group was injected with an equal volume of ethanol.
Four injected larvae were randomly taken at 3, 6, and 12 h after
injection, and the RNA of the silk gland (four biological replicates
per treatment and each replicate included 20 silk glands) was
separated to check the relative expression levels using qPCR, as
described above.

SEM Observation of Cocoon
A cocoon was removed from the leaf surface, pasted on
superconducting tape and sputter coated, and a hole (3.5mm in
diameter) was punched in each cocoon with a steel punching
device. Then, the fibers were put into fine tubes and crushed
perpendicular to the fiber lengths. The tubes with fibers were
pasted on tape and sputter coated. Then the coated samples were
observed in a SEM (Jeol Neoscope JCM-5000, Nikon, Tokyo,
Japan) at 15 kV voltage. Both the 20E-treated cocoons and the
control cocoons were observed with four replications each.

Data Analysis
To analyze the significance of time spent in each steps, the gene
expression profile in different tissues and the relative transcripts
of key genes related to 20E in three steps of spinning, we used
the one-way ANOVA followed by a Tukey’s honest significant
difference multiple comparison test (P < 0.05). Other data in

the treatment and control groups with four replications were
analyzed using a Student’s t-test (∗P < 0.05) to determine the
significant differences by SPSS 20.0 (SPSS, Chicago, IL, USA), and
data are presented as means± SD.

RESULTS

The construction of a cocoon by a final instar larva of P. xylostella
can be divided into three phases separable by their movement
patterns: (1) selection of a pupation site and construction of a
cocoon foundation, (2) formation of a scaffold cocoon, and (3)
internal padding the scaffold cocoon. Before the P. xylostella larva
begins cocoon construction it evacuates its gut, wanders for a
period of time, and then precedes to pupate. It first makes a
foundation for the cocoon by spinning a small amount of silk on
the leaf surface. By strengthening interconnecting strands with
applications of silk, the larva produces a fibrous network which
forms the foundation for the incipient cocoon. The larva remains
attached in this location until the spinning process is completed.
Under laboratory conditions, each larva spent an average of
0.52 h in this initial phase of cocoon construction. More than
half of the cocoon construction time was used to create the
foundation (Figures 1A,D). The mature larva first spins a wide
foundation of silk, and then gradually concentrates its spinning
area to a size that is similar to the final cocoon. The larva spins a
thin outer cocoon layer after completion of the foundation. Once
the larva begins spinning, it continues without stopping and this
process lasts an average of 3.23 h. During this time, it repeats the
fixation and movement of the posterior half of the larval body
with abdominal and caudal legs. The larva fixes the posterior
half of the body, and spins by moving the anterior half of the
body. The larva spends an average of 1.12 h for the construction
of the outer cocoon (Figures 1B,D, Supplementary Video 1).
In the final spinning cycle, the larva frequently interrupts
its extension-recovery sequence and remains motionless. The

Frontiers in Physiology | www.frontiersin.org 3 December 2020 | Volume 11 | Article 574800

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Shi et al. 20E Mediates Plutella xylostella Cocoon

FIGURE 2 | Relative transcripts of Fib-L, P25, and Fib-H detected by qPCR indifferent developmental stages (egg, larva, pupa, and adult) and different larval tissues

of Plutella xylostella. Abbreviations used on X-axis: MG, midgut; CNS, central nervous system including brain and ventral nerve cord; SG, silk gland; CT, cuticle; MT,

Malpighian tubules.

intervals between the motionless periods gradually use greater
proportions of successive, head-up cycles until the spinning
behavior ends. At the time, the larva remains still in the head-
up position. Padding the scaffold cocoon requires a longer time
than the first two phases (t = 11.14; df = 1, 441; P < 0.01;
Figures 1C,D).

Cloning Genes and Expression Profiling
P. xylostella Fib-L, P25, and the 5′end of Fib-H, EcR, USP, and
CYP18-A1 consisted of 252, 221, 106, 546, 415, and 532 amino
acids, respectively (Supplementary Figure 2). These nucleotide
sequences of P. xylostella were expressed as in GenBank,
respectively (Supplementary Table 1). Fib-L, P25, and Fib-H
genes are regulated in specific developmental stages and in
specific tissues (Figure 2). Expression of the Fib-L, P25, and Fib-
H genes occurs mainly in the final instar larvae but not in pupae.
The maximum expression of Fib-L, P25, and Fib-H genes was
observed in the silk gland tissue but none is expressed in other
tissues (Figure 2). On EcR, USP, and CYP18-A1 of P. xylostella,
they were cloned and the phylogenetic analysis confirmed that
PxEcR, PxUSP, and PxCYP18-A1 are closely related to EcR, USP,
and CYP18-A1 from other lepidopteran insects, such as B. mori,
Manduca sexta, Spodoptera exigua (Supplementary Figure 1).

Effect of 20E on Fibroin mRNA Expression
and Cocoon Spinning Behavior
The effects of 20E and ethanol on the expression of Fib-L, Fib-
H, and P25 genes in silk glands are shown in Figures 3A–C. The
transcript levels at the same time points (3, 6, and 12 h after
treatment) and the expression levels of Fib-L, Fib-H, and P25
genes were unaltered at 3 and 6 h after treatment. At 12 h after

treatment, there was a decline in the expression levels of Fib-
L, Fib-H, and P25 genes in the 20E treatment compared with
the control (Figures 3A–C). Hence, the 20E-treated group had
significantly less spinning time than the control (t = 13.11; df =
1, 44; P < 0.01; Figure 4A), and also the 20E-treated larvae spun
cocoons that were looser and the resulting pupae were smaller
than the controls (t = 11.54; df = 1, 40; P < 0.01; Figure 4B).
At same times, the 20E-treatment group showed that the cocoon
became thinner leaving only some scaffold silks, while some of
the filled silk disappeared (Figure 5).

In order to better understand the relationship between the
spinning behavior and the 20E treatment (Figures 6A–C), we
measured the expression levels of three key genes in the
biosynthesis of 20E (the Halloween genes Spo, Sad, and Shd),
its signaling pathway (EcR and USP) and the degradation of
20E (CYP18-A1) in the three periods of before, during and
after spinning. The results showed that the expression level of
three key genes related to 20E synthesis (Spo, Sad, and Shd)
decreased significantly from high before spinning to low during
spinning (Figures 6D–F). For the 20E receptor (EcR and USP),
the expression level also decreased between before and during
spinning (Figures 6G,H). In contrast, the expression of the key
gene CYP18-A1 related to degrading 20E, its expression levels
were significantly higher during spinning and after spinning as
compared to before spinning (Figure 6I).

DISCUSSION

Cocoons are a pivotal stage in the survival and reproduction of
many arthropods. Most researches have focused on the cocoon
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FIGURE 3 | (A–C) Effect of 20E on Fib-L, P25, and Fib-H expression of larval

silk glands of Plutella xylostella larvae at 3, 6, and 12 h time points in the

control (ethanol treated) and 20E-treated groups. Data are means SD.

Significant differences were checked using Students t-test (*P < 0.05).

silk of silkworms and the dragline silk of spiders (Offord et al.,
2016; Xu et al., 2018). However, many insect species produce
cocoons using a wide variety of spinning behaviors. The spinning
behavior of many insects has been described (Lounibos, 1975;
Giebultowicz et al., 1980; Stuart and Hunter, 1995; Kiyosawa
et al., 1999). The cocoon-spinning behavior of P. xylostella
consists of three phases. The first phase begins with gut purging
behavior. This is distinct, physiologically important and similar
to the behavior of B. mori (Lounibos, 1975; Stuart and Hunter,
1995; Kiyosawa et al., 1999).

Silk cocoons are composed of fiber proteins (fibroins) and
adhesive glue proteins (sericins), which provide a physical barrier
that protects the pupa (Chen et al., 2012a,b, 2013). The cocoon
silk fibroins consist of a large protein, named as the heavy

chain fibroin (Fib-H), and two smaller proteins, named the
light chain fibroin (Fib-L) and P25 (Chen et al., 2012b). Insects
characterized three forms of silk fibroin structures. These are the
Fib-H, Fib-L, and P25 in B. mori and C. cephalonica (Shimizu
et al., 2007; Chaitanya and Aparna, 2010). Our study confirmed
the presence of Fib-L, P25, and Fib-H in P. xylostella. We
also cloned the Fib-L, P25, and a partial Fib-H cDNA from
P. xylostella. Tissue-specific and developmental stage expression
of Fib-L, P25, and Fib-H genes revealed that they are highly
expressed in the silk gland only and this during the final
larval stage (Figure 2). This indicates that the transcription
of Fib-L, P25, and Fib-H genes is developmental and tissue-
specific regulated (Figure 2). These results in P. xylostella are
consistent with studies in B. mori, S. derogate, and C. cephalonica
(Sehnal and Zurovec, 2004; Chaitanya and Aparna, 2010; Su
et al., 2015). Molting occurs mainly in the larval stage, and
20E is the main hormone that regulates the molting process
(Li et al., 2019). Based on our current findings and previous
studies, the larval stage of P. xylostella was selected to study
the effects of an exogenous treatment of 20E on these genes
and the cocoon behavior and structure. We measured the effect
of 20E on the expression of these genes in the larval silk
glands. Ecdysteroids cause silk gland degeneration during the
larva-pupa molt of B. mori (Shimizu et al., 2007). The larva-
pupa molt is associated with ecdysteroids. The developmental
pattern of Fib-L, P25, and Fib-H genes in P. xylostella showed
that their expression dropped when 20E was used to treat
the mature larva (Figure 3). Therefore, we speculated that 20E
may regulate the spinning behavior of P. xylostella. Further,
more evidence was obtained when we measured the expression
levels of key genes related to 20E, including its biosynthesis,
signaling and degradation, in three periods of spinning, namely
before, during and after spinning (Figures 6A–C). The results
showed that they changed significantly in the three different
periods of spinning (Figures 6D–I). Specifically, the three 20E-
biosynthesis Halloween genes Spo, Sad, and Shd decreased from
high to low with the appearance of the spinning behavior
(Figures 6D–F). Based on the results of Niwa and Niwa (2014),
Niwa and Niwa (2016), and Peng et al. (2019) we believe that the
expression profile of Spo, Sad and Shd corresponds with the 20E
hormone titer, where an increase in expression corresponds to
20E biosynthesis and a hormone peak rise (Iga and Smagghe,
2010). Hence, Peng et al. (2019) reported on the role of Shd
in P. xylostella where RNAi of Shd significantly reduced the
20E titer and resulted in a longer developmental duration and
lower pupation of P. xylostella fourth-instar larvae. For EcR and
USP, forming the nuclear ecdysone receptor heterodimer, their
expression profile followed that of the 3 Halloween genes, where
there was a strong drop from before to during the spinning
(Figures 6G,H). This is according to our expectations as before
it has been reported by different authors in multiple insects
that the presence hormone receptor follows its hormone titer
(reviewed in Fahrbach et al., 2012). In contrast, the expression
of the 20E-degrading 26-hydroxylase enzyme CYP18-A1, which
follows after a peak of 20E to reduce the hormone titer, was
strongly increased with the appearance of the spinning behavior.
Before it has been reported that 20E hormone was degraded and
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FIGURE 4 | (A) Cocoon-spinning times Plutella xylostella larvae in the control and the 20E-treated groups. (B) The pupa sizes in the control and the

20E-treatedgroups. Data are expressed as means SD. Significant differences were calculated using Students t-test (*P < 0.05). The left y-axis indicates the time spent

of cocooning; the x-axis shows control and the 20E treated groups.

FIGURE 5 | Scanning electron microscopy micrographs of the cocoon looseness of Plutella xylostella in the control (A,C) and the 20E-treated groups (B,D) with 100

and 300 magnification.

cleared out of the insect body by CYP18-A1 enzyme and this is
required for successful development, specifically post-apolysial
processes as ecdysial behavior (Guittard et al., 2011; Li et al.,
2014). Indeed this event is consistent with our expectation that
the expression level of CYP18-A1 was significantly increased
with the spinning behavior of P. xylostella (Figure 6I). All these
research data demonstrated that the presence of 20E inhibits the
cocoon spinning of diamondbackmoth. Therefore, the treatment
of the final instar larvae with exogenous 20E significantly
downregulated the expression of these genes in the silk gland and

led to the construction of looser cocoons as we saw in the SEM
(Figure 5). We also found that 20E reduced the spinning time
(Figure 4) and this may be related to the acceleration of pupation.
Hence, we note here that a series of studies has reported that
20E and ecdysteroid-mimicking compounds, which can be used
as insect growth-regulatory insecticides to control pest insects
(irac-online-org), can accelerate larval metamorphosis (Smagghe
and Degheele, 1994; Smagghe et al., 2013; Scieuzo et al., 2018;
Lin et al., 2019). Sometimes pupation occurs before the larva is
mature, resulting in a smaller pupa than normal.
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FIGURE 6 | (A–C) Respectively represent the before spinning, spinning, and after spinning of the diamondback moth larvae. (D–I) Relative transcripts of the key

genes related to 20E, including 20E-biosynthesis (Spo, Sad, and Shd), signaling (EcR and USP), and degradation (CYP18-A1), detected by qPCR at before, during

and after spinning of Plutella xylostella mature larvae.

In summary, we described the entire cocoon-spinning process
by video-recording and the exact steps and movement, as well
as the duration of the process. We also found 20E affected
the cocoon-spinning and the structure of the cocoon through
modulation of Fib-L, P25, and Fib-H at the mRNA level in
the final instar P. xylostella larvae. More studies on cocoon
silk-producing insect pests, the function of the cocoon, and
the possible use of cocoon manipulation for pest management
are needed.
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