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While the promise of electronic medical record and biobank data is large, major questions
remain about patient privacy, computational hurdles, and data access. One promising area
of recent development is pre-computing non-individually identifiable summary statistics to
be made publicly available for exploration and downstream analysis. In this manuscript we
demonstrate how to utilize pre-computed linear association statistics between individual
genetic variants and phenotypes to infer genetic relationships between products of
phenotypes (e.g., ratios; logical combinations of binary phenotypes using “and” and
“or”) with customized covariate choices. We propose a method to approximate covariate
adjusted linear models for products and logical combinations of phenotypes using only
pre-computed summary statistics. We evaluate our method’s accuracy through several
simulation studies and an application modeling ratios of fatty acids using data from the
Framingham Heart Study. These studies show consistent ability to recapitulate analysis
results performed on individual level data including maintenance of the Type I error rate,
power, and effect size estimates. An implementation of this proposed method is available
in the publicly available R package pcsstools.
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1 INTRODUCTION

Researchers now have readily available access to massive quantities of genotypic and phenotypic data
(Cox, 2018; Simell et al., 2019). For example, via the Electronic Medical Records and Genomics
{eMERGE Network1, the UKBiobank (Bycroft et al., 2018) other initiatives and repositories [e.g.,
23andMe, MGI2 (Gagliano Taliun et al., 2020), FINRISK, CHOP (Diogo et al., 2018), among
others]}, researchers can access a wide variety of phenotypic and genomics data on hundreds of
thousands of individuals. However, important questions remain about how to best leverage these
repositories. For example, the size of biobank datasets makes it challenging to transfer, store, and
analyze data locally. While cloud computing minimizes some of these issues, it brings its own
challenges related to cost (storage and computation), transfer, and access. Furthermore, data security
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and privacy issues are of paramount importance throughout all
aspects of the data access, storage, and analysis pipeline (Jones
et al., 2012; Heatherly, 2016; Simell et al., 2019).

A key innovation in this field is pre-computing non-
individually identifiable summary statistics on biobank data
and maximizing access to this data (Pasaniuc and Price, 2017).
For example, GeneAtlas provides basic summary statistics for
simple linear regression models of single nucleotide variants
(SNVs) with 1,000s of available phenotypic variables across
hundreds of thousands of individuals in the UK Biobank
(Canela-Xandri et al., 2018), which also provides access to
phenotype-phenotype correlations, single nucleotide
polymorphism (SNP) minor allele frequencies (MAFs) and
Hardy Weinberg Equilibrium (HWE) p-values. Likewise,
PheWeb3 is a software toolkit which provides access to UK
Biobank and Michigan Genomics Initiative data via a series of
easy-to-navigate visualization and summary tools (Gagliano
Taliun et al., 2020). Others (e.g., The Lee Lab for Statistical
Genetics and Data Science4) simply provide access to sets of
pre-computed summary statistics (PCSS) from large datasets.
These resources mitigate many of the privacy and security
concerns mentioned above since no individual participant data
(IPD) is shared. In addition, the size of these repositories are only
fractions of the size of IPD, making transfer and storage of the
data much more efficient. Finally, pre-computing these summary
statistics alleviates much of the computational burden on
researchers who would otherwise have to calculate this
information on their own. Despite these advantages, significant
limitations currently exist when using these repositories of PCSS.

For example, researchers may want to modify a phenotype
with available PCSS to one that is of greater clinical interest or use
different sets of covariates than those considered in pre-
computed analyses. Recent work is beginning to address these
limitations. In two recent papers by our group (Gasdaska et al.,
2019; Wolf et al., 2020), we demonstrated how to use standard
PCSS (only means, variances, and correlations of all predictors
and responses) to calculate the coefficients and standard errors
for the linear model for a linear combination of phenotypes with
an arbitrary set of covariates. This can then be used to perform
Principal Component Analysis (PCA) on a set of phenotypes
since principal component scores are just linear combinations
with weights derived from the phenotype covariance matrix.
Further, we demonstrated that if the phenotype correlation
matrix is not available, we can use the correlation of test
statistics for each phenotype across all genetic markers in its
place with little loss of efficiency. These innovations mean that
researchers can, using only PCSS, select the unique set of
covariates they wish to adjust for and model a linear
combination of phenotypes.

Importantly, these two approaches which require a priori
specification of a phenotype of clinical interest, contrast to
other recently developed methods which jointly and
simultaneously analyze multiple phenotypes (Dutta et al.,

2019a,b; Guo and Wu, 2019; Li et al., 2020; Ray and Boehnke,
2018) without an explicit characterization of the relationship
between the phenotypes. These joint phenotype tests aim to
simultaneously analyze multiple phenotypes while satisfying
statistical objectives such as maximizing power under certain
conditions. Furthermore, some of these approaches (Ray and
Boehnke, 2018; Guo and Wu, 2019) do so using PCSS readily
available from existing repositories.

Currently, our group’s methods for using PCSS to analyze
modified phenotypes with flexible covariate choices are limited to
PCA and choosing a phenotype that is a linear combination of the
phenotypes for which PCSS are available. Another meaningful
way to combine phenotypes is through multiplication. That is,
several phenotypes of interest can be viewed as multiplicative
combinations of other phenotypes for which PCSS may be
available. Examples of note include fatty acid conversion ratios
(Kalsbeek et al., 2018) and the body mass index (Justice et al.,
2017). Additionally, products of binary phenotypes can be
interpreted as logical “and” and “or” statements (e.g., a
phenotype y that is defined as “y1 or y2”). Various medical
conditions are defined through logical combinations of various
phenotypes. For example, coding ischemic strokes based on the
union and intersection of various stroke subtypes (von Berg et al.,
2020).

In this manuscript, we demonstrate how to analyze modified
phenotypes which are multiplicative combinations of an
arbitrarily large number of phenotypes for which PCSS are
available. We also demonstrate how to flexibly adjust for
covariates in these modified phenotype models. Importantly,
we also show how the multiplication of phenotypes, when
applied to binary phenotypes, allows for logical combination
of phenotypes. After presenting a mathematical framework for
the method, we validate the method using comprehensive
simulations and demonstrate the method on real data from
the Framingham Heart Study.

2 METHODS

Consider the m phenotypes y1, . . ., ym where each is an n × 1
vector of measures across n subjects and the n × p design matrix
X � (x1, . . ., xp) which consists of variables including genotypic
information, covariates, and an intercept column. Moreover, let
wm � y1y2/ym denote the pairwise Hadamard product of all m
phenotypes for each subject. Our aim is to approximate the
coefficients and standard errors of the covariate adjusted linear
regression model for the product of m phenotypes: wm � Xβ̂+ϵ
using only readily available PCSS.

2.1 Assumed Pre-Computed Summary
Statistics and Information
We assume knowledge of the following PCSS: the means of every
predictor (e.g., SNPs and covariates), the means of every
phenotype, and the full variance-covariance matrix of all
predictors and phenotypes (i.e., sxj,yk, sxj,xi and syk,yl for any i,
j, k, l where 1 ≤ i, j ≤ p and 1 ≤ k, l ≤ m). These are all readily

3http://pheweb.sph.umich.edu/
4https://www.leelabsg.org/resources
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available in standard PCSS repositories. We also assume to know
the marginal distribution that each predictor and phenotype
follows (e.g., binomial, normal, etc.). Figure 1 displays the
assumed information when modeling via both IPD and PCSS.

However, if some summary statistics are unknown, they may
be able to be derived or approximated. For example, SNPs
distributed in HWE can have their mean and variance
approximated through a binomial distribution given the
MAF. Furthermore, the covariance of a genetic variant and
a non-genetic variable is calculated as the single-marker slope
coefficient (for the model with the non-genetic variable as the
response and the genetic variant as the predictor) divided by
the variance of the genetic variant. Other published papers
(Kim et al., 2015; Zhu et al., 2015) have shown that the
correlation of two traits can be approximated by the
correlation of Z statistics of SNPs not associated with either
trait. This approximation method is described in detail in Ray
and Boehnke (2018). Two of our previous papers (Gasdaska
et al., 2019; Wolf et al., 2020) have demonstrated the accuracy
of these three methods through both simulation and real-data
applications.

2.2 Linear Regression With Covariates
Using Pre-Computed Summary Statistics
Given a response vector wm and design matrix X � (x1, . . ., xp)
which includes p variables including SNPs’ minor allele counts,
covariates, and a possible intercept column, the normal error
regression model wm � Xβ + ε where ϵ ∼ N(0, σ2I) has ordinary
least squares estimate for β: β̂ � (X′X)−1X′wm with
Var(β̂) � σ̂2(X′X)−1. In a recent paper (Wolf et al., 2020), we
demonstrated how to calculate these values using only PCSS
using the facts that:

X′X � (n − 1)S(X) + n�x�x′ (1)

X′wm � (n − 1)(swm,x1, . . . , swm,xp)′ + n �wm�x (2)

wm′wm � (n − 1)s2wm
+ n �w2

m (3)

and

σ̂2 � (wm′wm − β̂
′
X′wm)/(n − p) (4)

where S(X) is the p × p variance-covariance matrix of the columns
of the design matrix X, �x � (�x1, . . . , �xp)′ is the p × 1 vector of
column means of X, �wm is the mean of wm, and swm,xj is the
sample covariance between wm and xj.

With these methods in mind and assumed access to standard
PCSS, in order to approximate β̂, and Var(β̂) for this covariate
adjusted multiple linear regression model, all that remains is to
estimate �wm, s2wm

, and sxj,wm for each j. We will first demonstrate
how to approximate these values using PCSS when m � 2 in
Section 2.3.1 and later show how recursion can be used whenm >
2 in Section 2.3.2.

2.3 Covariance Estimation
2.3.1 Covariance Estimation With the Product of 2
Phenotypes
Let w2 � y1y2 be the pairwise Hadamard product of y1 and y2.
Then, if xj represents an “intercept” column of the design matrix
with all elements unity [i.e., if xj � (1,. . .,1)′], we set sxj,w2 � 0.
Otherwise, we proceed as follows: We first approximate the
conditional mean and variance of yk given xj � x for k ∈ {1, 2}
through a linear regression model as

g(yk|x) � akj + bkjx (5)

and

h(yk|x) � (n − 1)(s2yk − bkjsxj,yk)/(n − 2) (6)

FIGURE 1 | Data assumed when modeling using individual participant data (IPD) and when using pre-computed summary statistics (PCSS) to model a product of
m phenotypes (y1, . . ., ym) as a linear function of p covariates (x1, . . ., xm). While modeling using IPD requires n × (p +m) points of data, using PCSS only requires p2 + pm
+m2 + p +m values, which is far less when n is moderately large compared to p and m. All of these PCSS are readily available in existing PCSS repositories, or can be
derived or approximated from other PCSS.
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where bkj � sxj,yk/s
2
xj

and akj � �yk − bkj�xj. We note that this
conditional variance will be constant at any value of x
following from the linear regression assumption of
homoscedasticity.

Then, we calculate the sample partial correlation of y1 and y2
controlling for xj:

ry1 ,y2 .xj �
ry1 ,y2 − rxj,y1rxj,y2������������������

(1 − r2xj,y1)(1 − r2xj,y2 )
√ , (7)

setting ry1,y2 .xj � 0 if either rxj,y1 or rxj,y2 � 1. As the expectation
of the conditional correlation equals the partial correlation under
the assumption of a multivariate linear relationship between (y1,
y2) and xj (Baba et al., 2004), we use the partial correlation as an
estimate of the conditional correlation of y1 and y2 at all possible
values of xj. So, we approximate the covariance of y1 and y2
conditional on xj:

h(y1, y2|x) � ry1 ,y2 .xj

�������������
h(y1|x)h(y2|x)

√
(8)

These terms let us approximate the conditional mean ofw2 at a
given value x of xj:

g(w2|x) � g(y1|x)g(y2|x) + h(y1, y2|x) (9)

Then, letting fj(x) be an assumed probability distribution/mass
function for xjwith support Sj [e.g., if xj is a vector of minor allele
counts with MAF p, letting fj(x) � ( 2x )px(1 − p)2−x and
Sj � {0, 1, 2}) we approximate the sample covariance of xj andw2:

sxj,w2 ≈ ∑
x∈Sj

fj(x)(x − �xj)g(w2|x), (10)

swapping the sums for integrals across the support when
appropriate.

We calculate the sample mean of w2 as

�w2 � �y1�y2 + sy1 ,y2(n − 1)/n (11)

To approximate the variance, we first approximate the
conditional variances of w2 at all levels of xj:

h(w2|x) � h(y1|x)h(y2|x) + g(y1|x)h(y2|x)+
g(y2|x)h(y1|x) + g(w2|x)h(y1, y2|x) (12)

And then approximate the sample variance as:

s2w2
≈ ∑

x∈Sj

nfj(x) − 1( )h(w2|x) + nfj(x) g(w2|x) − �w2( )2⎛⎝ ⎞⎠/(n − 1)

(13)

once again swapping the sum for an integral across Sj when
appropriate. This approach leads to a different variance estimate
for each predictor xj. We treat the median of these estimates
across each j as the estimated variance.

Hence, taking the means, variances, and pairwise covariances
of xj, y1, and y2 and a distributional assumption about xj, we
approximate the covariance of one variable (xj) with the product
of the other two (w2 � y1y2) as well as the product’s mean and
variance.

Repeating this algorithm for each predictor xj and following
the linear regression equations presented in Section 2.2 allows for
calculation of covariate adjusted slope coefficients for themultiple
regression model w2 � Xβ̂+ϵ as well as the standard errors of
these slope estimates.

2.3.2 Covariance Estimation With the Product of 3 or
More Phenotypes
Regression models for larger products of phenotypes can also be
approximated by applying the established method recursively:
first estimating the covariance of xj and w2, then leveraging the
covariance of xj and w2 and xj and y3 to estimate the covariance of
xj and w3, and so forth. This recursion procedure is described in
more detail in the appendix and software to carry it out is
discussed in Section 2.8.

Let wl � y1y2/yl � wl−1yl. In order to estimate sxj,wl through
our established method, we use �xj, �yl, �wl−1, s2xj , s

2
yl
, s2wl−1 , sxj,yl,

sxj,wl−1, and swl−1 ,yl as inputs to the method described in Section
2.3.1. That is, replacing y1 with wl−1 and y2 with yl. While �xj, �yl,
s2xj , s

2
yl
, and sxj,yl are assumed to be known, we must estimate

sxj,wl−1 and swl−1 ,yl.
Continuation of the recursive process starting at wl−1 and

working down tow2 will yield an estimate for sxj,wl−1, or eventually
the base case of sxj,w2.

To approximate swl−1 ,yl, we re-express the term as syl,wl−2yl−1 and
approximate the covariance of yl andwl−2yl−1 through the method
described in Section 2.3.1.

A diagram of the start of this recursion is displayed in
Supplementary Figure S1.

This recursive estimation is impacted by the order in which the
phenotypes are multiplied. So, any set of more than two
phenotypes will render m!/2 possible ways to estimate the
regression model through this method. Hence, we approximate
the covariances and means using all permutations of y1, . . ., ym
unique up to the order of the first two terms as the order of our
phenotypes, and take the median estimate of each term across all
permutations as its predicted value.

2.4 Binary Phenotypes
Binary phenotypes present both new challenges to estimation and
the opportunity to express logical combinations of phenotypes
through products.

2.4.1 Changes to Estimations
Our proposed method leverages several assumptions of the
standard linear regression model in its approximations
(namely those of homoscedasticity and linearity). As binary
phenotypes notoriously violate both of these assumptions, we
slightly adjust our approximation to better reflect this situation.

The covariance of two binary phenotypes is estimated using the
same general framework as developed in Section 2.3.1. The only
changes are to mean the variance estimates. All estimated means
(conditional and otherwise) are initially estimated as proposed in
Section 2.3.1 and then restricted to the open interval (0, 1) (e.g.,
letting g(yk|x) � akj + bkjx if 0 < akj + bkjx < 1, ϵ if akj + bkjx ≤ 0, and
1 − ϵ if 1 ≤ akj + bkj x for some small ϵ > 0).

Frontiers in Genetics | www.frontiersin.org October 2021 | Volume 12 | Article 7459014

Wolf et al. Modeling Multiplicative Combinations With PCSS

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Instead of estimating a phenotype’s conditional variance from
a linear model’s residual variance, we estimate it as

h(yk|x) � g(yk|x)(1 − g(yk|x)) (14)

Further, we calculate the product’s sample variance as

s2w2
� �w2(1 − �w2)n/(n − 1) (15)

2.4.2 Products as Logical Combinations
Binary phenotypes are of particular importance because their
products can be interpreted as logical combinations.

We can represent the logical conjunction y1 ∧ y2 (read as “y1
and y2”) as the product y1y2. Likewise, we express the logical
disjunction y1 ∨ y2 (“y1 or y2”) as 1n − ((1n − y1)(1n − y2)).

By framing both disjunctions and conjunctions in terms of
phenotype multiplication, we can apply our established methods
to approximate the covariances of these combinations with
predictors and ultimately estimate linear models for these
logical combinations.

While the case of the conjunction is a trivial application of the
abovemethods of multiplying phenotypes, we will briefly describe
how to model the disjunction. To do so, we consider the modified
phenotypes y1′ � 1n − y1 and y2′ � 1n − y2 (these represent the
statements “not y1” and “not y2”). This gives us y1∨ y2 � 1n −
y1′y2′. Then, �yl

′ � 1 − �yl, sxj,yl
′ � −sxj,yl, and syk

′ ,yl
′ � syk,yl. If we set

w2′ � �y1
′ �y2

′ , our method allow us to estimate sxj,w2′ for each xj as
well as �w2′ and s2w′ . Leveraging these estimates, sxj,w2 � −sxj,w2′ ,
�w2 � 1 − �w2′ , and s2w2

� s2
w2′
, where w2 is equivalent to the

disjunction y1∨ y2. Using these terms as inputs for the
framework presented in Section 2.2 allow for coefficient and
standard error estimation for the linear model y1∨ y2 � Xβ̂+ϵ.

2.5 Simulation Studies
2.5.1 Simulation 1: Type I Error Maintenance
To verify that our linear model with PCSS approach
appropriately maintained the Type I error rate at a variety
of α thresholds, we carried out a simulation under the null
hypothesis that the predictor variant has no linear association
with any of the phenotypes of interest. This null hypothesis
represents a reasonable subset of the exact null hypothesis
which is that the product of phenotypes has no linear
relationship with the predictor. We carried out this
simulation with varying sample size, MAF, phenotype
means, phenotype correlations, and for continuous
phenotypes, phenotype variances, for products of two
binary phenotypes, two continuous phenotypes, and three
continuous phenotypes. When simulating continuous
phenotypes we assumed that Yik ∼ N(μk, σ

2
k) with Cor(Yik,

Yil) � ρkl while when simulating binary phenotypes we let
Yik ∼ Bernoulli(μk) (again with Cor(Yik, Yil) � ρkl). Simulation
parameters (e.g., n, μ1, ρ12) were randomly sampled from
various distributions (full details are available in
Supplementary Table S1). We carried out 108 simulations
for each collection of continuous phenotypes and 107

simulations for the case of binary phenotypes.

2.5.2 Simulation 2: Comparisons to IPD Models
To evaluate our method’s ability to replicate the results of
covariate adjusted linear models fit to IPD, we carried out
three 2k factorial simulations—one for the product of two
binary phenotypes, one for the product of two positive
continuous phenotypes, and one for the product of three
positive continuous phenotypes. We carried out 1,000
simulations at each possible combination of parameters. In
each simulation, we modeled the phenotype product as a
function of a SNP and binary covariate. For the simulations
with only two phenotypes, we also included a continuous
covariate in our models.

In all simulations, we simulated n subjects’ SNP minor allele
counts x1 at HWE with varying MAF. We simulated a binary
covariate x2 ∼ Bernoulli(logit−1α2x1).When generating sets of two
phenotypes we also generated a continuous covariate x3 from a
linear model with x1 such that �x3 � 0, s2x3 � 1, and rx1,x3 � α3.
This resulted in a SNP with two covariates (p � 3) in our two
phenotype simulations, and a SNP with one covariate (p � 2) in
our three phenotype simulation.

We generated individual phenotype measures through the
model

u(yik) � βk0 +∑p
j�1

xijβkj + ϵik

where u(yik) � yik for continuous phenotypes, u(yik) � logit(Pr(Yik

� 1)) for binary phenotypes, and ϵi′ follows a multivariate normal
distribution with μ � 0 and Σ(i,j) � σ iσ jρij. Parameter values were
selected such that, under optimal settings, empirical power was
roughly 80–90% at a significance threshold of 10−8. Full details of
simulation parameters are available in Supplementary Table S2.

In each simulation, we estimated coefficients, standard errors,
t statistics, and two-sided p-values for the null hypothesis that
there was no relationship between the product of phenotypes and
the SNP (x1) after adjusting for covariates both using IPD and
using PCSS.

Additionally, when simulating two binary phenotypes we fit
covariate-adjusted logistic regression models for the logged odds
that y1iy2i � 1 using IPD and returned the relevant two-sided p-
value to compare the results of the linear model fit using PCSS to
the correctly specified logistic model.

2.6 Real Data Application
Fatty acids are of broad importance for a wide range of
cardiometabolic traits (Imamura et al., 2020) with ratios of
fatty acids are often used as a proxy for conversion efficiency.
Previous genome wide association studies have explored the
genetic architecture of fatty acids and their ratios (Kalsbeek
et al., 2018; Lemaitre et al., 2011; Tintle et al., 2015, 2020).

We modeled 12 fatty acid ratios using both IPD and PCSS
using data from the FraminghamHeart Study’s Generation-3 and
Offspring cohorts downloaded from dbGaP (Mailman et al.,
2007). The specific ratios can be found in the first column of
Table 3. Supplementary Table S3 lists all fatty acids used in at
least one of the ratios alongside their abbreviations.
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Quality control measures included setting Mendelian
inconsistencies as missing and excluding SNPs with HWE p <
0.00001, MAF <0.05, or missing values for over 10% of subjects.
We excluded individuals missing over 10% of their genetic data
after initial quality control and then took a subset of unrelated
participants. After quality control we were left with 362,330 SNPs
over 1,455 individuals (657 from the Offspring cohort and 888
from the Generation-3 cohort).

In addition to the standard PCSS described in Section 2.1, we
assumed access to pre-computed means and variances of the
reciprocal of each fatty acid as well as the correlation between any
fatty acid reciprocal and any other fatty acid, covariate, or SNP to
model these ratios using PCSS.

We analyzed each fatty acid ratio through the linear model:
Ratio ∼ SNP + age + sex for each SNP in our sample using
both IPD and PCSS and tested each SNP for statistical
significance with the Bonferroni adjusted threshold
α � 1.37 × 10−7.

2.7 Statistical Analysis
2.7.1 Simulation 1
To analyze the results of our Type I Error simulations we
calculated the empirical Type I Error rate when approximating
linear models using PCSS at each specified significance threshold.

2.7.2 Simulation 2
For each of the three 2k factorial simulations, we assessed the
PCSS model’s accuracy relative to its IPD counterpart.

We calculated the bias and mean squared error when
estimating the SNP’s slope coefficient, standard error, and
absolute value test statistic. We also modeled errors estimating
the slope coefficient, standard error, and test statistic through
multiple linear regression models with logical indicators for
each of the k parameter settings as predictors, testing at the
Bonferroni adjusted significance threshold of 0.05/k to
determine which simulation parameters affected our
method’s accuracy.

We compared test decisions regarding the significance of the
SNP when modeling the phenotype product after adjusting for
covariates at significance thresholds 10−1, 10−2, . . ., 10−8. When
analyzing binary phenotypes we also compared test decisions
between the linear model fit using PCSS and the logistic
regression model fit on IPD to demonstrate the robustness of
linear models to model binary outcomes.

2.7.3 Real Data Application
We measured our overall bias and mean squared error in slope,
standard error, and absolute value test statistic estimates for each
outcome modeled. We recorded test decisions for both the IPD
and PCSSmodels and whether the two results agreed or disagreed
regarding the statistical significance of each SNP. When one
approach found a SNP to be significant and the other did not, we
noted if the non-significant result was “borderline” significant
(α ≤ p < 10α).

2.8 Software
Software to perform these model approximations as well as those
developed in Wolf et al. (2020) is available on CRAN in the R
package pcsstools5.

3 RESULTS

3.1 Simulation Studies
3.1.1 Simulation 1
Empirical Type I error rates when using PCSS are displayed in
Table 1. In all simulations, the approach’s empirical Type I error
rate was below the tested significance threshold.

3.1.2 Simulation 2
The PCSS method’s errors when approximating slope
coefficients, their standard errors, and test statistics are
available in Table 2. When aggregated over all simulation
settings we observe slight positive bias both when estimating
the slope and the absolute value of the t test statistic for each
collection of phenotypes. The magnitude of the mean test statistic
error is comparable across all three simulations. Figure 2 displays
our PCSS method’s approximated slope coefficients compared to
slope coefficients calculated using IPD for the SNP while
modeling the phenotype product and adjusting for covariates.
Similar graphical comparisons of standard error and test statistic
estimates are available in Supplementary Figures S2, S3.

When modeling estimation errors for two continuous
phenotypes through a linear regression model with indicator
variables for all of the simulation settings (k � 12, n � 2k × 103),
our model for the slope error found all settings except the residual
phenotype variances, σ2k, to be significantly associated with the
PCSS model’s slope estimate’s error at the adjusted significance
threshold 0.05/k. All settings had significant associations with our
error when estimating the standard error of the slope coefficient,
or the test statistic. In the case of two binary phenotypes (k � 14,
n � 2k × 103), we found all settings to have significant associations
with the error in slope, standard error, and test statistic estimates.
For three continuous phenotypes (k � 13, n � 2k × 103), we also
found all settings to have significant associations with the error
when predicting the slope coefficient, its standard error, and its
test statistic.

Figure 3 shows comparisons of estimated and calculated p-
values for a two-sided t test under the null hypothesis that the

TABLE 1 | Simulation studies of Type I error estimates when testing the linear
association between a single SNP and a product of phenotypes using pre-
computed summary statistics at significance thresholds: α � 0.05, 0.001, 10−5,
and 10−6. Each entry represents the proportion of p-values smaller than α when
modeling the linear relation between a SNP and a product of phenotypes.

Nominal α

Phenotypes 5.0E-02 1.0E-03 1.0E-05 1.0E-06

2 Continuous 3.88E-02 6.65E-04 5.56E-06 4.40E-07
2 Binary 2.39E-02 2.06E-04 8.00E-07 1.00E-07
3 Continuous 2.70E-02 3.81E-04 2.91E-06 3.40E-07 5https://cran.r-project.org/package�pcsstools
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SNP had no linear association with the phenotype product after
adjusting for covariates. (Figure 3 only includes p-values greater
than 10−15 for the sake of visual clarity; Supplementary Figure S4
repeats this visualization without any restrictions.) Figure 4
shows various error rates rate between the IPD and PCSS
models’ test decisions based on these p-values at differing
significance thresholds. We see that all PCSS models overall
disagreement rates to their IPD companions decrease as the
significance threshold becomes more stringent. Likewise, when
the IPD model rejected the null hypothesis, the PCSS model
rarely failed to reject with error rates at most 13% which again

decreased as the significance threshold decreased. When the
IPD model failed to reject the null hypothesis, the PCSS
approach’s conditional error rate varied by the model’s
response. When modeling the product of two continuous or
binary phenotypes, the error rate stayed relatively constant
across all thresholds at around 3 and 15%, respectively. But,
when modeling the product of three continuous phenotypes,
the error rate increased as the significance threshold became
more strict. Lastly, when compared to the test decisions of a
covariate adjusted logistic regression model, our PCSS
approximation of the related linear model tends to reach

TABLE 2 | Simulation study approximating a linear model for a product of phenotypes using summary statistics. Summaries of errors when approximating slopes, slope
standard errors, and the absolute value of the t-statistics for a SNP while adjusting for covariates when using pre-computed summary statistics (PCSS) compared to
values obtained when calculating these statistics using individual participant data (IPD).

Phenotypes β SE(β) |t|

IPD Mean Bias MSE Bias MSE Bias MSE

2 Continuous 6.09E-03 3.72E-04 1.43E-05 2.39E-06 6.58E-11 2.33E-03 4.13E-01
2 Binary 4.13E-01 2.56E-02 6.74E-03 6.58E-05 5.50E-07 1.65E-01 2.16E-01
3 Continuous 4.82E+00 3.33E-02 3.79E-01 -3.63E-02 5.82E-04 5.71E-02 1.06E-01

FIGURE 2 | Comparison of slope coefficients from a simulation study approximating a covariate adjusted linear model for a product of phenotypes using pre-
computed summary statistics (PCSS) and individual participant data (IPD). (A) Modeling the product of two continuous phenotypes while adjusting for a binary and a
continuous covariate. (B) Modeling the product of two binary phenotypes while adjusting for a binary and a continuous covariate. (C) Modeling the product of three
continuous phenotypes while adjusting for a binary covariate.
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the same conclusions, with a moderate conservative tendency,
especially at more strict significance thresholds.

3.2 Real Data Application
The bias and mean squared error of the PCSS model’s
approximation to the IPD model’s slope, standard error, and
absolute value test statistic for each fatty acid ratio are displayed
in Table 3. Our mean slope error was −2.93 × 10−3 (Mean
Squared Error 0.114) while the mean slope estimate when
using IPD was −1.3 × 10−3, demonstrating a slight bias
towards zero. However, the standard error estimates under the
PCSS model were on average 4.80 × 10−2 lower than their
respective estimates under the IPD model and absolute value
tests statistics tended to be 1.79 × 10−2 higher than their IPD
counterparts indicating an overall minor anti-conservative bias.

Table 4 summarizes the number of SNPs found significant
when modeling using both IPD and PCSS across all 12 × 362330
models. Of the ten SNPs for which IPD and PCSS models
disagreed, nine occurred when one approach found a SNP to
have a significant effect while the other found it to have a
borderline significant effect (α ≤ p < 10α).

4 DISCUSSION

We have developed a method that approximates the covariance of
products of phenotypes with other variables using only bivariate
and univariate pre-computed summary statistics (PCSS). We
then demonstrated how this covariance estimation can be used
to approximate linear models for products of phenotypes, how
these can model logical “and” and “or” statements and how these
models can include researchers choice of covariates. We
demonstrated our approximation method’s accuracy relative to
models fit on individual participant data through multiple
simulations and applications to real genetic data.

The approximations showed good performance overall. In a wide
variety of simulations, the Type I error was maintained, the bias in
point estimates relative to models fit with IPD was minimal, and
hypothesis tests almost always reached the same conclusion as would
be obtainedwith IPD. Application of ourmethod to real data from the
Framingham Heart Study also showed good performance on similar
metrics. In general, we have tried to formulate this PCSS method to
only rely on commonly available or easily estimated PCSS. However,
in our application we assumed that we had the PCSS for reciprocals of

FIGURE 3 | Comparison of p-values from a simulation study approximating a covariate adjusted linear model for a product of phenotypes using pre-computed
summary statistics (PCSS) and individual participant data (IPD). Two-sided p-values were computed for the null hypothesis that the SNP had no linear effect on the
phenotype product while adjusting for covariates. All plots are restricted to the range (0, 15); unrestricted plots are available in the supplementary materials. (A)Modeling
the product of two continuous phenotypes while adjusting for a binary and a continuous covariate. (B) Modeling the product of two binary phenotypes while
adjusting for a binary and a continuous covariate. (C) Modeling the product of three continuous phenotypes while adjusting for a binary covariate.
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fatty acids. This may not always be the case in practice, but may
suggest that these PCSS may be important to pre-compute to assist
downstream analyses of ratios.

Despite these positive results, some limitations of our work
are worth noting. First, we used linear regression for a binary
response. Previous applications of PCSS have taken this

FIGURE 4 | Simulation studies’ test decision disagreement rates evaluating the significance of a SNP in a linear model for a product of phenotypes while adjusting
for covariates using individualized participant data (IPD) and pre-computed summary statistics (PCSS) at various significance thresholds (α). Comparisons were also
made between a logistic regression model fit using IPD on the product of two binary phenotypes and the PCSS model approximating the linear relationship. (A)
Percentage of times the PCSS and IPD models’ test decisions disagreed across all simulations. (B) Percentage of times the PCSS model rejected the null
hypothesis given that the IPD model failed to reject the null hypothesis. (C) Percentage of times the PCSS model failed to reject the null hypothesis given that the IPD
model rejected the null hypothesis.

TABLE 3 | Summary of errors when approximating the linear model: FA Ratio ∼ snp + age + sex using pre-computed summary statistics (PCSS) compared to values
obtained when calculating these statistics using individual participant data (IPD). Each fatty acid ratio was modeled across 362,330 SNPs from 1,455 subjects in the
Framing Heart Study’s Offspring and Generation-3 cohorts.

Ratio β SE(β) |t|

IPD Mean Bias MSE Bias MSE Bias MSE

PA:POA 5.58E-02 1.49E-02 4.18E-02 −4.80E-02 2.08E-04 4.38E-03 1.45E-02
PA:SA 5.83E-05 −2.13E-05 3.09E-07 1.43E-04 1.87E-09 4.67E-03 8.23E-03
POA:OA −2.08E-05 −2.10E-06 8.08E-09 −2.69E-05 4.69E-11 5.92E-03 1.70E-02
SA:OA −8.15E-05 −1.19E-05 3.62E-07 −3.33E-05 3.36E-10 6.86E-03 8.21E-03
LA:GLA −7.35E-02 2.03E-02 1.32E+00 −5.10E-01 1.95E-02 3.11E-02 3.17E-02
LA:DGLA 2.04E-03 1.99E-04 3.58E-04 −1.84E-03 3.12E-07 2.33E-02 4.08E-02
GLA:DGLA 4.58E-05 1.04E-05 2.64E-07 −7.62E-06 1.13E-10 3.36E-02 6.50E-02
DGLA:AA −1.99E-05 −1.54E-06 2.84E-08 3.79E-05 1.09E-10 9.37E-03 1.33E-02
AA:DTA 1.76E-03 −4.20E-04 7.21E-05 −3.76E-03 9.42E-07 9.73E-03 2.38E-02
EPA:DPA_N3 2.29E-04 −1.38E-05 1.31E-06 −4.04E-04 1.02E-08 2.34E-02 4.72E-02
DTA:DPA_N6 −1.49E-03 1.66E-04 7.46E-04 −1.16E-02 8.24E-06 4.71E-02 1.43E-01
DPA_N3:DHA −4.12E-04 6.03E-05 3.45E-06 −1.52E-04 2.53E-09 1.56E-02 3.75E-02
Overall −1.30E-03 2.93E-03 1.14E-01 −4.80E-02 2.12E-02 1.79E-02 3.77E-02
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approach (Canela-Xandri et al., 2018), and it is generally
robust; however, this approach is less precise than when the
underlying relationship is truly linear. While some
foundations for a logistic modelling approach were recently
proposed by Wu et al. (2021), further work is needed to
develop a comprehensive model for logistic regression using
PCSS. We also note that our method makes assumptions about
the fit of the linear model to the data. While these assumptions
are the same as in the corresponding analysis of IPD data (e.g.,
true underlying linear relationship between y and x), these
assumptions may be more acutely important in our PCSS
method.

Second, while our simulation study was comprehensive
and we demonstrated our method on real data we note that
further testing on simulated and real data is encouraged to
explore special cases not considered here. Situations that
suggest further testing and methodological developments
include modeling linear combinations of products and
adjusting for clustered/family data. One scenario of
particular importance that warrants further investigation
is missing data resulting in PCSS being computed on
different subsets of the full data. While our real data
analysis showed good performance in a setting with
missing genotype data, further investigations should be
performed to address the robustness of this method
(along with other methods based around PCSS) when
dealing with missing phenotype information. Similarly,
researchers may be limited in their ability to have
additional a priori exclusion criteria applied to their
analysis or obtain PCSS calculated using the same criteria
for each phenotype. There are, however, two options. Either
obtain summary statistics on the subgroup of interest or
ignore the exclusion criteria by including the group in the
“controls” in an analysis on a dichotomous outcome. More
robust options are in development (e.g., multinomial
regression, or methods that use summary statistics alone
to allow researchers to apply exclusion criteria). Relatedly,

while our method exhibited fair performance when modeling
logical combinations of binary phenotypes with low case-
control ratios (see Supplementary Table S4), it would
benefit from further and more thorough work to assess its
robustness.

Third, when estimating the variance of a product of a set of
continuous phenotypes we estimated this term as a function
of each covariate and took the median all these estimates as
the approximated value. While this approach works well in
practice, it may be possible to utilize the joint distribution of
the covariates to estimate the covariance of these estimations
and derive a more optimal estimation. Relatedly, our
simulations showed that when multiplying binary
phenotypes that exhibit high negative correlation and
when multiplying phenotypes that take on negative values
care should be taken. Finally and relatedly is the issue of
potential compounding of errors when the method is applied
to products of m phenotypes (where m is large). Although
there are meaningful combined phenotypes that consist of
five or more phenotypes (upon which this method should be
used cautiously), we note that many combined phenotypes
[e.g., BMI, ratios of biomarkers, cardiovascular disease
(defined as either coronary heart disease or stroke)] are
combinations of four or fewer phenotypes. Additional
simulation studies and methodological improvements are
needed and caution should be exhibited when applying our
method in these cases.

Fourth and finally, this method does not support PCSS that
describe score tests (where a null model with non-genetic
covariates is first fit and then updated for each genetic
variant instead of simultaneously estimating both the
genetic and covariate effects) in its current form. While
future research can likely expanded this method to work
with this data, we note the considerable collection of PCSS
repositories (e.g., PheWeb, GWAS Catalog, GeneAtlas) which
do provide the PCSS needed to perform these proposed
approximations.

The use of PCSS provides numerous advantages over IPD
data including computational efficiency and reduced
concerns about data privacy. However, substantially
improved and flexible methods are needed in order to fully
leverage PCSS in customized downstream analyses. Our
method allows researchers further customization of
analyzed phenotypes by opening the door to multiplicative
combinations of phenotypes, including logical combinations
of binary phenotypes. Approximations used are reasonable,
with near perfect maintenance of the Type I error rate and
power in most situations. Further work is needed to apply the
method to additional datasets and to expand the method to
larger classes of combined phenotypes.
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Ratio IPD significant PCSS significant Both significant

PA:POA 0 0 0
PA:SA 0 0 0
POA:OA 0 0 0
SA:OA 6 9 6
LA:GLA 5 2 2
LA:DGLA 9 10 9
GLA:DGLA 8 8 8
DGLA:AA 18 19 18
AA:DTA 0 0 0
EPA:DPA_N3 0 1 0
DTA:DPA_N6 5 4 4
DPA_N3:DHA 11 11 11
Overall 62 64 58
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