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Abstract: COVID-19 pathophysiology is caused by a cascade of respiratory and multiorgan failures
arising, at least in part, from the SARS-CoV-2-driven dysregulation of the master transcriptional factor
STAT3. Pharmacological correction of STAT3 over-stimulation, which is at the root of acute respiratory
distress syndrome (ARDS) and coagulopathy/thrombosis events, should be considered for treatment
of severe COVID-19. In this perspective, we first review the current body of knowledge on the role of
STAT3 in the pathogenesis of severe COVID-19. We then exemplify the potential clinical value of
treating COVID-19 disease with STAT3 inhibitors by presenting the outcomes of two hospitalized
patients with active cancer and COVID-19 receiving oral Legalon®—a nutraceutical containing the
naturally occurring STAT3 inhibitor silibinin. Both patients, which were recruited to the clinical trial
SIL-COVID19 (EudraCT number: 2020-001794-77) had SARS-CoV-2 bilateral interstitial pneumonia
and a high COVID-GRAM score, and showed systemic proinflammatory responses in terms of
lymphocytopenia and hypoalbuminemia. Both patients were predicted to be at high risk of critical
COVID-19 illness in terms of intensive care unit admission, invasive ventilation, or death. In addition
to physician’s choice of best available therapy or supportive care, patients received 1050 mg/day
Legalon® for 10 days without side-effects. Silibinin-treated cancer/COVID-19+ patients required
only minimal oxygen support (2–4 L/min) during the episode, exhibited a sharp decline of the
STAT3-regulated C-reactive protein, and demonstrated complete resolution of the pulmonary lesions.
These findings might inspire future research to advance our knowledge and improve silibinin-based
clinical interventions aimed to target STAT3-driven COVID-19 pathophysiology.

Keywords: SARS-CoV-2; COVID-19; STAT3; silibinin; Legalon; COVID-GRAM score

1. STAT3 and COVID-19 Pathophysiology

Coronavirus disease 2019 (COVID-19) is a severe acute respiratory syndrome coron-
avirus 2 (SARS-CoV-2)-induced inflammatory disease of the airways and lungs that can lead
to multiorgan damage and death [1,2]. In severe cases, COVID-19 pathophysiology involves
the impairment of type I interferon (IFN-I) production accompanied by acute respiratory
distress syndrome (ARDS) and extensive endotheliopathy and coagulopathy [3–8]. An
imbalance in the opposing roles of transcription factors STAT1 and STAT3 seems to operate
as the central triggering event at the initial site of SARS-CoV-2 infection in the respiratory
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epithelium [9–13], resulting in catastrophic inflammatory and coagulopathy/thrombosis
episodes in patients at high-risk of COVID-19 (Figure 1).
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tory distress syndrome (ARDS) and coagulopathy/thrombosis events. Prevention of the excessive, 
compensatory activation of STAT3 that occurs once STAT1 is compromised and symptoms arise 
after SARS-CoV-2 infection, is a therapeutic avenue that might impede the combinatorial activation 
of both ARDS-driving inflammatory cytokines/chemokines and plasminogen activator inhibitor-1 
(PAI-1)-related coagulopathy/thrombosis events in severe COVID-19 cases. Created with Bioren-
der.com. 

During SARS-CoV-2 infection, several viral proteins antagonize the IFN-I production 
pathway and the downstream activation of JAK (Janus kinase)-STAT1 signaling. The in-
hibitory effects on IFN-1/STAT1 signaling at the site of initial infection block the inducible 
amplification of IFN-I-driven antiviral responses in proximal target cells, allowing the vi-
rus to spread and replicate without limitation [12,13]. Notably, whereas SARS-CoV-2 pro-
teins inhibit IFN-I/STAT1 signaling, the capacity of SARS-CoV-2-associated molecules 
(single- and double-stranded RNAs and viral proteins) to stimulate the expression and 
secretion of proinflammatory cytokines and chemokines remains intact. These events 
chronically activate the cytokine release syndrome hyperimmune response (a.k.a. cytokine 
storm) resulting from the unrestricted engagement of the high viral load to pattern recog-
nition receptors in target cells. The vicious cycle of SARS-CoV-2 infection and damage of 
alveolar epithelial cells triggers the activation of monocytes, macrophages, and dendritic 
cells, which release chemokines (e.g., IL-6) to recruit additional immune cells that further 
exacerbate lung inflammation [14–18]. The cytokine storm ultimately instigates a systemic 

Figure 1. SARS-CoV-2 infection-driven STAT1-to-STAT3 transcriptional shifting is central to
COVID-19 pathophysiology. SARS-CoV-2-mediated inhibition of STAT1/IFN-I-stimulated genes
(ISGs) and the subsequent shift to a hyperactive, STAT3 dominant proinflammatory and immune
response signaling may drive the key clinical features of severe COVID-19 including acute respira-
tory distress syndrome (ARDS) and coagulopathy/thrombosis events. Prevention of the excessive,
compensatory activation of STAT3 that occurs once STAT1 is compromised and symptoms arise after
SARS-CoV-2 infection, is a therapeutic avenue that might impede the combinatorial activation of
both ARDS-driving inflammatory cytokines/chemokines and plasminogen activator inhibitor-1 (PAI-
1)-related coagulopathy/thrombosis events in severe COVID-19 cases. Created with Biorender.com.

During SARS-CoV-2 infection, several viral proteins antagonize the IFN-I production
pathway and the downstream activation of JAK (Janus kinase)-STAT1 signaling. The in-
hibitory effects on IFN-1/STAT1 signaling at the site of initial infection block the inducible
amplification of IFN-I-driven antiviral responses in proximal target cells, allowing the virus
to spread and replicate without limitation [12,13]. Notably, whereas SARS-CoV-2 proteins
inhibit IFN-I/STAT1 signaling, the capacity of SARS-CoV-2-associated molecules (single-
and double-stranded RNAs and viral proteins) to stimulate the expression and secretion of
proinflammatory cytokines and chemokines remains intact. These events chronically acti-
vate the cytokine release syndrome hyperimmune response (a.k.a. cytokine storm) resulting
from the unrestricted engagement of the high viral load to pattern recognition receptors in
target cells. The vicious cycle of SARS-CoV-2 infection and damage of alveolar epithelial
cells triggers the activation of monocytes, macrophages, and dendritic cells, which re-
lease chemokines (e.g., IL-6) to recruit additional immune cells that further exacerbate lung
inflammation [14–18]. The cytokine storm ultimately instigates a systemic amplification cas-
cade via cis and trans-presentation signaling in inflammatory immune cells as well as trans
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signaling in nonimmune cell compartments such as endothelial cells, overall contributing
to key pathophysiologic phenotypes, including ARDS and thromboembolic events.

In cis signaling, the proinflammatory cytokine interleukin-6 (IL-6) binds to membrane-
bound IL-6R (mIL-6R), which is restricted largely to innate (neutrophils, macrophages,
and natural killer cells) and acquired (B and T cells) immune cells, in a complex with the
ubiquitously expressed gp130. In trans signaling, high concentrations of circulating IL-6
can bind the soluble form of IL-6R (sIL-6R), thereby forming a complex with gp130 in cell
surfaces lacking mIL-6R, such as endothelial cells (Figure 2). In trans presentation signaling,
IL-6 binding to mIL-6R on an immune cell forms a complex with gp130 on Th17 cells to
downstream activate T cell signaling involved in ARDS (Figure 2).
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Figure 2. STAT3: A master effector/mediator of the pathophysiological traits of severe COVID-19.
IL-6 inhibitors can suppress only cis and trans signaling; IL-6R inhibitors can suppress not only cis
and trans signaling but also trans presentation. Similar to IL-6/IL-6R inhibitors, pharmacological
intervention with direct STAT3 inhibitors is expected to suppress IL-6-driven cis, trans, and trans
presentation signaling in immune and nonimmune cell compartments. Direct STAT3 inhibitors
(STAT3i) could be viewed as a novel strategy to prevent the activation of self-propagating, deleterious
cascades of systemic inflammation that underlie the pathophysiology of pulmonary dysfunction in
ARDS, vascular permeability and leakage, thrombosis, pulmonary embolism, and coagulopathy in
the late scenario of severe COVID-19. Created with Biorender.com and mindthegraph.com.
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Once STAT1 function is impaired and the cytokine storm begins, a concomitant and
compensatory STAT3-dependent transcriptional profile becomes dominant to further in-
hibit the STAT1-mediated IFN-I response. Aberrant transcriptional rewiring towards STAT3
has emerged as the master effector/mediator of all the different (cis and trans-presentation)
types of the signaling nodes in type 2 alveolar cells, macrophages, extracellular matrix,
T-lymphocytes, and blood, consequently triggering the majority of symptoms observed in
hospitalized patients with COVID-19, including proinflammatory conditions, profibrotic
status, T-cell lymphopenia, and rapid coagulopathy/thrombosis [13] (Figure 2). Impor-
tantly, a positive feedback loop is established between STAT3 activation and plasminogen
activator inhibitor-1 (PAI-1; SERPIN E1), a serine protease inhibitor secreted by vascular
endothelial cells that regulates fibrinolysis and exacerbates the progression of systemic
inflammation, especially intravascular coagulation [19–22]. The escalating activation of the
STAT3-PAI-1 interactome in multiple cellular compartments drives a catastrophic cascade
of life-threatening systemic events of inflammation, fibrosis, and coagulopathy/thrombosis
characteristics seen in severe cases of COVID-19.

2. The SilCOVID-19 Trial: Testing the Clinical Value of Natural Inhibitor of STAT3
against Severe COVID-19 in Cancer Patients

If the over-stimulation of the STAT3 signaling network is a shared node of COVID-19
pathophysiology, the application of anti-STAT3 therapies to block the SARS-CoV-2 lifecycle
might moderate the severity of COVID-19. Most direct STAT3 inhibitors (STAT3i) have yet
to enter clinical evaluation, early-phase clinical trials have produced mixed results with
STAT3-targeted cancer therapies and, despite decades of research, very few FDA-approved
STAT3i are available. The unique characteristics of the flavonolignan silibinin—the major
bioactive component in the silymarin extract obtained from the seeds of the milk thistle herb
(Silybum marianum)—as a bimodal, direct STAT3i impeding the activation, dimerization,
nuclear translocation, DNA-binding, and transcriptional activity of STAT3 both in vitro and
in situ [23–26], might help to circumvent the considerable complexity of targeting aberrant
STAT3 signaling (Figure 3).

Indeed, silibinin has three major attributes that qualifies it as a strong candidate to
clinically manage SARS-CoV-2/COVID-19 severity and mortality from a multitarget per-
spective [12] (Figure 4, top). First, it might exert direct antiviral effects including prevention
of virus entry via inhibition of clathrin-mediated endocytosis and inhibition of viral replica-
tion by impeding viral RNA-dependent RNA polymerase [12,27–31]. Second, it functions
as a direct STAT3i with proven STAT3-related therapeutic activity in cancer patients with
advanced systemic disease when used orally as part of bioavailable formulations accom-
panied by low toxicity and reversible mild side-effects [23–26] (Figure 3). Finally, it might
exert protective effects against the ability of central mediators of inflammatory responses
to activate critical factors in endotheliopathy and coagulopathy, such as PAI-1 itself or the
IL-6 trans-signaling-PAI-1 axis [32].
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inducible, constitutive, and acquired feedback activation of STAT3 at tyrosine 705 (Y705). A multi-
faceted combination of enzymatic assays, computational modeling, and in vitro/in situ validation
has delineated the mechanism of action through which silibinin targets STAT3 [23–26]. Silibinin
fails to drastically alter the activity of the STAT3 upstream kinases JAK1 and JAK2 (mechanism 1).
Silibinin could directly bind to both the Src homology-2 (SH2) domain to indirectly prevent Y705
phosphorylation via a unique binding mode that partially overlap with the cavity occupied by other
STAT3 inhibitors (mechanism 2) and the DNA-binding domain (DBD) of STAT3 to block the binding
of activated STAT3 to its consensus DNA sequence via a unique mechanism that might involve
direct interactions with DNA (mechanism 3). Accordingly, silibinin treatment suffices to reduce
phosphor-activation of Y705, prevent STAT3 nuclear translocation, and suppress STAT3-directed
transcriptional activity. Created with Biorender.com.

Based on the aforementioned rationale, we designed a randomized, open-label, phase
II multicentric clinical trial (SIL-COVID19; EudraCT number: 2020-001794-77) to evaluate
the therapeutic efficacy of Legalon®—a silibinin-containing milk thistle extract—in the
prevention of ARDS in cancer patients with moderate-to-severe COVID-19 undergoing
systemic treatment or having completed treatment <1 year ago [12]. SIL-COVID-19 was
designed in two phases: a nonrandomized safety phase followed by a two-stage random-
ized phase with a prospective control (Figure 4, bottom). Due to slow accrual, however, the
study closed prematurely after two of the eighty-two planned patients were allocated to
receive silibinin combined with best supportive care according to the physician’s choice.
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2.1. Outcomes of Two Hospitalized Patients with Active Cancer and COVID-19 Orally Receiving
the Silibinin-Containing Nutraceutical Legalon®

We present the outcomes of two hospitalized patients with active cancer and COVID-
19 receiving Legalon® (Figure 5). We defined critical COVID-19 illness as a composite of
admission to the intensive care unit (ICU), invasive mechanical ventilation, or death using
the COVID-GRAM tool—a risk score predictor of critical illness among patients hospitalized
with COVID-19—was originally developed from 10 independent predictors including
chest radiography abnormality, age, hemoptysis, dyspnea, unconsciousness, number of
comorbidities, cancer history, neutrophil-to-lymphocyte ratio, lactate dehydrogenase, and
direct bilirubin [33–35].
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silibinin: two case reports. Both patients had SARS-CoV-2 bilateral interstitial pneumonia and a
high COVID-GRAM score (i.e., 193 and 200 are the points scored in the COVID-GRAM Critical Illness
Risk Score Tool by patient #1 and #2, respectively) [33–35]. Both patients were, therefore, predicted
to be at high risk of critical COVID-19 illness in terms of intensive care unit admission, invasive
ventilation, or death. In addition to physician’s choice of best available therapy (e.g., remdesivir) or
supportive care (e.g., prophylactic anticoagulation with heparin), patients received 1050 mg/day
Legalon® for 10 days without side-effects. Created with Biorender.com.

2.1.1. Patient #1

A 75-year-old male, former smoker with stage IV pancreatic cancer, tested positive for
COVID-19 by PCR. The patient had a previous story of hypertension, pathological fracture
of L3 due to bone metastasis, and active Psoas abscess caused by Klebsiella oxytoca treated
with piperacillin-tazobactam. The patient presented with dyspnea for three days after
he tested positive for COVID-19 without experiencing other obvious symptoms. Chest
radiography revealed the presence of bilateral pneumonia (Figure 6). Basal blood tests
showed several alterations, namely, lymphocytes 3.9%, hemoglobin 8.7 g/dL, dimer D
524 ng/mL, fibrinogen 691 mg/dL, albumin 2.2 gr/dL, LDH 234 U/L, C-reactive protein
(CRP) 8.85 mg/mL, and troponin T 32.9 ng/mL (Table 1).
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Figure 6. Radiological aspects of COVID-19 pneumonia in two cancer patients treated with silib-
inin. Top. Chest X-ray series in a 75-year-old male with stage IV pancreatic cancer and COVID-19
pneumonia. Left. Chest X-ray depicting bilateral lung infiltrates on illness day 3. Right. Chest X-ray
depicting complete radiographic resolution of the pulmonary lesions after 10 days treatment with
1050 mg/day Legalon®. Bottom. Chest X-ray series in a 70-year-old male with stage IV gastric cancer
and COVID-19 pneumonia. Left. Chest X-ray depicting bilateral lung infiltrates on illness day 1.
Right. Chest X-ray depicting complete radiographic resolution of the pulmonary lesions after 10 days
treatment with 1050 mg/day Legalon® (LPM: Liters per minute, L/min).

Table 1. Baseline and follow-up values of serum biochemistry in silibinin-treated cancer/COVID-19
+ patients.

Patient #1 Patient #2

Reference Baseline 7-Days 14-Days Baseline 7-Days 14-Days

LDH * 135–225 U/L 234 245 214 283 292 232
CRP 0–0.5 mg/mL 8.85 7.51 4.57 10.5 7.11 1.36

Lymphocytes 25–40% 3.9% 10.3% 10.7% 25.3% 16.3% 21%
Fibrinogen 140–450 mg/dL 691 722 700 654 659 582

Dimer D 0–230 ng/mL 524 577 463 294 345 393
Troponin T <14 ng/mL 32.9 76.9 42.1 34.5 35.4 24.8

* LDH: Lactate Dehydrogenase.

The patient received Legalon® 1050 mg/day for 10 days without any side-effects.
The treatment was discontinued after the patient showed improvement. The patient
also received a 5-day course of remdesivir (single 200 mg loading dose on day 1 given
by intravenous infusion followed by once-daily maintenance of 100 mg from day 2 by
intravenous infusion) according to the guidelines on the treatment and management
of hospitalized patients with COVID-19 in our institution. The patient also received
prophylactic anticoagulation with heparin during hospitalization and prednisone 1 mg/kg
for 10 days. The patient required supplemental oxygen at a flow rate of 4 L/min during
the episode.
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Follow-up chest X-ray radiography 14 days after the onset of symptoms showed
complete radiographic resolution of the pulmonary lesions (Figure 5). The inflammatory
marker LDH returned to reference values and CRP notably declined at the end of Legalon®

treatment. The patient was discharged and alive at 30 days after starting the assigned
study medication.

2.1.2. Patient #2

A 70-year-old male, current smoker (two packs a day) with stage IV gastric cancer
tested positive for COVID-19 by PCR. The patient had a previous history of hyperten-
sion, type 2 diabetes mellitus, obesity, and chronic pulmonary obstructive disease. The
patient presented with dyspnea and chest radiography established the presence of bilateral
pneumonia (Figure 6).

Blood tests at the inclusion showed several alterations, namely, hemoglobin 10.1 g/dL
(13.5–18), dimer D 294 ng/mL (0–230), fibrinogen 654 mg/dL (150–450), albumin 2.8 g/dL
(3.5–5.2), LDH 283 U/L (135–225), CRP 10.5 mg/mL (0–0.5), and troponin T 34.5 ng/mL
(<14).

The patient received Legalon® 1050 mg/day for 10 days without any side-effects.
The treatment was discontinued after the patient showed improvement. The patient also
received prophylactic anticoagulation with heparin during hospitalization. The patient
solely required supplemental oxygen (4 L/min) during the episode.

Follow-up chest X-ray radiography 14 days after onset of symptoms showed radio-
graphic suppression and improvement of the pulmonary lesions (Figure 5). The CRP
sharply declined at the end of Legalon® treatment. The patient was discharged and alive at
30 days after starting the assigned study medication.

3. Silibinin-Treated Cancer/COVID-19+ Patients: Clinical Lessons Learned
and Conundrums

Patients with both cancer and COVID-19 infection often have a more severe clinical
course with worse outcomes, and lethality rates of up to 25%. Indeed, the risk of adverse
outcomes of SARS-CoV-2 infection is significantly higher for patients with cancer than for
the general population across a broad spectrum of malignancies; the patients are often
immunocompromised and older (aged ≥ 60 years) with one or more comorbidities [36–45].
Because of the higher risk of severe evolution of COVID-19, a more intensive surveillance
strategy should be incorporated into the clinical management of cancer patients (especially
those with active malignancy), including early evaluation of symptoms and early treatment
for COVID-19. Most reports of COVID-19 among cancer patients mainly focus on its
epidemiological and clinical features [36,37], and there are few reports regarding cases of
patients who contracted COVID-19 with active cancer disease and additional comorbidities.

When the COVID-19 pandemic overwhelmed the healthcare systems in Spain, par-
ticularly during the first and second waves of the pandemic, the SIL-COVID19 study was
initially designed to reduce the risk of critical COVID-19 illness from 30% to 15% in a
onco-hematological population, which usually have limited access to ICU and invasive
ventilation due to cancer prognosis. The recent COVID-19 and Cancer Consortium (CCC19)
cohort study involving patients from the USA, Canada, and Spain revealed that, among
patients with cancer and COVID-19, 30-day all-cause mortality was high and associated
not only with general risk factors but also with active cancer (progressing versus remission,
odds ratio 5.20, 95% confidence interval 2.77–9.77) [36]. According to the cohort study
of cancer patients with COVID-19 in Europe, active malignancy (p < 0.0001) emerged
also as the sole oncologic feature predictive of higher mortality rates alongside age ≥65
(p < 0.0001) and comorbidities (p = 0.002) [37]. Systemic inflammation is another validated
bedside predictor of adverse outcomes in cancer patients with COVID-19; accordingly, hy-
poalbuminemia (escape of albumin to the interstitial space due to inflammation-increased
capillary permeability) and lymphocytopenia (reduction of lymphocytes due to systemic
inflammation and direct neutralization) are independently predictive of severe COVID-19
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in cancer patients, as computed by the OnCovid Inflammatory Score [46,47]. In the present
case reports, cancer patients #1 and #2, both with active malignancy and systemic inflam-
mation including hypoalbuminemia and lymphocytopenia, scored 193 and 200 points,
respectively, in the COVID-GRAM risk score (88.9% and 91.7% of risk of critical illness). We
acknowledge, however, that there is a need for caution when using the China cohort-based
COVID-GRAM tool for predicting critical illness in patients hospitalized with COVID-19
in Europe because, while useful for identifying Caucasian patients who are at low risk of
critical illness and mortality, it seems to overestimate risk in the highest-risk patients [34,35].

Silibinin-treated cancer/COVID-19+ patients exhibited a slight but significant decline
in LDH, an inflammatory prognostic biomarker that is increased during acute and severe
lung damage and capable of predicting with high accuracy the in-hospital mortality in
severe and critically ill patients with COVID-19 [48,49]. They further exhibited a sharp
decline in CRP, a reliable marker of acute inflammation that is transcriptionally activated by
STAT3 in response to IL-6 [50,51]. Because CRP is a useful marker of the IL-6 signaling via
the IL-6R/JAK1/STAT3 signaling pathway [52–54], it is tempting to suggest that silibinin is
reducing IL-6-induced CRP expression via suppression of STAT3 hyperactivation. LDH and
CRP appear to reflect the respiratory destress consequent to the abnormal inflammation
status induced by SARS-CoV-2 infection and predict respiratory failure in COVID-19
patients [55]. Accordingly, cancer/COVID-19+ patients treated with Legalon® did not
require closer respiratory monitoring or more aggressive supportive therapies during their
episodes, and chest radiography follow-up showed complete resolution of the initially
revealed bilateral pneumonia. We cannot establish a causal relationship between a silibinin-
based treatment and the favorable outcome of hospitalized, SARS-CoV-2-infected cancer
patients at high risk of critical COVID-19 illness. Moreover, the concomitant receipt of
remdesivir and prednisone might associate with clinical improvement in Legalon®-treated
patient #1. Although we are lacking a matched retrospective cohort of cancer patients
with bilateral pneumonia as a result of COVID-19, it should be noted that a majority of
cancer patients develop at least one complication from COVID-19, the most common being
acute respiratory failure and ARDS [40]. Moreover, significantly higher mortality rates
are observed among male cancer patients, for those aged ≥65 years, and in those with ≥2
preexisting comorbidities [40], a threefold at-risk condition occurring in the cancer/COVID-
19+ patients treated with silibinin-containing Legalon®.

The SIL-COVID19 trial was closed before the first scheduled interim analysis because
of poor recruitment that was not amenable to improvement. The trial received approval
from the Spanish Agency of Medicine and Health Products (AEMPS) in June 2020 when the
first wave of the COVID-19 pandemic was in remission in Spain. Moreover, the safety cohort
of the study was approved solely for a single center and, because of the re-organization
of the Public Health System in Spain, several county hospitals referred patients to other
centers that were designed for attending COVID-19 patients after the first wave. Refusal
to participate in the trial was higher than expected; unwillingness to participate was
likely multifactorial but involved both the isolation of COVID-19-positive cancer patients
and the exacerbated shortage of health workers that left oncology care facilities short-
staffed. Finally, the introduction of vaccinations rapidly progressed among prioritized
cancer patients who received vaccination with COVID19 mRNA vaccines (Pfizer-BioNTech
COVID-19 Vaccine Comirnaty® and Moderna Spikevax® COVID-19 vaccine) from March
2021 to May 2021. Consequently, the number of oncology patients requiring hospitalization
for SARS-CoV-2 infection in the trial region dropped markedly and steady enrollment of
trial patients became virtually impossible. In the light of the growing evidence that cancer
patients might not respond adequately to COVID-19 vaccination [56–60], together with the
recent discovery that a STAT3-related immune and proliferation transcriptional network is
activated in COVID-19 cancer patients [61], it is important to broaden knowledge of the
clinico-molecular interactions between SARS-CoV-2 and cancer at the level of STAT3. Along
this line, the antidepressant fluvoxamine, which has recently been shown to significantly
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reduce the need for hospitalization in high-risk COVID-19 patients [62], is known to inhibit
STAT3 activity [63,64].

4. Materials and Methods
4.1. Subjects

The SilCOVID-19 study was registered with the EU Clinical Trials Register and is
available online [65]. The primary endpoint was to reduce the proportion of patients
requiring mechanical ventilation during COVID-19 disease. Secondary aims included
mortality, safety, and identification of biomarkers.

4.2. Legalon® Dosing

The SilCOVID-19 study involved the usage of a high-dose (1050 mg/day) instead of
a standard-dose (450 mg/day) of Legalon® for up to 14 days. A safety cohort phase was
proposed to involve 10 patients being treated in a single center to allow for response and
toxicity analysis before proceeding into randomized phase II.

Previous studies have used higher doses of Legalon® than those indicated on the
technical data sheet. A dose of 700 mg/day vs 420 mg/day vs placebo for 48 weeks
(n = 72 patients) or 700 mg/day versus 420 mg/day versus placebo for 24 weeks (n = 154)
in patients with hepatitis C virus (HCV) demonstrated a safety profile comparable to
placebo in both cohorts [66,67]. In a study for decompensated hepatic cirrhosis due to
HCV (n = 62), a Legalon® dosage of 1050 mg/day vs 420 mg/day was compared [68]. The
high-dose cohort benefited from better clinical activity and improved quality of life without
serious adverse effects. Higher doses of Legalon® have been administered intravenously
(20 mg/kg/ day for 14 days, which would be equivalent to 1400 mg/day for a 70 kg person)
in 16 patients with HCV/HIV coinfection, showing good clinical activity and favorable
toxicity profile [69]. In a cancer treatment setting, silibinin doses of 2800 mg/day (oral
silybin-phosphatidylcholine) have been administered for 4 weeks with neo-adjuvant inten-
tions to breast cancer patients (n = 12) without toxicity issues [70]. High-doses (13 gr/day)
of oral silybin-phytosome have been administered to prostate cancer patients (n = 6) for
14–31 days [71]. Only one patient experienced a thromboembolic event, whereas the rest of
toxicities were diarrhea (n = 4) and transient grade 2 hyperbilirubinemia (n = 1) [71].

4.3. Ethics Statement

The hospital (Dr. Josep Trueta Hospital, Girona, Spain) ethics committee (Clinical
Investigation Ethic Committee, CIEC) approved the protocol and any amendments. All
procedures were in accordance with the ethical standards of the institutional research com-
mittees and with the 1964 Helsinki declaration, and its later amendments, or comparable
ethical standards. Written informed consent was obtained from all individual participants
included in the study.

5. Conclusions

Our findings from the clinical management of COVID-19 with silibinin in hospitalized
cancer patients, which should be viewed as observations rather than recommendations
for treatment, might inspire future silibinin-based trails in nononcological populations of
COVID-19 patients. This is the case of the SIL-COVINT-21 trial (NCT04816682), which is
ongoing in a nononcological population in Slovakia. This prospective open label study
will explore whether silibinin can improve the evolution of COVID-19 in patients admitted
to internal medicine wards using a historical cohort for propensity-match analysis. In
the active-comparator arm, consecutively-admitted patients (n = 30) will be allocated to
receive silymarin tablets (150 mg each) three times daily (3-2-2) and will be compared
with consecutive patients with the same inclusion/exclusion criteria as in the active arm,
hospitalized at the same department before the initiation of the study (historical controls).
Findings from this trial might help clarify whether silibinin-based approaches can thera-
peutically integrate the mechanisms of action of IL-6-targeted monoclonal antibodies (e.g.,
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tocilizumab, sarilumab, siltuximab) and pan-JAK1/2 inhibitors (e.g., baricitinib) to limit
the cytokine storm, T-cell lymphopenia, and coagulopathy in the clinical setting of severe
COVID-19.
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