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A B S T R A C T

Background: Three DNA methylation (DNAm) based algorithms, DNAm PhenoAge acceleration (AgeAccel-
Pheno), DNAm GrimAge acceleration (AgeAccelGrim), and mortality risk score (MRscore), based on methyla-
tion in 513, 1030, and 10 CpGs, respectively, were established to predict health outcomes and mortality. We
aimed to compare and validate the predictive ability of these scores and frailty in relation to mortality in a
population-based cohort from Germany.
Methods: DNA methylation in whole blood was measured by the Infinium Methylation EPIC BeadChip kit
(EPIC, Illumina, San Diego, CA, USA) in two random subsets of the ESTHER cohort study (n = 741 and
n = 1030). AgeAccelPheno, AgeAccelGrim, and a revised MRscore to adapt EPIC, the MRscore with 8 CpGs
(MRscore-8CpGs), were calculated. Frailty was assessed by a frailty index (FI).
Findings: During 17 years of follow-up, 458 deaths were observed. All DNAm algorithms and FI were posi-
tively correlated with each other. AgeAccelPheno, AgeAccelGrim, MRscore, and FI showed independent asso-
ciations with all-cause mortality [hazard ratio (95% CI) per SD increase = 1¢32 (1¢19-1¢46), 1¢47 (1¢32-1¢64),
1¢73 (1¢49-2¢01), and 1¢31 (1¢20-1¢43), respectively]. Harrell’s C-statistic was 0¢710 for a model predicting
mortality by age, sex, and leukocyte composition and increased to 0¢759 in a model including MRscore-
8CpGs and FI. The predictive performance was further improved (Harrell’s C-statistic = 0¢766) when addition-
ally including AgeAccelPheno and AgeAccelGrim into the model.
Interpretation: The combination of a DNA methylation score based on 8 CpGs only and an easy to ascertain
frailty index may strongly enhance mortality prediction beyond age and sex.
Funding: The ESTHER study was funded by grants from the Baden-W€urttemberg state Ministry of Science,
Research and Arts (Stuttgart, Germany), the Federal Ministry of Education and Research (Berlin, Germany),
the Federal Ministry of Family Affairs, Senior Citizens, Women and Youth (Berlin, Germany), and the Saarland
State Ministry of Health, Social Affairs, Women and the Family (Saarbr€ucken, Germany). The work of Xiang-
wei Li was supported by a grant from Fondazione Cariplo (Bando Ricerca Malattie invecchiamento, #2017-
0653).
© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/)
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1. Introduction

Chronological age is a key risk factor for many chronic dis-
eases and conditions which are leading causes of mortality, such
as cardiovascular disease and cancer [1]. However, health status
and mortality may vary strongly among people of the same
chronological age, and complementary measures of “biological
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Research in Context

Evidence before this study

Recently, three DNA methylation based algorithms, DNA meth-
ylation PhenoAge acceleration, DNA methylation GrimAge
acceleration, and mortality risk score were developed and
shown to be strong indicators of age-related conditions and
mortality. However, the predictive ability of the three DNA
methylation algorithms and frailty for mortality has not been
assessed in same study population, and it is therefore unclear
to what extent results on their predictive performance are com-
parable or reflect differences in the assessed study populations.

Added value of this study

The study was conducted in two random subsets of the ESTHER
cohort study (n = 741 and n = 1030) and frailty was assessed by
a frailty index based on percentage of 34 selected deficits. The
three DNA methylation algorithms and the frailty index were
positively correlated and each of themwas independently asso-
ciated with mortality. The combination of the algorithms, in
particular the combination of mortality risk score and frailty
index may enhance the mortality prediction performance.

Implications of all the available evidence

The combination of mortality risk score by itself or in combina-
tion with a simple-to-ascertain frailty indicator could be a use-
ful and economic measure to quantify mortality risk.
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age” could be crucial to accurately describe the health status of
older adults and to evaluate health-promoting interventions.
Over the past decades, various approaches have been developed
to estimate biological age using genetic or non-genetic indica-
tors [2].

Frailty is a common geriatric syndrome characterized by increased
vulnerability [3]. A commonly applied approach to quantify frailty is
calculation of a frailty index (FI) that is defined as the presented pro-
portion of age-related health deficits [4]. FI has been shown to be
strongly associated with aging-related phenotypes [5,6] and mortal-
ity [7,8].

Biological age can also be assessed using epigenetic data. DNA
methylation (DNAm)-based epigenetic clocks have been devel-
oped and shown to be indicators of age-related conditions and
mortality [9,10]. Recently, using multiple methods, three promis-
ing DNAm based algorithms, including mortality risk score
(MRscore) [11] and the second-generation epigenetic clocks,
DNAm phenotypic age (PhenoAge) [12] and DNAm GrimAge
(GrimAge) [13], were derived based on 10, 513, and 1030 CpGs,
respectively. Differences between PhenoAge and GrimAge and
chronological age are commonly being referred to as measures of
epigenetic age acceleration and termed as AgeAccelPheno and
AgeAccelGrim, respectively. AgeAccelPheno, AgeAccelGrim, and
MRscore were shown to be highly correlated with all-cause mor-
tality and cancer-specific mortality across various study popula-
tions [14-16]. However, the predictive performance of the three
DNAm algorithms and mortality has not been evaluated in the
same study population, and it is therefore unclear to what extent
results on their predictive performance are comparable or reflect
differences in the assessed study populations. We therefore aimed
to evaluate and compare individual and joint predictive perfor-
mance with respect to mortality of AgeAccelPheno, AgeAccelGrim,
MRscore, and a FI, in a head-to-head comparison in a large cohort
of older adults from Germany.
2. Methods

2.1. Study population and data collection

Our analyses are based on data from the ESTHER study, a large
population-based cohort study conducted in Germany, whose study
population and design has been described in detail previously
[11,17,18]. Briefly, 9940 participants aged 50-75 years were recruited
by their general practitioners (GPs) during a general health screening
examination between July 2000 and December 2002. The participants
have been followed up every two to three years since then. At recruit-
ment and each follow-up, standardized self-administered question-
naires were used to collect information on sociodemographic
characteristics, lifestyle, and dietary factors. Self-reported smoking
information at baseline was confirmed by serum cotinine measure-
ments and was found to be highly accurate in a subgroup of 1500
study participants [19]. Results of the general health examinations
were documented by the GPs on a standardized form. Blood samples
were collected during the examinations and stored at -80°C for later
testing. The ESTHER study population has been found to be represen-
tative of the German population of the same age (50-75) with respect
to major sociodemographic variables and risk factor profiles [20].

The ESTHER study was approved by the ethics committees of the
medical faculty of the University of Heidelberg and the medical board
of the state of Saarland. Written informed consent was obtained from
each participant.

Two independent subsets were randomly selected from the
ESTHER study population for epigenome-wide DNAm measurements
that were carried out in two different batches. Subsets I and II
included 741 and 1030 randomly selected subjects for whom DNAm
measurements were performed in August 2018 [21] and July 2019,
respectively. It is worth noting that both subsets were independent
of and not overlapping with a subsample of the ESTHER cohort from
which the MR score had been derived in previous research [11].

2.2. Methylation assessment

DNA from whole blood samples obtained at recruitment was
extracted using a salting-out procedure [22]. Genome-wide DNAm
was assessed with the Infinium Methylation EPIC BeadChip kit (EPIC,
Illumina, San Diego, CA, USA) [15,21]. The laboratory work was done
following the manufacturer’s instruction in the Genomics and Proteo-
mics Core Facility at the German Cancer Research Center, Heidelberg,
Germany (DKFZ) as previously described [23]. As reported previously
[11,24], signals of probes with detection P-value>0¢01,>10% missing
values, and probes targeting the X and Y chromosomes were
excluded.

2.3. Calculation of DNAm aging algorithms

The second-generation DNAm aging algorithms PhenoAge and
GrimAge have been constructed by regressing a surrogate measure of
biological age on a set of CpGs using a penalized regression analyses,
such as elastic net regression [25]. The residual from the regression
of DNAm algorithms on chronological age is age acceleration (Age
Acc) [9]. Thus, a positive value of Age Acc indicates an accelerated
aging and risk of mortality. The age acceleration of PhenoAge and
GrimAge were calculated and were denoted AgeAccelPheno and
AgeAccelGrim, respectively. The calculation was done using the
online tool available at https://dnamage.genetics.ucla.edu/.

The original continuous MRscore (MRscore) was computed using
ten CpGs from the Infinium HumanMethylation450K BeadChip Assay
(450K, Illumina.Inc, San Diego, CA, USA) [11]. However, two
(cg01612140 and cg 23665802) of the ten CpGs were not included in
the EPIC array. We therefore adopted a new equation by regressing
the remaining eight CpGs on the original MRscore in a third subset of
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111 ESTHER study participants (independent of and not overlapping
with the subsets MRscore was derived from) whose DNAm had been
assessed by both 450K and EPIC array, and used the result to derive
the original MRscore by the following equation:

MRscore � 8CpGs ¼ �0 ¢36909 � 1 ¢09957� cg01612140� 1 ¢65446� cg05575921þ 3 ¢
12883 � cg08362785� 0 ¢22268 � cg10321156� 0 ¢30369 � cg14975410� 0 ¢31940�
cg19572487� 3 ¢39726� cg24704287� 1 ¢93238� cg25983901

The Spearman correlation coefficients of MRscore and MRscore-
8CpGs in this subset are presented in Supplementary (Suppl.) Table 1.
2.4. Frailty index

The baseline FI was calculated as the percentage of deficits pre-
sented divided by 34 selected variables of deficits, as previously
described by Saum et al. [7]. The included deficits included indicators
of general health, diseases, symptoms, difficulties in activities of daily
living, and instrumental activities of daily living [Suppl. Table 2].
Missing values (< 5% for all variables) were estimated by multiple
imputation using the SAS procedure PROC MI. Age, sex, and the 34
selected deficits for construction of the FI were included in the impu-
tation procedure. Scaled variables were dichotomized for each scale
level and then the imputed values were rounded to each correspond-
ing nearest level. Regression results for FI were based on 20 imputa-
tions and combined by the SAS procedure MIANALYZE.
Table 1
Characteristics of study population from ESTHER study

Characteristics Subset I (n=741) Subset II (n=1030) P-value a

Age (years; mean § SD) 61¢7§6¢6 62¢0§6¢7 0¢24
2.5. Mortality ascertainment

The vital status of the subjects was followed up through record
linkage with population registries until December 31, 2018. The com-
pleteness of follow-up for all-cause mortality was 99¢9%. Further-
more, death certificates were obtained from local health authorities
for 97¢7% of participants and were utilized to define mortality from
cardiovascular diseases (CVDs, ICD-10 codes I00�I99) and cancers
(ICD-10 codes C00�C97 and D37�D48), respectively.
Sex (N/%)
Men 326 (44¢0) 452 (43¢9) 0¢96
Women 415 (56¢0) 578 (56¢1)
Educational levels (N/%) b

Low (�9 years) 532 (74¢0) 770 (76¢5) 0¢36
Intermediate (10-11 years) 112 (15¢6) 133 (13¢2)
High (�12 years) 75 (10¢4) 103 (10¢2)
Body mass index (N/%) c

Underweight (<18¢5 kg/m2) 4 (0¢5) 5 (0¢5) 0¢98
Normal weight (18¢5-<25¢0
kg/m2)

191 (25¢8) 269 (26¢2)

Overweight (25¢0-<30¢0 kg/
m2)

350 (47¢3) 489 (47¢7)

Obesity (�30¢0 kg/m2) 195 (26¢4) 263 (25¢6)
Smoking status (N/%) d

Never smoker 353 (49¢2) 526 (52¢2) 0¢38
Former smoker 235 (32¢7) 320 (31¢8)
Current smoker 130 (18¢1) 162 (16¢1)
Alcohol consumption
(grams per day)

9¢3§12¢7 9¢8§12¢9 0¢41

AgeAccelPheno (mean §
SD)

-0¢41§5¢70 -0¢02§5¢78 0¢17

AgeAccelGrim (mean § SD) -0¢55§4¢55 0¢01§4¢75 0¢01
MRscore-8CpGs (mean §
SD)

-2¢44§0¢45 -2¢47§0¢46 0¢18

Frailty index (%; mean §
SD)

24§14 23§14 0¢19

Abbreviations: SD, standard deviation; AgeAccelPheno, DNA methylation phenotypic
age acceleration; AgeAccelGrim, DNA methylation GrimAge acceleration; MRscore-
8CpGs, revised version of continuous mortality risk score with 8 CpGs.

a Chi-square test for categorical variables and analysis of variance for continuous
variables.

b Data missing for 46 participants.
c Data missing for 5 participants.
d Data missing for 45 participants.
2.6. Statistical analysis

Correlations among MRscore-8CpGs, AgeAccelPheno and AgeAc-
celGrim, FI, and chronological age were assessed using Spearman cor-
relation coefficients and were illustrated in a correlation matrix plot.

Associations of DNAm algorithms and FI with all-cause and cause-
specific mortality were estimated using Cox proportional hazard
models firstly adjusting for age, sex, batches (not for FI), and leuko-
cyte composition [not for FI, estimated by the Houseman approach
[26], model one], and additionally controlling for smoking status and
alcohol consumption (Model two). Hazard ratios (HRs) and corre-
sponding 95% confidence intervals (95% CIs) were calculated in sub-
set I and II, separately. To assess the individual and joint predictive
accuracy of age, sex, leukocyte composition, smoking, the DNAm
algorithms, and FI for mortality, Harrell’s C-statistics [27], a widely
used approach to assess the predictive performance of the ensemble,
were calculated. Harrell’s C-statistics range from 0¢5 to 1¢0. The value
of 0¢5 corresponds to a non-informative prediction rule and 1¢0 for a
perfect association [27]. Time-dependent areas under the curve
(AUCs) were additionally calculated in subset I and II. Because the
DNAm profiles in the two subsets were assessed in different time
periods (August 2018 for subset I and July 2019 for subset II) using
different batches of DNAm assessment chips, the results from the
two subsets were presented both separately and combined using fix-
ed�effects meta�analysis. For all Cox models, the proportional haz-
ards assumption was checked by scaled Schoenfeld residuals [28].

All analyses were performed using SAS, version 9¢4 (SAS Institute,
Inc., Cary, NC). Statistical significance was defined by P-values < 0¢05
in two-sided testing.
2.7. Role of funding source

All funders did not have any role in study design, data collection,
data analyses, interpretation, writing of report, or decision to publish
the study.

3. Results

3.1. Study population

Baseline characteristics of the two subsets are presented in
Table 1. The mean (standard deviation, SD) age of the participants
was 61¢7 (6¢6) years and 62¢0 (6¢7) years in subset I and subset II,
respectively. The sex composition (56% women), education level (10%
with �12 years of school education) and body mass index levels
(>70% overweight or obese) were similar in both subsets (P values
0¢96, 0¢36, and 0¢98, respectively). The levels of AgeAccelPheno,
MRscore-8CpGs, and FI were likewise comparable in the two subsets
(P values 0¢17, 0¢18, and 0¢19, respectively). However, the levels of
AgeAccelGrim were higher in subset II than in subset I (P = 0¢01).

3.2. Correlations of the DNAm algorithms, age, and FI

Figure 1 presents the Spearman correlation matrix of the DNAm
algorithms, baseline age, and baseline FI in all participants from both
subsets. AgeAccelPheno, AgeAccelGrim, and MRscore-8CpGs were
significantly correlated with each other, with correlation coefficients
ranging from 0¢34 to 0¢53. We also observed a significant correlation
of age with MRscore-8CpGs (r = 0¢18, P < 0¢001) and FI (r = 0¢18, P <

0¢001). Moreover, the correlations between FI and the three DNAm



Figure 1. Correlation matrix of DNAm algorithms and frailty. Results frommeta-analyses of both subsets.
Abbreviations: AgeAccelPheno, DNA methylation phenotypic age acceleration; AgeAccelGrim, DNA methylation GrimAge acceleration; MRscore-8CpGs, revised version of con-

tinuous mortality risk score with 8 CpGs; FI, frailty index.
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algorithms were weak but statistically significant; the Spearman cor-
relation coefficients were 0¢08, 0¢10, and 0¢12 for AgeAccelPheno,
AgeAccelGrim, and MRscore-8CpGs, respectively. Correlations were
similar in subset I and subset II (Suppl. Figure 1 and Suppl. Figure 2).

3.3. Associations of DNAm algorithms and FI with mortality

During 17 years of follow-up, 194 and 264 deaths were observed
in subset I and II, respectively. Table 2 shows the associations of
DNAm algorithms and FI with all-cause mortality and cause-specific
mortality. In the meta-analysis of the two subsets, HRs (95% CIs) of
all-cause mortality were 1¢32 (1¢19-1¢46), 1¢47 (1¢32-1¢64), 1.73
(1¢49-2¢01), and 1¢31 (1¢20-1¢43) per one SD increase of AgeAccel-
Pheno, AgeAccelGrim, MRscore-8CpGs, and FI, respectively. A one SD
increase of AgeAccelPheno, AgeAccelGrim, and MRscore-8CpGs was
significantly associated with 21%, 33%, and 76% increased cancer-spe-
cific mortality (P values 5¢33E-07, 9¢57E-07, and 4¢00E-10, respec-
tively), respectively. Furthermore, strong, statistically significant
associations were observed for CVD-specific mortality, with HRs of
1¢46, 1¢39, 1¢89, and 1¢49 per SD increase in AgeAccelPheno, AgeAc-
celGrim, MRscore-8CpGs, and FI (P values 4¢65E-07, 1¢40E-05, 1¢78E-
15, and 1¢08E-05, respectively), respectively. When including all
DNAm algorithms and FI into the model (Table 3), all associations
with all-cause mortality were observably attenuated but remained
statistically significant, indicating that all scores were partially inde-
pendently associated with all-cause mortality. Cox-proportional haz-
ard model assumption was checked using Schoenfeld residual test
(local and global test) and all variables showed P values> 0¢10, which
fulfilled the assumption.

3.4. Predictive performance of FI and DNAm algorithms for all-cause
mortality

Table 4 presents the performance of various combinations of
markers in predicting all-cause mortality. In meta-analysis, Harrell’s
C-statistic (95% CI) was 0¢710 (0¢681-0¢738) for a model including
age, sex, and leukocyte composition. The predictive performance was
improved after adding smoking, DNAm algorithms, or FI. C-statistics
(95% CIs) were 0¢736 (0¢709-0¢762), 0¢723 (0¢695-0¢750), 0¢751
(0¢725-0¢777), 0¢750 (0¢724-0¢776), and 0¢724 (0¢696-0¢752) for
models adding smoking, AgeAccelPheno, AgeAccelGrim, MRscore-
8CpGs and FI, respectively. The predictive performance was further
improved by including each DNAm algorithm and FI (C-statistic was
0¢735, 0¢758, and 0¢759 for the combination of FI with



Table 2
Associations of DNAm algorithms and frailty index with mortality

Mortality Subset I (n=741) HR (95% CI) Subset II (n=1030) HR (95% CI) Overall (n=1771, meta-analysis) HR (95% CI)

Cases Model 1 Model 2 Cases Model 1 Model 2 Cases Model 1 Model 2

All-cause
AgeAccelPheno (per SD) 194 1¢39 (1¢20-1¢62) 1¢35 (1¢16-1¢57) 264 1¢37 (1¢20-1¢56) 1¢29 (1¢13-1¢48) 458 1¢38 (1¢25-1¢52) 1¢32 (1¢19-1¢46)
AgeAccelGrim (per SD) 194 1¢50 (1¢31-1¢73) 1¢39 (1¢18-1¢63) 264 1¢68 (1¢48-1¢91) 1¢56 (1¢34-1¢81) 458 1¢60 (1¢46-1¢75) 1¢47 (1¢32-1¢64)
MRscore-8CpGs (per SD) 194 1¢87 (1¢55-2¢26) 1¢65 (1¢33-2¢04) 264 1¢99 (1¢68-2¢36) 1¢82 (1¢47-2¢24) 458 1¢94 (1¢71-2¢20) 1¢73 (1¢49-2¢01)
FI (%; per SD) 194 1¢37 (1¢20-1¢56) 1¢35 (1¢18-1¢55) 264 1¢32 (1¢18-1¢48) 1¢28 (1¢14-1¢44) 458 1¢34 (1¢23-1¢46) 1¢31 (1¢20-1¢43)
Cancer
AgeAccelPheno (per SD) 60 1¢38 (1¢04-1¢85) 1¢36 (1¢02-1¢81) 78 1¢18 (0¢93-1¢51) 1¢11 (0¢87-1¢42) 138 1¢26 (1¢05-1¢52) 1¢21 (1.00-1¢46)
AgeAccelGrim (per SD) 60 1¢56 (1¢23-1¢99) 1¢32 (0¢95-1¢83) 78 1¢49 (1¢18-1¢89) 1¢34 (1¢01-1¢78) 138 1¢52 (1¢29-1¢80) 1¢33 (1¢08-1¢65)
MRscore-8CpGs (per SD) 60 2¢29 (1¢65-3¢19) 1¢79 (1¢21-2¢65) 78 1¢88 (1¢38-2¢58) 1¢72 (1¢17-2¢53) 138 2¢07 (1¢65-2¢59) 1¢76 (1¢33-2¢31)
FI (%; per SD) 60 1¢36 (1¢07-1¢73) 1¢29 (1.00-1¢66) 78 0¢99 (0¢79-1¢25) 0¢98 (0¢77-1¢24) 138 1¢16 (0¢98-1¢37) 1¢11 (0¢94-1¢32)
CVD
AgeAccelPheno (per SD) 53 1¢37 (1¢03-1¢83) 1¢31 (0¢98-1¢77) 80 1¢62 (1¢28-2¢06) 1¢57 (1¢23-2¢01) 133 1¢51 (1¢26-1¢82) 1¢46 (1¢21-1¢77)
AgeAccelGrim (per SD) 53 1¢20 (0¢91-1¢57) 1¢09 (0¢81-1¢47) 80 1¢76 (1¢39-2¢23) 1¢75 (1¢31-2¢33) 133 1¢49 (1¢24-1¢78) 1¢39 (1¢13-1¢71)
MRscore-8CpGs (per SD) 53 1¢71 (1¢18-2¢48) 1¢65 (1¢09-2¢48) 80 2¢09 (1¢53-2¢86) 2¢12 (1¢45-3¢12) 133 1¢93 (1¢52-2¢45) 1¢89 (1¢42-2¢50)
FI (%; per SD) 53 1¢49 (1¢16-1¢91) 1¢47 (1¢14-1¢90) 80 1¢53 (1¢24-1¢89) 1¢51 (1¢22-1¢88) 133 1¢51 (1¢29-1¢78) 1¢49 (1¢27-1¢76)

Abbreviations: HR, hazard ratio; CI, confidence interval; SD, standard deviation; AgeAccelPheno, DNA methylation phenotypic age acceleration; AgeAccelGrim, DNA meth-
ylation GrimAge acceleration; MRscore-8CpGs, revised version of continuous mortality risk score with 8 CpGs; FI, frailty index; CVD, cardiovascular disease.
Model 1, adjusted for age, sex, leukocyte composition (not for FI), and batch (not for FI).
Model 2, similar as model 1, additionally adjusted for smoking status (never smoker, former smoker, current smoker), and alcohol consumption (grams per day).

Table 3
Associations of DNAm algorithms and frailty index with all-cause mortality after mutual control for each other

Predictor Subset I (n=741) Subset II (n=1030) Overall (n=1771, meta-analysis)

Cases HR (95% CI) a Cases HR (95% CI) a Cases HR (95% CI) a

AgeAccelPheno (per SD) 194 1¢18 (1¢01-1¢39) 264 1¢10 (0¢95-1¢27) 458 1¢14 (1¢02-1¢26)
AgeAccelGrim (per SD) 194 1¢18 (0¢97-1¢42) 264 1¢34 (1¢12-1¢59) 458 1¢26 (1¢11-1¢43)
MRscore-8CpGs (per SD) 194 1¢38 (1¢08-1¢78) 264 1¢43 (1¢12-1¢82) 458 1¢41 (1¢18-1¢67)
FI (%; per SD) 194 1¢32 (1¢15-1¢51) 264 1¢22 (1¢09-1¢38) 458 1¢26 (1¢16-1¢38)

Abbreviations: FI, frailty index; HR, hazard ratio; CI, confidence interval; SD, standard deviation; AgeAccelPheno, DNA methyl-
ation phenotypic age acceleration; AgeAccelGrim, DNA methylation GrimAge acceleration; MRscore-8CpGs, revised version of
continuous mortality risk score with 8 CpGs.

a adjusted for age, sex, leukocyte composition (not for FI), batch (not for FI), smoking status (never smoker, former smoker,
current smoker), and alcohol consumption (grams per day); results for AgeAccelPheno additionally adjusted for MRscore-
8CpGs, AgeAccelGrim and frailty index; results for AgeAccelGrim additionally adjusted for MRscore-8CpGs, AgeAccelPheno
and frailty index; results for MRscore-8CpGs additionally adjusted for AgeAccelPheno, AgeAccelGrim and frailty index; results
for frailty index additionally adjusted for MRscore-8CpGs, AgeAccelPheno and AgeAccelGrim.

Table 4
Harrell's C-statistics of chronological age, DNAm algorithms, and frailty index in prediction of all-cause mortality

Predictors Overall (meta-analysis) Harrell's C statistics (95% CI)

Age+sex+LC Smoking AgeAccelPheno AgeAccelGrim MRscore-8CpGs FI (%) Subset I Subset II Overall (meta-analysis)

x 0¢721 (0¢661-0¢780) 0¢706 (0¢674-0¢739) 0¢710 (0¢681-0¢738)
x x 0¢752 (0¢698-0¢806) 0¢731 (0¢701-0¢760) 0¢736 (0¢709-0¢762)
x x 0¢727 (0¢668-0¢786) 0¢721 (0¢690-0¢753) 0¢723 (0¢695-0¢750)
x x 0¢756 (0¢700-0¢812) 0¢749 (0¢720-0¢778) 0¢751 (0¢725-0¢777)
x x 0¢760 (0¢707-0¢812) 0¢746 (0¢717-0¢776) 0¢750 (0¢724-0¢776)
x a x 0¢741 (0¢683-0¢799) 0¢719 (0¢687-0¢751) 0¢724 (0¢696-0¢752)
x x x 0¢749 (0¢692-0¢806) 0¢732 (0¢701-0¢762) 0¢735 (0¢708-0¢762)
x x x 0¢769 (0¢717-0¢821) 0¢756 (0¢727-0¢785) 0¢758 (0¢734-0¢784)
x x x 0¢772 (0¢722-0¢822) 0¢753 (0¢723-0¢782) 0¢759 (0¢732-0¢783)
x x x 0¢760 (0¢708-0¢813) 0¢749 (0¢719-0¢779) 0¢752 (0¢726-0¢778)
x x x 0¢768 (0¢715-0¢822) 0¢757 (0¢728-0¢786) 0¢759 (0¢734-0¢785)
x x x x x 0¢776 (0¢724-0¢828) 0¢763 (0¢734-0¢792) 0¢766 (0¢741-0¢791)

Abbreviations: CI, confidence interval; LC, leukocyte composition; AgeAccelPheno, DNA methylation phenotypic age acceleration; AgeAccelGrim, DNA methylation GrimAge
acceleration; MRscore-8CpGs, revised version of continuous mortality risk score with 8 CpGs; FI, frailty index.

a Models did not include leukocyte composition.
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AgeAccelPheno, AgeAccelGrim, and MRscore-8CpGs, respectively) or
MRscore-8CpGs (C-statistic was 0¢752 and 0¢759 for the combination
of MRscore-8CpGs with AgeAccelPheno and AgeAccelGrim, respec-
tively). For the model with all predictors, C-statistic reached a maxi-
mum of 0¢766 (95% CI 0¢741-0¢791). When using these markers to
predict cancer mortality (Suppl. Table 3) and CVD mortality (Suppl.
Table 4), similar patterns were observed, but overall predictive
performance was lower for cancer mortality and higher for CVD-spe-
cific mortality. For cancer mortality, C-statistics were 0¢737 (95% CI
0¢693-0¢781) and 0¢742 (95% CI 0¢698-0¢0.787) for the joint inclusion
of MRscore-8CpGs and FI, and of all predictors, respectively. For CVD
mortality, C-statistics were 0¢820 (95% CI 0¢787-0¢853) for the joint
inclusion of MRscore-8CpGs and FI, and 0¢828 (95% CI 0¢794-0¢862)
for the combination of all predictors (Suppl. Table 3). Consistent
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patterns were also demonstrated when estimating time-dependent
AUCs (Suppl. Figure 3).

4. Discussion

In this study, we evaluated and compared three recently proposed
aging DNAm algorithms and a FI in relation to prediction of mortality
in a cohort of older adults. The three DNAm algorithms and the FI
were positively correlated with each other and each of them was
independently associated with all-cause and cause-specific mortality.
The combination of all algorithms and the combination of MRscore-
8CpGs and FI substantially enhanced the mortality prediction perfor-
mance.

Whereas the first-generation epigenetic clocks were assessed
solely by chronological age as the reference, PhenoAge and GrimAge
were designed to better capture biological aging [9,12,13,29]. Given
that AgeAccelPheno and AgeAccelGrim are reflecting differences of
estimated biological age and chronological age, their lack of correla-
tion with chronological age in our study was predictable. Moreover,
AgeAccelPheno and AgeAccelGrim were observed to be weakly corre-
lated with FI.

In a previous study from the Lothian Birth Cohort 1936, higher
DNAm GrimAge was associated with lower cognitive ability and brain
vascular lesions in older age [30]. Previous studies also reported that
higher GrimAge and PhenoAge values were associated with an
increase in physical function deficits [12,13] and were correlated
with poorer fitness, such as diminished grip strength and cardio-pul-
monary function [31,32] . Frailty is a consequence of a cumulative
decline in many physiological systems and frail individuals are char-
acterized by increased vulnerability to age-related disorders [33].
The observed correlations of AgeAccelPheno and AgeAccelGrim with
FI in the current study may reflect declines in multiple physiological
systems beyond “normal aging”. Somewhat stronger correlations
with frailty were observed for MRscore-8CpGs which is additionally
correlated with chronological age.

Previous studies have also assessed associations of aging DNAm
algorithms with specific aging related biomarkers. AgeAccelGrim was
found to be strongly associated with increased levels of plasma C-
reactive protein [13], whose production is stimulated by interleukin-
6 (IL-6). C-reactive protein and IL-6 are biomarkers of susceptibility
to frailty, disability, morbidity, and mortality at older ages [34,35].

Our findings of the associations of AgeAccelPheno, AgeAccelGrim,
and MRscore-8CpGs with all-cause and cause-specific mortality are
consistent with results from other recent studies [14,36,37]. Wang et.
al. conducted a study in two independent cohorts and also reported
strong associations of AgeAccelGrim and MRscore-8CpGs with all-
cause mortality 35. The second-generation clocks, PhenoAge and
GrimAge, were designed to improve the reported weaker associa-
tions of the first-generation aging clocks with mortality [38,39] and
aimed to predict mortality from aging-related diseases such as
CVD and cancer [12,13]. Derived from DNAm-based surrogates for
seven plasma proteins and smoking pack-years, AgeAccelGrim
was found to show strong associations with all-cause and cause-
specific mortality by various studies [13,40]. Another finding from
our study is all algorithms are associated with all-cause mortality
even when including all of them into the model. The associations
suggest all scores were independently associated with all-cause
mortality and all have specific pathways for all-cause mortality.
In the future, more studies aimed to explore these specific path-
ways are needed.

Our study also highlighted the capacity of MRscore-8CpGs in the
prediction of all-cause mortality beyond established DNAm aging
markers and FI. A study conducted in US Normative Aging Study [14]
also reported a similar conclusion that MRscore was a stronger pre-
dictor of mortality than established aging clocks. MRscore is a linear
combination of 10 CpGs selected by least absolute shrinkage and
LASSO regression and has been demonstrated to be a robust predictor
for all-cause and CVD mortality [11,35]. Although methylation of sev-
eral of the CpGs included in MRscore is strongly related to smoking.
[41], strong associations with mortality persisted in our study even
after adjustment for smoking. The predictive ability of the MRscore
therefore goes far beyond its relationship with smoking.

One primary aim of developing DNAm biomarkers is finding an
accurate, simple, and feasible method to predict mortality or lifespan.
In that respect, MRscore, requiring methylation quantification at a
much lower number of CpGs, by itself or in combination with some
easy-to-determine frailty measure, such as FI, has potential capacity
to be a practical and economic indicator for mortality risk stratifica-
tion. However, potential additional costs including the assessment of
leukocyte composition need to be kept in mind. Such mortality risk
prediction might serve several purposes. One obvious purpose could
be identification of elderly people at higher risks of death and dis-
eases who are in particular need of targeted intervention or earlier
medical care. Another important application could be use of DNAm
algorithms such as MRscore as early indicators of effectiveness of
specific interventions which could be most valuable both in interven-
tion research as well as in routine medical practice. However, as with
other risk markers, individual risk assessment should be done with
due caution, given that risk assessment remains far from perfect.

There are several limitations of this study that need to be kept
in mind. First, the cross-sectional approach precludes drawing
conclusions on temporal and potentially causal directions of the
correlations between methylation algorithms and frailty.
Although the temporal direction of associations with the mortal-
ity outcomes is self-evident, it remains to be established to what
extent the DNAm algorithms are mere indicators of mortality
risks or DNA methylation changes might also be causally related
to increased mortality. Second, the original MRscore had been
derived from an epigenome-wide screening for mortality-related
DNAm using the Infinium HumanMethylation450K BeadChip
Assay and included ten CpGs. Because two of the ten CpGs are
missing in the EPIC microarray data, only a proxy of the original
MRscore, predicted by eight CpGs could be used in our analyses.
One of the two missing CpGs (cg06126421) was one of the top
hits related to smoking in previous EWAS from various study
populations [42,43] and was found to be highly predictive of lung
cancer risk (odds ratio per 1 SD lower value: 2¢11) [44]. Although
MRscore and MRscore-8CpGs were very highly correlated, their
predictive performance for mortality might slightly differ. Third,
as MRscore was initially derived from the ESTHER cohort (albeit
from a different subset of the cohort), the capacity of MRscore in
predicting mortality might be lower in different cohorts, and the
comparison of predictive performance of the three methylation
scores might be slightly biased in favor of the MRscore in our
study. More independent cohorts are therefore essential to vali-
date the findings in our study. However, our results are consis-
tent with findings of comparative analyses of various scores from
other independent cohorts including two conducted in United
States [14,36] and one in Germany [11]. Fourth, the current anal-
ysis was based on a population based cohort study that enrolled
participants 50-75 years of age in Germany. The findings need to
be validated in further independent studies, including studies
from other countries, studies in different age groups and studies
in population with different risk factor profiles.

In conclusion, all DNAm algorithms and the FI were positively
correlated with each other, and all of them, were independently
associated with all-cause and cause-specific mortality. The
MRscore-8CpGs by itself or in combination with a simple-to-
ascertain FI could be a particularly useful and economic measure
to quantify mortality risk. Further research should aim for evalu-
ating its use in both observational and interventional aging
research and clinical practice.
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