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Abstract
Background: In accordance with the increasing amount of information concerning individual differences in drug
response and molecular interaction, the role of in silico prediction of drug interaction on the pathway level is
becoming more and more important. However, in view of the interferences for the identification of new drug
interactions, most conventional information models of a biological pathway would have limitations. As a reflection
of real world biological events triggered by a stimulus, it is important to facilitate the incorporation of known
molecular events for inferring (unknown) possible pathways and hypothetic drug interactions. Here, we propose
a new Ontology-Driven Hypothetic Assertion (OHA) framework including pathway generation, drug interaction
detection, simulation model generation, numerical simulation, and hypothetic assertion. Potential drug
interactions are detected from drug metabolic pathways dynamically generated by molecular events triggered
after the administration of certain drugs. Numerical simulation enables to estimate the degree of side effects
caused by the predicted drug interactions. New hypothetic assertions of the potential drug interactions and
simulation are deduced from the Drug Interaction Ontology (DIO) written in Web Ontology Language (OWL).

Results: The concept of the Ontology-Driven Hypothetic Assertion (OHA) framework was demonstrated with
known interactions between irinotecan (CPT-11) and ketoconazole. Four drug interactions that involved
cytochrome p450 (CYP3A4) and albumin as potential drug interaction proteins were automatically detected from
Drug Interaction Ontology (DIO). The effect of the two interactions involving CYP3A4 were quantitatively
evaluated with numerical simulation. The co-administration of ketoconazole may increase AUC and Cmax of SN-
38(active metabolite of irinotecan) to 108% and 105%, respectively. We also estimates the potential effects of
genetic variations: the AUC and Cmax of SN-38 may increase to 208% and 165% respectively with the genetic
variation UGT1A1*28/*28 which reduces the expression of UGT1A1 down to 30%.
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Conclusion: These results demonstrate that the Ontology-Driven Hypothetic Assertion framework is a
promising approach for in silico prediction of drug interactions. The following future researches for the in silico
prediction of individual differences in the response to the drug and drug interactions after the administration of
multiple drugs: expansion of the Drug Interaction Ontology for other drugs, and incorporation of virtual
population model for genetic variation analysis, as well as refinement of the pathway generation rules, the drug
interaction detection rules, and the numerical simulation models.

Background
The role of in silico prediction of drug interactions on the
pathway level is becoming more and more important for
solving real-world problems. Multiple-drug regimens
exemplify the need for the computer-assisted prediction
of drug interactions. Multiple-drug regimens are com-
monly prescribed for elderly patients suffering from more
than one disease. However, they sometimes cause unex-
pected severe side effects because of the drug interactions
or individual differences concerning response to the drugs
[1]. Therefore, the prediction of drug interactions for pre-
venting the side effects is an important issue for these reg-
imens.

On the other hand, information useful for in silico drug
interaction prediction has increased very rapidly in recent
years. Technological innovations in genomic sciences
have produced an enormous amount of biomolecular
information including sequences, structures, and path-
ways. In order to integrate the biomolecular information,
ontology is attracting a lot of attention [2,3]. In addition,
pharmacokinetics modeling and simulation are emerging,
promising techniques to understand the dynamic behav-
ior of drug metabolic pathways [4,5].

To develop a practical in silico drug interaction prediction
system by integrating the above information and tech-
niques, the following issues must be solved.

Context dependency of drug-metabolic pathways
Drug-metabolic pathways do not exist a priori. They
strongly depend on contexts and situations including the
administration route, single nucleotide polymorphism
(SNP) of drug-response genes, and the administration of
multiple drugs and foods. Therefore, a dynamic recon-
struction of drug metabolic pathways from primitive
molecular events is necessary for drug interaction predic-
tion on the pathway level. Such reconstruction requires
the formal definition of molecular events and the rela-
tions among them, i.e., the Drug Interaction Ontology
(DIO).

Treatment of multiscale events
Pathways triggered by drug administration consist of mul-
tiscale events: from the molecular level to the body level,
ranging from nanoseconds to hours or days in terms of

drug response. For example, drug administration and
drug excretion are body-level events, while drug transport
and enzymatic reactions are molecular-level events. A
comprehensive view from the molecular level to the body
level is necessary in order to understand multi-scale
events.

Quantitative evaluation of interactions
Quantitative evaluation plays an essential role to estimate
the degree of side effects caused by drug interactions.
More than one drug interactions may occur in drug-meta-
bolic pathways from the qualitative reasoning view point.
However, not all drug interactions cause side effects
because of differences in binding affinity and molecular
population. Quantitative simulation models with an in
silico drug interaction prediction system must be incorpo-
rated to discriminate serious drug interactions from negli-
gible ones. It should be also noted that total drug
metabolism depends on not only kinetic parameters but
also physiological parameters such as organ volumes and
blood flows. Incorporation of kinetic parameters and
physiological parameters is necessary for a realistic simu-
lation model to recapture experimental data.

In this paper, we propose a new drug-interaction predic-
tion framework called "Ontology-Driven Hypothetic
Assertion (OHA)" focusing mainly on automatic genera-
tion of drug-metabolic pathways, automatic detection of
drug interactions on multiple-drug regimens [6], and
quantitative evaluation of the drug interactions with
numerical simulation. The effectiveness of the OHA
framework was demonstrated in the prediction of interac-
tions between irinotecan (CPT-11) and ketoconazole.

Design philosophy
Ontology-Driven Hypothetical Assertion
The Ontology-Driven Hypothetical Assertion framework
maps inferences onto the Drug Interaction Ontology as
both machine and human understandable form. The
inferences include the results of qualitative reasoning and
numerical simulation, i.e. generated pathways and
detected drug interactions and generated differential
equations and simulation results. The assertions enable to
interpret the obtained results such as drug interaction can-
didates, simulation models, the pharmacokinetic
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moment values with background knowledge on pharma-
ceutical science and biochemistry in the ontology.

Causality-based pathway modularization
Modularization is necessary for the dynamic reconstruc-
tion of pathways that depend on dose conditions. Careful
selection of primitive modules is the key to ensuring the
soundness of pathway reconstruction. Molecular events,
such as molecular transport and enzymatic reactions, are
well-formed primitive modules for this purpose. In this
paper, we refer to the primitive modules as "molecular
events", and the aggregation of molecular events as "path-
ways".

To avoid redundant pathway branch constructions, which
are non-essential for the target drug interactions, we adopt
causality-based modularization in which each molecular
event is defined by the unique relationship between key
molecules before and after the event. The triadic relation-
ship <trigger, situator, resultant>, proposed by Yoshikawa
et al. [7], is one such causality that can be commonly
found in molecular reactions. For example, in case of
enzymatic reactions, substrates, enzymes and other prod-
ucts correspond to trigger, situator and resultant, respec-
tively. In the case of molecular transport, extra (intra)
cellular molecules, transporters and intra (extra) cellular
molecules correspond to the participants of the triadic
relation, respectively. The triadic relationship can be
applicable to higher level events like drug dosage and drug
excretion, as long as its causality is unique and clear.

Figure 1 (a)(b)(c) shows a simple example of pathway
reconstruction with two primitive molecular events: an
enzymatic reaction in which carboxylesterase (CE) metab-
olizes irinotecan into SN-38 (7-ethyl-10-hydroxycamp-
tothecin) in the liver, and molecular transport in which
SN-38 in the liver is transported to the bile by MRP2
(Multidrug resistance-associated protein 2). Two molecu-
lar events are connected at the resultant of the enzymatic
reaction (TR0000019) and the trigger of the molecular
transport (TR0000007) for passing SN-38 in the liver (SN-
38@liver) to the bile.

Ontology-based knowledge base construction
The ontological approach in knowledge base design is
adopted for resource sharing and the semantic description
of molecular events and pathways. Ontology is necessary
to define molecular events and pathways in a form that
can be shared among computers and human beings. This
enables the full use of powerful computational intelli-
gence for dynamic pathway reconstruction in a way that
human intelligence can follow and understand. Ontology
is also important for establishing interoperability among
web resources and thereby to make use of the latest drug
reaction information published in the semantic web [2,8].
Public biological ontologies, especially in the field of
chemical biology, are now dramatically increasing, and
have a great potential to develop sustainable knowledge
bases for molecular reaction and pathways.

One of the unique features of our knowledge-base design,
i.e. DIO, is the adoption of the triplet view: intension,

Decomposition of a pathway with primitive molecular eventsFigure 1
Decomposition of a pathway with primitive molecular events. a) Ordinary pathway map representation. b) Primitive 
molecular events including trigger (T), situator (S) and resultant (R). c) Aggregation of molecular events at SN-38@liver. Rec-
tangles and ellipses are instances of continuants and processes, respectively, in b) and c).
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extension, attribute for molecular events and pathways as
seen in Figure 2. Intension defines the kinds of molecular
events and pathways as controlled vocabulary of proc-
esses. Attribute defines the components of molecular
events and pathways as controlled vocabulary of continu-
ants (see Figure 3 for a part of class hierarchy of controlled
vocabulary for drug interaction). These controlled vocab-
ularies are constructed from the viewpoints of "process"
and "continuant" as proposed in Basic Formal Ontology
(BFO) [9,10]. Molecular event objects are asserted in
extension using the controlled vocabularies defined in
intention and attributes. As for extension, prototype
object modeling is adopted to represent pathway as aggre-
gation of molecular events. This is because an infinite
number of terms or classes are required to express all com-
binations of molecular events. We avoid this problem by
treating pathways as dynamic objects deduced from pro-
totype molecular event objects rather than treating them
as instances of pathway classes.

Dynamic pathway reconstruction and drug interaction detection
The drug metabolic pathway, due to its dynamic nature, is
difficult to define a priori in the manner seen in biomo-
lecular metabolic pathways in the Kyoto Encyclopedia of
Genes and Genomics (KEGG) [11]. Therefore, the OHA
framework provides the Pathway Object Constructor
(POC) and Drug Interaction Detector (DID). Pathway
Object Constructor dynamically deduces pathways from
the DIO, depending on contexts or situations. Drug Inter-
action Detector detects drug interaction candidates find-
ing intersections from those generated pathways.

These inferences are mapped onto the Drug Interaction
Ontology as hypothetical assertions. The generated path-
ways and detected drug interactions are asserted as aggre-
gation of molecular events. The detected drug interactions
can be segmentalized such as competitive inhibition,
noncompetitive inhibition, and uncompetitive inhibition
when binding site information is available. This is effec-

Overview of the Ontology-Driven Hypothetic Assertion (OHA) frameworkFigure 2
Overview of the Ontology-Driven Hypothetic Assertion (OHA) framework. Drug Interaction Ontology (DIO) pro-
vides triple views for events and pathways, namely, intension, extension, and attribute. White triangles in extension are molec-
ular events such as CYP3A4 mediated metabolism of irinotecan. White rectangles and circles in attribute are molecules and 
organs respectively; the organs indicate the location of molecules. The gray triangles and arrowed dashed lines represent the 
hypothetic assertions generated by the OHA framework. The Pathway Object Constructor (POC) generates pathways by con-
necting molecular events. The Drug Interaction Detector (DID) detects drug interactions from the generated pathways and 
asserts the interactions as hypothetic assertions into DIO.
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tive to select an appropriate differential equation depend-
ing on the inhibition model.

Numerical simulation
In order to incorporate a quantitative simulation system
into the OHA framework, the following two aspects were
considered: a methodology for automatic conversion
from a generated pathway to a quantitative simulation
model, and a methodology for the validation of numeri-
cal simulation models by analysing the dependences of

kinetic parameters and physiological parameters. By solv-
ing these two issues, the OHA framework can can be
applied to in silico prediction of individual drug interac-
tions for multiple-drug regimens, assuming that kinetic
parameters and the initial enzyme concentration are
roughly estimated by individual genetic variations and
health indices of bio-markers.

A simulation model is automatically generated from a
pathway generated by the Pathway Object Constructor

Class hierarchy for controlled vocabularies of DIOFigure 3
Class hierarchy for controlled vocabularies of DIO. Classes prefixed with "fma:" were references for the classes defined 
in the FMA. The class hierarchy was stored in "dio_event.owl". According to BFO, the controlled vocabulary was divided into 
two parts; process (e.g. events) and continuants (e.g. things). (This figure was generated using ontoviz plug-in of Protege with 
manual changes.).
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and Drug Interaction Detector. The pathway is converted
to intermediate model by merging organs and molecular
events, respectively, to fit a given simulation model frame-
work such as compartment model. Differential equations
for the simulation model are generated from the interme-
diate model by converting the merged events to mathe-
matical expression.

We used the parameter-parameter dependency analysis
system (PPD Viewer) designed by Konagaya et al. [12],
with high-throughput numerical simulation engine and
interactive visualization tools developed on OBIGrid
[3,13-16]. The system can predict the concentration/time
profiles and those moment parameters such as area under
the curve (AUC), area under the moment curve (AUMC),
and mean resident time (MRT) when changing some
kinetic parameters in the range of one thousandth to
thousands of physiological conditions. The system visual-
izes dependencies among kinetic parameters and molecu-
lar concentrations in terms of moment parameters of a
compound in target organs.

The generated simulation models and pharmacokinetic
moment parameter values are mapped onto the Drug
Interaction Ontology as hypothetical assertions. The sim-
ulation models are asserted as aggregations of objects rep-
resenting terms and parameters in differential equations.
Those objects have references to the components of the
pathway objects from which the simulation models were
generated. The moment parameter values are asserted
with the drug interaction objects and the corresponding
simulation model for the further analysis.

Interaction between Irinotecan and Ketoconazole
Irinotecan (CPT-11) is an anti cancer drug which is com-
monly used for colon and breast cancers [17]. Irinotecan
is a prodrug of SN-38, anti neoplastic topoisomerase I
inhibitor, and is bioactivatied by carboxyl esterase (CE)
[17]. About 60% of irinotecan is excreated as unchanged
drug from bile and kidney [18]. Irinotecan is also metab-
olised by CYP3A4 to form APC and NPC [17]. NPC is fur-
ther metabolized by CE to form SN-38. SN-38 undergoes
glucronidation by UGT1A1 to form the inactive glucro-
nide, SN-38G [17]. In addition, it is known that the muta-
tions on UGT1A1, UGT1A1*28 which decreases the
expression of UGT1A1 enzyme down to 30%, has strong
relationship with some side effects of irinotecan [19,20].
Ketoconazole (KCZ) is an anti fungal drug and a well
known inhibitor of CYP3A4. Ketoconazole undergoes
extensive metabolism in the liver to form several metabo-
lites [21,22]. About 2 to 4% of urinary radioactivity repre-
sents unchanged drug [22].

It has been reported that the inhibition of CYP3A4 by
ketoconazole influences the metabolism of irinotecan,
which results in 6% SN-38 increase [23].

Results and discussion
Results
Pathway generation and drug interaction detection
The pathways of intravenously administered irinotecan
and orally administered ketoconazole were inferred as
aggregation of molecular events by the Pathway Object
Constructor. Figure 4 shows the generated irinotecan met-
abolic pathway object where irinotecan and its derivatives
circulate through the veins, liver, bile, intestines, and por-
tal vein, namely, the enterohepatic circulation, and are
excreted through the kidneys or through the bile. These
generated pathways are consistent with in vivo studies
[17]. The generated pathway object is sound in the sense
that the object is deduced from the Drug Interaction
Ontology (DIO) represented by Web Ontology Language
(OWL-DL) [24].

Interactions between intravenously administered irinote-
can and orally administered ketoconazole were detected
and asserted by the Drug Interaction Detector. The
detected drug interactions and the hypothetic assertion
are shown in Figure 5. The assertion contains four drug
interactions; two of them concern "drug binding reaction"
to albumin in veins (ddi2) and arteries (ddi3), and the
rest of them concern "oxidation" by CYP3A4 (ddi0 and
ddi1). The detected drug interaction concerning CYP3A4
(ddi0 and ddi1) has been confirmed by the literature on
in vivo studies [23].

Numerical simulation
We evaluated the effects of drug interactions concerning
CYP3A4 quantitatively with numerical simulations. Three
simulations were performed: sole administration of iri-
notecan for a patient having UGT1A1*1/*1 (wild type),
co-administration of irinotecan and ketoconazole for a
patient having UGT1A1*1/*1, and sole administration of
irinotecan for a patient with UGT1A1*28/*28 which
decreases the expression of UGT1A1 down to 30% than
UGT1A1*1/*1. Intravenous drip infusion (125 mg/m2, 90
min) was assumed for irinotecan, and oral administration
(200 mg) was assumed for ketoconazole. Figure 6 shows
the simulated concentration/time profiles of irinotecan,
SN-38, APC, NPC, SN-38G in blood for the simulation of
sole administration of irinotecan for a patient having
UGT1A1*1/*1. The concentration/time profiles agree
with experimental data reported by Slatter et al. [18].

Table 1 shows the comparisons of AUC and Cmax for the
simulations. By the ketoconazole administration, the
AUC of APC and NPC were decreased to 48.1% and
35.3%, respectively. The AUC of SN-38 were increased
Page 6 of 15
(page number not for citation purposes)



BMC Bioinformatics 2008, 9(Suppl 6):S11 http://www.biomedcentral.com/1471-2105/9/S6/S11
only to 108% by the ketoconazole administration. Simi-
larly, the Cmax of APC and NPC were decreased to 25.6%
and 20.2%, respectively, whereas the Cmax of SN-38 was
increased to 105% by the ketoconazole administration.
On the other hand, in case of the UGT1A1*28/*28 muta-
tion, the AUC and Cmax of SN-38 were significantly
increased: the AUC was increased to 208% and the Cmax
was increased to 165%. This implies that patients with
UGT1A1*28/*28 may suffer severe side effects when the
doses are same as patients with UGT1A1*1/*1. These
results agree with the previously published experimental

papers by Kehrer et al. [23], Sai et al. [19], and Ando et al.
[20]. In addition, the simulation results were asserted into
the ontology along with the simulation model.

Discussion
Pathway reconstruction and drug interaction detection
The OHA framework automatically generated pathways
for co-administration of irinotecan and ketoconazole, and
detected drug interactions. The generated pathways and
two of the drug interactions involving CYP3A4 were con-
firmed by published papers. The detected interactions

Inferred pathway of irinotecanFigure 4
Inferred pathway of irinotecan. Small rectangles and ellipses are instances of continuants and molecular events, respec-
tively. Large rectangles such as small intestine are the compartments. Molecular event and trigger, situator, and resultant were 
connected by solid lines. Each molecular event was connected by the shared continuants. For example, TR0000020 and 
TR0000002 in the small intestine were connected because they share the same instance of SN-38. This connection can be 
interpreted as that irinotecan is metabolized into SN-38 (TR0000020) and then SN-38 is transported to the intestinal lumen. 
(This figure was generated by our inference system.).
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with plasma albumin (ddi2 and ddi3) have not been
reported in any literature as far as we know. One possible
reason is that the effects of drug interactions may be neg-
ligible because of the high plasma albumin concentration
compared to drug concentration. To distinguish serious
drug interactions from those negligible ones, a qualitative
evaluation, such as numerical simulation, is necessary.

Numerical simulation
The simulation model succeeded to reproduce Slatter's
experimental data of irinotecan dosage to a large extent
except for the Cmax of irinotecan blood concentration,
cyclic fluctuation of irinotecan concentration and a bile
cancer patient data.

The Cmax of drug concentrations in the simulation model
strongly depend on renal clearance, bile clearance, and
kinetic parameters of enzymes. Because these parameters
were estimated from the recovery amount data in urine
and feces by Slatter et al. [18] and in vitro experiments data
reported as published papers [25-29], the excess of iri-
notecan's Cmax in the simulation model might be

explained by the false peak in the experimental data
which results from time lag of sampling

Another possibility is the effect of reabsorption in intes-
tine. The time course of the experimental data indicate
slight increase of SN-38G blood concentration in the
period of 12 hours. This may result from the reabsorption
of SN-38 thorough small intestine. In order to include the
reabsorption process into the simulation, the kinetic
parameters in bacterial flora in the intestine and amount/
time profile data of bile excretion are required.

Lastlym Slatter et al. reported that one patient with a bile
cancer showed different bile and urine recovery pattern
from other patients [18]. Virtual population [30] may be
helpful to reconstruct this behaviour.

Conclusion
Deduction of hypothetic drug interactions from the Drug
Interaction Ontology was demonstrated for an irinotecan
plus ketoconazole regimen. The prototype system
detected four drug interactions. Two of them concerned

Dynamically asserted instances of interactionsFigure 5
Dynamically asserted instances of interactions. Rectangles are owl classes corresponding to intension. Circles are owl 
instances corresponding to molecular events and attribute. Detected drug interactions were hypothetically asserted as owl 
instances (dotted circles) along with hasSubprocess properties (dotted and dashed edges).
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cytochrome p450 (CYP3A4) and were consistent with
known drug interactions. The other two concerned albu-
min, the effects of the interactions would be negligible as
long as the drug concentration is low. We then quantita-
tively examined the effect of the drug interactions con-
cerned CYP3A4 and the effect of genetic variation
UGT1A1*28 using numerical simulation. The numerical
simulation indicates that the drug interaction has only a
limited effect on the pharmacokinetics of SN-38 for an iri-
notecan plus ketoconazole regimen. However, the genetic
variation on UGT1A1 showed two-fold increase of SN-
38's AUC.

Finally, in order to realize in silico prediction of drug inter-
actions, the following future works are remained: expan-
sion of the Drug Interaction Ontology for other drugs,
incorporation of virtual population model for generic var-

iation analysis, and refinements of the pathway genera-
tion rules, drug interaction detection rules, and the
numerical simulation models.

Methods
The OHA framework
We implemented the following prototype system to prove
the concept of the OHA framework. The system was
designed to predict potential drug interactions occurring
after concomitant administration of irinotecan and keto-
conazole by comparing the drug metabolic pathways gen-
erated from primitive molecular events. Figure 7 shows an
overview of the prototype system. The system consists of
the knowledge base for DIO, the inference programs of
the Pathway Object Constructor and Drug Interaction
Detector, simulation model generator, and simulation
engine.

Blood Concentration/time profile of irinotecan, SN-38, APC, NPC, and SN-38 in blood compartment for solo administration of irinotecanFigure 6
Blood Concentration/time profile of irinotecan, SN-38, APC, NPC, and SN-38 in blood compartment for solo 
administration of irinotecan. The drug concentrations in blood without ketoconazole administration was estimated by 
numerical simulation. Intravenous drip infusion (125 mg/m2, 90 min) was assumed for irinotecan administration.
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DIO, shown in Figure 2, was written in OWL-DL; the con-
trolled vocabularies of process and continuant were
implemented as OWL class hierarchy, and extension and
part of attributes, including molecules and organs, were
implemented as OWL instances. The molecular event
objects in extension were represented by OWL instances
and OWL properties. The ontology referred to other tax-
onomies and ontologies for well-established vocabularies
of biochemical terms, anatomical entities and properties.
This enabled the reduction of our ontology construction
cost and to concentrate our efforts on the information
specific to drug interaction.

The ontology for irinotecan and ketoconazole was built
with Protege [31]. The information about these drugs has

been collected from various articles [17,22,32-38]. The
total number of classes and instances of the current DIO
is 178 and 143, respectively. Approximately two thirds of
the classes were mapped to the Unified Medical Language
System (UMLS) [39] and/or Foundational Model of Anat-
omy (FMA) [40,41]; 106 classes were mapped to the
UMLS; 32 classes were mapped to the FMA. The class hier-
archy is shown in Figure 3. Twenty-six properties were
imported from the Open Biomedical Ontology Relation
Ontology (OBO Relation) [42]; and five properties were
newly defined to implement molecular event objects as
OWL instances (Table 2). The ontology OWL files:
dio_event.owl, dio_cpt-11, and dio_KCZ.owl, are availa-
ble as additional files 1, 2, 3.

Table 1: AUC and Cmax of blood concentration/time profile obtained by numerical simulations.

Irinotecan APC NPC SN-38 SN-38G

AUCKCZ- [nmol·min/ml] 672 233 14.2 29.8 137
CmaxKCZ- [μM] 2.22 0.290 0.0113 0.0491 0.129
AUCKCZ+ [nmol·min/ml] 721 112 5.01 32.2 147
CmaxKCZ+ [μM] 2.29 0.0741 0.00228 0.0515 0.136
AUCKCZ+/AUCKCZ- [%] 107 48.1 35.3 108 107
CmaxKCZ+/CmaxKCZ- [%] 103 25.6 20.2 105 105

AUCUGT [nmol·min/ml] 672 233 14.2 62.1 85.5
CmaxUGT [μM] 2.22 0.290 0.0113 0.0812 0.0693
AUCUGT/AUCKCZ- [%] 100 100 100 208 62.4
CmaxUGT/CmaxKCZ- [%] 100 100 100 165 53.7

AUC and Cmax values for solo administration of irinotecan (AUCKCZ-, CmaxKCZ-), co-administration of irinotecan and ketoconazole (AUCKCZ+, 
CmaxKCZ+), and sole administration of irinotecan with patients having UGT1A1*28/*28 (AUCUGT, CmaxUGT) were obtained.

Overview of the prototype systemFigure 7
Overview of the prototype system. User interface (UI), inference program, and visualization program were implemented 
in Prolog and JAVA. The ontology (DIO) was divided into three OWL files. 1) Class hierarchy and commonly used instances 
are stored in dio_event.owl. 2) Instances about irinotecan and its pathway are stored in dio_cpt-11.owl. 3) Instances about 
ketoconazole and its pathway are stored in dio_KCZ.owl.
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The inference programs of the Pathway Object Construc-
tor and Drug Interaction Detector were implemented with
SWI-Prolog [43] and the Semweb library. The Semweb
library enables the system to access OWL and RDF files as
Prolog clauses. All logical inferences, including pathway
generation and drug interaction detection, were imple-
mented in Prolog.

Systems for simulation model generation, and pathway
visualization were implemented in JAVA. These systems
access DIO through SWI-Prolog semweb library to get
detailed information of the generated pathways. The sim-
ulation models were generated in the form of SBML, then
translated in the form of Octave. Graphviz [44], a graph
visualization program designed by Gansner et al., was
used to visualize pathways generated by the inference pro-
grams. The PPD Viewer designed by Azuma et al. [12] was
used for numerical simulation.

Numerical simulation model for co-administration of 
Irinotecan and Ketoconazole
In order to increase predictive performance, a simplified
pathway was used for the generation of simulation mod-
els from the viewpoint of the trade off between model
complexity and data availability. Reabsorption through
small intestine and reactions concerning albumin were
omitted due to the lack of information. Furthermore,
enzymatic reactions involved metabolism of ketocona-
zole were integrated into a single enzymatic reaction
based on the work of Chien et al. [29].

A simulation model was automatically generated from the
simplified pathway. The organs and tissues were inte-
grated into 8 compartments, i.e. blood (including rapidly

equilibrating tissues: artery, heart, kidneys, lung, and
veins), liver, GI (gastrointestinal consists of large intes-
tine, small intestine, portal vein, and stomach), adipose,
NET (non-eliminating tissue such as skin and muscle), GI
lumen, bile lumen, and urine. Michaelis-Menten equa-
tions were used for all enzymatic reactions. We used a
competitive Michaelis-Menten inhibition model for this
simulation as used for midazolam and ketoconazole inhi-
bition by Chien et al. [29]. For drugs and their metabolites
in blood, adipose, NET, GI, and liver, the following equa-
tions apply:
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Table 2: The major properties of molecular event objects in OWL-DL.

Properties Domain (class) Range (class)

oboRel:relationship Process, Continuant Process, Continuant

-oboRel:located in independent_entities Independent_entities, fma:Anatomical_cavity

-oboRel:has_participant Process Independent_entities

-- hasResultantParticipant Process Independent_entities

-- hasTriggerParticipant Process Independent_entities

-- hasSituatedParticipant Process Independent_entities

hasSubProcesses Process Process

occurred_in Process Independent_entities, fma:Anatomical_cavity

The relations among molecular events, attributes (continuants) and drug interactions shown in Figure 2 were implemented as OWL properties. We 
defined five properties for implementing molecular event objects in OWL-DL in addition to the properties of OBO Relation ontology. Three 
properties for resultant, trigger, and situated participants were defined as sub properties of oboRel:has_participant, inheriting the definition of the 
super property. Note that classes for Domain and Range of properties are denoted by the controlled vocabulary defined in Figure 3.
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Here Qpn, and Vn (n = 1 to 5) are blood flows and volume
of compartments, respectively. The subscripts n stands for
compartments: n = 1, 2, 3, 4 and 5 represents blood, liver,
GI, adipose, and NET, respectively. Kpns, and Cns (n = 1 to
5, s = D, I, KCZ, IM, APC, NPC, SN-38, and SN-38G) are
tissue-to-blood concentration ratios, and blood concen-
trations, respectively. The subscripts s stands for drugs and
their metabolites: s = D, I, KCZ, IM, APC, NPC, SN-38, and
SN-38G represents drugs and metabolites, irinotecan,
ketoconazole, metabolites of irinotecan, APC, NPC, SN-
38, and SN-38, respectively. CLu,r,s CLu,b,s, and fBs (s = D, I,
KCZ, IM, APC, NPC, SN-38, and SN-38G) are renal clear-
ance for unbound drugs, bile clearance for unbound
drugs, and blood unbound fraction, respectively. kaKCZ
and XKCZ;GILumen are absorption rate constant of ketocona-
zole and amount of ketoconazole in the GI luminal com-
partment, where ketoconazole is absorbed. V maxm, kmm,
and αm (m = a, b, c, d, e, and f) are Vmax, Michaelis con-
stant, and expression amount of enzyme, respectively. The
subscripts m stands for enzymatic reactions: m = a, b, c, d,
e, and f represents metabolism of irinotecan to form SN-
38 by CE, metabolism of NPC to form SN-38 by CE, oxi-
dation of irinotecan to form APC by CYP3A4, oxidation of
irinotecan to form NPC by CYP3A4, glucronidation of
SN-38 to form SN-38G by UGT1A1, and metabolism of
ketoconazole by CYP3A4, respectively. KiAPC and KiNPC are
inhibition constants. During the drip infusion of irinote-
can, the following equation apply for blood concentra-
tion of irinotecan.

Here k0I is a constant for the velocity of drip infusion.

The values of physiologic parameters, kinetic parameters,
and inhibition constants and administration parameters
for the simulation model are shown in Table 3, 4, 5 and 6
respectively. The values of these parameters were based on
published papers except enzyme expression parameters
(α) and tissue-to-blood concentration ratios (Kp). The
values for α and Kp were obtained by fitting the simula-
tion result to the experimental data published by Slatter et
al. [18].
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Table 6: Parameters for drug interactions and drug 
administrations.

Parameters Values

KiAPC 1.40 * 10-3

KiNPC 5.94 * 10-4

kaKCZ [min-1] 1.83 * 10-2

doseIrinotecan [nmol/kg] 4.86 * 103

tdose,Irinotecan [min] 90
doseKCZ [nmol/kg] 5.16 * 103

KiAPC and KiNPC were calculated from the experimental data reported 
by Haaz et al. [25,26]. kaKCZ was obtained the from published paper 
[29].

Table 3: Kinetic parameters for the protein binding, tissue distribution, and urinary and biliary excretion of ketoconazole, irinotecan, 
and their metabolites.

Compound fB KpGI KpLiver KpAdipose KpNET CLU,R [mL/min/kg] CLU,B [mL/min/kg]

Irinotecan 0.37 1.00 1.00 10.0 3.00 6.15 10.6

APC 0.37 1.00 1.00 1.50 0.06 1.47 5.45

NPC 0.37 1.00 1.00 6.00 2.00 1.49 14.5

SN-38 0.05 1.00 1.00 2.00 0.70 9.91 103

SN-38G 1.00 1.00 1.00 2.80 0.08 1.44 2.03

KCZ 0.01 1.00 1.00 15.0 1.50 130 -

Blood unbound fraction (fB) values for irinotecan and SN-38 were obtained from the published paper by Oliver et al. [45]. The fB values for NPC 
and APC were assumed to be the same as that of Irinotecan. fB value for SN-38G was assumed to be 1.00. Urinary and biliary clearances (CLU,R, 
CLU,B) were defined for unbound blood concentration. CLU,R and CLU,B values for irinotecan, APC, SN-38, SN-38G were calculated using data from 
the publish paper [18]. Kp values were determined so that the simulation concentration/time profile fits to the experimental data from Slatter et al. 
[18].

Table 4: Kinetic parameters for metabolic enzymes.

Enzyme Substrate Product Km [μM] Vmax [pmol/min/mg protein] α[mg protein/g tissue] Vmax·α/Km [mL/min/g tissue]

Carboxylesterase Irinotecan SN-38 2.30 2.11 128 0.117

Carboxylesterase NPC SN-38 2.30 2.11 128 0.117

CYP3A4 Irinotecan APC 18.4 26.0 73.3 0.104

CYP3A4 Irinotecan NPC 48.2 74.1 11.7 0.0180

UGT1A1 SN-38 SN-38G 3.80 50.8 750 10.0

CYP3A4 KCZ MOK 0.00810 12.5 44.3 68.4

Because of the lack of experimental data, Km and Vmax values for metabolism of NPC to SN-38 by CE were assumed to be the same as those for 
metabolism of irinotecan to SN-38 by CE. Km and Vmax values for other reactions were obtained from the published papers [25–29]. Values of 
unknown parameter α were determined so that the simulation concentration/time profile fit to the experimental data published by Slatter et al. 
[18]. The relatively high fitted value for α in the glucronidation of SN-38 may result from the increase in UGT1A1 expression as drug response. The 
relatively low value for α in the oxidation of irinotecan to NPC by CYP3A4 suggests a competition in this reaction with the oxidation of irinotecan 
to APC by CYP3A4.

Table 5: Physiologic parameters.

Organ Blood flow rate [mL/min/kg] Volume [mL/kg]

Blood 61.1 51.0
Liver 5.79 32.3
GI 13.4 32.1
Adipose 4.45 204
NET 37.4 681

The physiologic parameters were obtained from the work by 
Willmann et al. [30]. These values assumes Caucasian male with body 
weight of 73 kg and height of 176 cm.
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