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Abstract

Bile salt-stimulated lipase (BSSL) is a lipolytic digestive enzyme with broad substrate speci-

ficity secreted from exocrine pancreas into the intestinal lumen in all species and from the

lactating mammary gland into the milk of some species, notably humans but not cows.

BSSL in breast milk facilitates digestion and absorption of milk fat and promotes growth

of small for gestational age preterm infants. Thus, purified recombinant human BSSL

(rhBSSL) can be used for treatment of patients with fat malabsorption and expressing

rhBSSL in the milk of transgenic cloned cows would therefore be a mean to meet a medical

need. In the present study, a vector pBAC-hLF-hBSSL was constructed, which efficiently

expressed active rhBSSL in milk of transgenic cloned cows to a concentration of 9.8 mg/ml.

The rhBSSL purified from cow milk had the same enzymatic activity, N-terminal amino acid

sequence, amino acid composition and isoelectric point and similar physicochemical char-

acteristics as human native BSSL. Our study supports the use of transgenic cattle for the

cost-competitive, large-scale production of therapeutic rhBSSL.

Introduction

Bile salt-stimulated lipase (BSSL)[1], which is also known as carboxyl ester lipase (CEL), bile

salt-dependent lipase (BSDL) or carboxyl ester hydrolase (CEH), is secreted from the exocrine

pancreas into the intestinal lumen in all species examined to date[2, 3]. It is also secreted by

the mammary gland in some species, such as humans[4], but not cows or goats[5].

BSSL has broad substrate specificity with the capacity to hydrolyze tri-, di-, and mono-glyc-

erides; cholesteryl- and retinyl-esters; fat-soluble vitamin esters; phospholipids; and ceramides

[6–9]. Human milk BSSL was first described as a lipase, that when activated by primary bile

salts in the duodenum contributes to efficient digestion of the milk fat. Studies in vitro[10] and

in rodents[11] showed that BSSL and pancreatic lipase-related protein (PLRP)-2 are the two

key lipases in intestinal fat digestion. In newborn infants, in particular preterm infants,
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exocrine pancreas is not fully developed[12], which suggested milk BSSL to be an important

source of BSSL explaining the efficient fat digestion and absorption from human milk. BSSL is

completely inactivated by pasteurization[13], which is regularly used in human milk banks

and when preterm infants are fed donor milk. When preterm infants were fed pasteurized

human milk fat absorption as well as weight gain are reduced as compared to when fed raw

human milk[14, 15]. BSSL is also absent from infant formulas. Therefore, recombinant human

BSSL (rhBSSL) was developed as an oral therapeutic strategy to improve lipid absorption and

growth in non-breastfed preterm infants. Animal models had shown that rhBSSL expression

in the milk of mice improved survival and growth status of preterm mice[16], and that purified

human milk BSSL supplemented in formula, compared with formula alone, doubled the

growth rate of kittens [17] and also that BSSL deficiency in milk caused incomplete digestion

of the milk triglycerides resulting in lipid accumulation and consequent intestinal damage in

neonatal mice[18]. Therefore it was not surprising that a phase II clinical trial in preterm

infants showed promising results, i.e., that adding rhBSSL to infant formula or pasteurized

breast milk significantly improved growth velocity and absorption of long-chain polyunsatu-

rated fatty acid (LCPUFA) absorption [19]. However, surprisingly a recent large multicenter

phase III clinical trial in preterm infants confirmed the positive effect on weight gain only in a

subgroup of small for gestational age (SGA) infants[20] but not the entire study group of pre-

term infants. This however does not exclude a role of rhBSSL for treatment of fat malabsorp-

tion for pathological reasons. In fact, BSSL should be ideally suited for replacement therapy in

conditions of exocrine pancreatic insufficiency. It is designed for per oral administration;

hence, it is stable at pH above 3 and only slowly inactivated by pepsin[21]. Thus, given with a

meal it will pass through the stomach virtually without inactivation and when mixed with bile

in the duodenum it is not only activated by primary bile salts but bile salts also protect it from

inactivation by the endogenous proteases and, as mentioned it has a broad substrate specificity

[22].

In addition to its role in fat digestion, BSSL may have antimicrobial effects. Human milk

BSSL, which contains α1-2-linked fucose, can act as a decoy receptor and prevent norovirus

attachment to gastroduodenal tissue[23]. Furthermore, the Lewis X epitope on BSSL binds to

dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN)

and prevents the transfer of human immunodeficiency virus (HIV)-1 to cluster of differentia-

tion (CD)4+ T cells[24, 25]. BSSL also inhibits binding of the oral pathogen Streptococcus
mutans to saliva and salivary agglutinin-coated (gp340 glycoprotein) hydroxyapatite[26].

Finally, BSSL is also found in the blood[27], but the origin and role of BSSL in the circulation

is not yet fully understood but it emphasizes that BSSL indeed may have more than one func-

tion. In summary, BSSL plays a positive protective role in the intestine by promoting efficient

digestion of milk fat and most likely by antimicrobial effects.

Here, we provide the first report on producing rhBSSL by transgenic cloned cows. The

expression level reached 9.8 mg/ml. Cows are believed to be ideal bioreactors for high-quality

and high-quantity production of recombinant proteins. When comparing rhBSSL purified

from transgenic milk with native BSSL purified from human milk and rhBSSL expressed by

CHO cells we found no notable differences in physicochemical and other characteristics.

Materials and methods

Ethics statement

The experimental cows were housed in a free stall with free access to drinking water. All the

animal work in this study including the establishment of primary fetal fibroblasts were

approved by the animal ethics committee of State Key Laboratory of Agro-biotechnology
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(license number SKLAB-2016-05-02). All experimental procedures were performed in accor-

dance with the guidelines for the Care and Use of Laboratory Animals of China Agricultural

University. During the dry period, the cows were fed whole-plant corn silage ab libitum. And

during the lactation period, the cows were daily fed 8.0 kg whole-plant corn silage, and 6.0 kg

commercial concentrate consisting of 530 g/kg corn meal, 140 g/kg soybean meal, 70 g/kg cot-

tonseed meal, 40 g/kg rapeseed meal, 120 g/kg distillers dried grains, 10 g/kg limestone, 10 g/

kg CaHPO4, 10 g/kg NaCl, 10 g/kg sodium bicarbonate and 10 g/kg trace mineral and vitamin

premix. All efforts were made to minimise suffering of the animals.

Construction of the hBSSL expression vector pBAC-hLF-hBSSL

Human lactoferrin BAC (hLF BAC) was used as the regulatory element. The human BSSL

BAC library and hLF BAC were prepared, and Neo was used as a selection marker gene. First,

the Neo gene, which is flanked by loxP sites, was electroporated into competent SW102 cells

containing hBSSL BAC for recombination. After transformation, 1 ml of lysogeny broth (LB)

medium was added to each tube, and the tubes incubated for 1.5 h at 30˚C shaking at 220 rpm.

The cells were applied to LB plates containing 50-μg/ml kanamycin. After incubation at 30˚C

for 24 hours, single colonies were selected and identified by polymerase chain reaction (PCR).

The SW102-positive colony included BSSL-Neo BAC. Secondly, the pBR322 vector included

homologous arms against BSSL-Neo-BAC, and HLF BAC was constructed with a pre-designed

restriction enzyme cutting site Not I. Then, it was electroporated into a competent SW102

stain containing BSSL-Neo BAC for recombination. The SW102 strain was applied to LB

plates with 50-μg/ml ampicillin. Using PCR, we selected the SW102 strain including

PBR322-BSSL-Neo. The recombinant pBR322 plasmid was extracted and verified by Asc I

enzyme cutting. Finally, after cutting by Asc I, the linear fragment containing BSSL-Neo was

electroporated into the SW105 strain. Then, it was applied to LB plates with 50-μg/ml kanamy-

cin. Single colonies were selected and identified by PCR. Positive colonies were enriched, and

the recombinant plasmid pBAC-hLF-hBSSL was isolated.

Cell culture and nuclear transfer

The cell culture and nuclear transfer procedures followed previously reported methods[28].

The plasmid pBAC-hLF-hBSSL was linearized with the restriction endonuclease Not I then

purified by NucleoBond bacterial artificial chromosome (BAC) 100 Kit (Macherey-Nagel

GmbH & Co. KG, Düren, Germany). The linearized plasmid DNA fragment was transfected

into embryonic fibroblasts cells, which were isolated from a 46-day-old Holstein cow fetus,

using program T-016 and Amaxa Nucleofector reagent (Lonza Group AG Basel, Switzerland).

48 hours after transfection, cells were dispersed by limiting the dilution to concentration of

300 cells per 10 cm2 dish. Each cell clones were then seeded into a 48-well cell culture plate for

another 48 h. Then they were transferred into a 12-well cell culture plate, and selected part of

them for PCR analysis. According to the Electro Cell Manipulation System (BTX, San Diego,

CA, USA), the nuclear of positive cell colonies were transferred into enucleated oocytes to pro-

duce reconstructed embryos. Future transplantation was performed with Day 7 blastocysts.

Embryo cryopreservation was performed with vitrification method. After freezing/thawing, 35

blastocysts were then transferred into 17 recipient Chinese Luxi yellow cows. Each recipient

was transferred with one or two transgenic cloned blastocysts. Three months and eight months

after transfer, ultrasonography was performed for pregnancy detection. Experiments were per-

formed following relevant guidelines and regulations.
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PCR analysis

PCR was performed to confirm whether the rhBSSL gene was transferred to the transgenic

cloned cows. The primer was BSSL P4. And primers BSSL P5-BSSL P10 were used to deter-

mine the integrity of the gene. Primer Sequences were list at S1 Table.

Southern blot analysis

The plasmid pBAC-hLF-hBSSL and the DNA samples extracted from ear samples from trans-

genic and wild-type (WT) cows were digested overnight with the restriction enzyme Nco I

(R0193S, NEB). The digoxigenin-labeled probe was amplified using the primer pair BSSL P3,

and the probe length was 725 bp. The primers are as follows: F: 5’-ATGTGTTGCTTCTGGTTC
CTTTCCTCC-3’ and R: 5’-CAGCTTTGACTCCGATCCTCAGTTTCC-3’. After agarose gel

electrophoresis for 4 h, the DNA was transferred to a nitrocellulose filter for blotting. The

nitrocellulose membrane was hybridized with a probe for 18 h and incubated with antibody

for 0.5 h. The size of the positive bands was expected to be approximately 3 kb. The reagents

used for the Southern blot analysis were purchased from Roche Diagnostics GmbH (Mann-

heim, Germany).

Quantitative PCR (Q-PCR)

The transgene copy number was identified by Q-PCR. The primer pair BSSL copy5F/R, F:

5’-GCAAACATTTACTGAACCGTAGCA-3’ and R: 5’-AGCAAGCTGGTAAGGCTGACA-3’
amplifies a 120-bp product. Bovine myostatin was chosen as the internal control gene. The

primer pair bovine myostatin F: 5’-TCCGTCCTGGCGTGGTAG-3’ and bovine myostatin R:

5’-GCTATCAGACAACTTTTGCCCAAG-3’ amplifies a 122-bp product. The Q-PCR reaction

system and conditions were as previously reported[28]. All PCRs were performed using a

Roche LightCycler 480 System (LC 480; Roche Diagnostics, Basel, Switzerland).

Collection of transgenic milk

Milk samples were collected by induced lactation from eight-months-old transgenic cows.

They were injected with medroxyprogesterone acetate (25mg/kg/day) and estradiol benzoate

(7.5 mg/kg/day) for seven days. Milk sample were collected for one week from day one of

lactation.

Sodium dodecyl sulfate polyacrylamide gel electrophoresis

(SDS-PAGE) and western blot analysis

For SDS-PAGE, the milk protein samples were separated on 12% Tris-glycine polyacrylamide

gels under denaturing and reducing conditions, and the protein content was quantified with

bicinchoninic acid (BCA) assay. For the western blot analysis, the diluted milk samples were

separated on 10% Tris-glycine polyacrylamide gels under denaturing and reducing conditions

and then transferred to polyvinylidene fluoride (PVDF) membranes (Invitrogen Corporation,

Carlsbad, CA, USA), which were incubated with a polyclonal anti-human hBSSL antibody

(dilution, 1:1,000; Catalog Number sc-34878) and a horseradish peroxidase-conjugated sec-

ondary anti-goat immunoglobulin (Ig)G antibody (dilution, 1:20,000; Sino-American Co., Bei-

jing, China).

Analysis of the rhBSSL expression levels

The rhBSSL expression levels in cow’s milk were measured using in house human BSSL

enzyme-linked immunosorbent assay (ELISA). A monoclonal antibody against human native
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BSSL was placed in a coating plate overnight at 4˚C with a concentration of 8 μg/ml. After the

plate was washed with phosphate-buffered saline with Tween 20 (PBST; PBS, pH 7.4, 0.05%

Tween 20), the plate was blocked with blocking buffer (1% bovine serum albumin[BSA] in

PBST) for 2 hours. The standard samples were a native human BSSL concentration series of

4000 to 0 pg/ml. The samples were diluted at the appropriate dilution factors and incubated

for 2 hours. After washing, another conjugate polyclonal antibody against human BSSL was

added at a concentration of 1 μg/ml and incubated for 1 hour. The plate was washed 4 times,

and then, 100 μl of tetramethylbenzidine (TMB) substrate was added to each well and incu-

bated for 15 min. The reaction was stopped with 50 μl of 1-M H2SO4 in each well. Then, the

OD450 value was read with a micro-plate reader. All of the procedures were performed at

room temperature.

Determination of BSSL activity

The activity was performed as follows. 40μl labeled 3H-triacylglycerol (PerkinElmer,

NET431001MC) was mixed with 25 mg of unlabeled triacylglycerol (Sigma, #T7140) and evap-

orated under N2 for 10 min; then, added with 1.0 ml of 10% gum arabic, 1.25 ml of 1.0-M Tris/

HCl buffer (pH 9.0), and 2.0 ml of distilled water. The mixture was cooled with ice water and

sonicated for 5 min for maximal effect in a 100-W disintegrator (MSE ltd, London, England).

To this emulsion, 2.5 ml of 1.0-M NaCl, 2.5 ml of 18.7% defatted BSA and 3.25 ml of deionized

water were added. The assay tubes containing 150 μl of this medium and 10 μl of 200 mM

Sodium Cholate (sigma) and enzyme source in a total volume of 200 μl were incubated at 37˚C

in a water bath shaking at 50 strokes per min. The reaction was stopped after 15 min by the

addition of 3.25 ml of a methanol: chloroform: heptane mixture (1.41:1.25:1 [V/V/V]), imme-

diately followed by 1 ml of 0.1-M potassium carbonate buffer, pH 10.5. The tubes were vigor-

ously shaken and centrifuged at 2250 rpm for 10 min in a Sorval GLC-1 centrifuge (HL-4

rotor). The fatty acids were extracted to the upper phase of which 0.4 ml was sampled in a

counting vial containing 2 ml of aquasol. The radioactivity was determined in a liquid scintilla-

tion spectrometer (Packard Tri-Carb model 3020).

Purification of rhBSSL

Purified by Heparin-Sepharose chromatography was performed based on previously work

[29]. Modifications were made as follows. Milk was centrifuged at 2500 rpm for 20 min at 4˚C

to remove the fat. The skimmed milk was adjusted to pH 4.6 to precipitate casein and centri-

fuged at 100,000 × g at 20˚C for 1 h. Purification initially involved Heparin Sepharose Chro-

matography (HiTrap Heparin HP). First, the column was equilibrated with equilibration

buffer (10-mM phosphate buffer, pH 7.0); then, the samples were loaded into a HiTrap Hepa-

rin HP (GE Healthcare, 5 ml), and the protein was eluted with a linear gradient of 0–1-M

NaCl in 10-mM phosphate buffer, pH 7.0. To improve the purity of the rhBSSL, a gel-filtration

matrix (Superdex 200) was used with 10-mM phosphate buffer, pH 7.0. The purified rhBSSL

was further detected by SDS-PAGE, western blotting and ELISA.

Characterization of rhBSSL

Molecular weight, isoelectric point and N-terminal amino acid sequence. The purified

rhBSSL and human native BSSL were sent to Shanghai Applied Protein Technology Co., Ltd

(Shanghai, China) for molecular weight assay by matrix-assisted laser desorption/ionization

time of flight mass spectrometry (MALDI-TOF-MS) (Bruker Daltonics, Billerica, MA, USA).

Isoelectric point was analyzed by isoelectric focusing method. The N-terminal amino acid

sequence of the purified rhBSSL was analyzed by automatic Edman degradation. The resulting
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N-terminal sequence of the test was aligned to the GenBank databases of the National Center

for Biotechnology Information (GenBank accession no. AAH42510.1).

Bile salt-dependency, resistance to pH, heat and trypsin. Human native BSSL and

CHO-produced BSSL were gift by Prof. Olle Hernell, Umeå University. Native BSSL requires

primary bile salt (sodium cholate) for its activity against triacylglycerol. The BSSL activity was

measured at different sodium cholate concentrations in the range of 0–14 mM. For the pH sta-

bility test, 5-μg/ml BSSL was incubated at different pH (range 2–12) buffers in the presence of

1-mg/ml BSA for 30 min. Then, BSSL activity was assessed as described. The activities are pre-

sented as the percentage of the activity for each sample at a pH of 7.4. For the heat stability test,

before the activity assay, the BSSL was treated at different temperatures (37˚C, 40˚C, 45˚C,

50˚C and 55˚C) for 30 min. The activities are presented as the percentage of the activity for

each sample at 37˚C and 0 min. For the trypsin stability test, the purified samples (1.5 μg) were

added to 600 μl of 1.0-M Tris/HCl, pH 7.4, containing 100 μg of trypsin (bovine, Sigma) at

25˚C in absence or presence of 10-mM sodium cholate. After incubation for 0, 10, 20, 30, and

60 min, the BSSL activity was analyzed. All values are presented as the percentage of the value

obtained in the control incubation in the absence of trypsin. All activity is shown with TG as

the substrate.

Kcat and Km determination. The Kcat and Km analysis was performed as described

[30]. Para-nitrophenyl-caproate (pnpC10, Sigma, CAS 1956-10-1) was used as substrate. The

experiments were repeated at least six times. Kcat and Km were determined by Graph Pad Pro-

grom with the Michaelis-Menten model.

Results

Construction of the hBSSL expression vector pBAC-hLF-hBSSL

Here, we describe hLF BAC as a regulating element for the regulation of the expression of

human BSSL (Fig 1). By a three-step homologous recombination, the hLF genomic DNA in

the hLF BAC was replaced with the 9.8-kb hBSSL gene. A Neo selection marker was down-

stream of BSSL. hLF BACs have a 90-kb 5’UTR and a 30-kb 3’UTR, and they were used as tran-

scriptional regulating elements.

BSSL transgenic cell colony screening, transgenic cows identification

and integration analysis

The expression plasmid pBAC-hLF-hBSSL was transfected into bovine fetal fibroblast cell

094FFB colonies (Table 1). PCR analysis confirmed the positive colonies, which were then

used for nuclear transfer (Table 2). The integration of the human BSSL gene into the genome

of the transgenic calves was confirmed by PCR. Six positive cell colonies were identified (Fig

2A), of which two were used as donor cells for the nuclear transfer. Ultimately, we obtained

two newborn calves positive for expression BSSL confirmed by PCR (Fig 2B), which were fur-

ther verified by Southern blot analysis (Fig 2C). The copy numbers of the transgenic cloned

cows were identified by Q-PCR, with copy number 12 and 13 separately.

Expression of rhBSSL in the milk of transgenic cloned cows

Milk samples from transgenic and wild type cows were collected and analyzed by SDS-PAGE

and western blotting. The molecular mass of native human BSSL is approximately 100–130

kDa in size. An extra band in transgenic cow’s milk was clearly detected between 100–130

kDa, which cannot be detected in the wild type one (Fig 3A). Western blotting showed positive

bands for all samples from the transgenic cloned cows, whereas none was found in wild type
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Fig 1. Construction of the hBSSL expression vector pBAC-hLF-hBSSL and strategy for replacing 28.9 kb of hLF genomic

sequence with 9,8 kb of hBSSL genomic DNA on the hLF BAC. hLF BAC was used as regulating element for expression of human

BSSL. By homologous recombination, the hLF genomic DNA in the hLF BAC was replaced with the 9.8-kb hBSSL gene. A Neo selection

marker was downstream of BSSL. hLF BACs have a 90-kb 5’UTR and a 30-kb 3’UTR, and they were used as transcriptional regulating

elements. The procedure of modifying the pBAC-hLF-hBSSL construct was performed by three-step capture method. Each step was

verified by PCR and sequencing with the primers. The first step, A pair of homology arms T1 T2 were designed against downstream of BCA

BSSL gene, then link them to Neo gene with loxP site at each flank. By homologous recombination we got BSSL-Neo BAC, the Neo

resistant gene was insert into the downstream of BSSL and be used as prokaryotic and eukaryotic selectable marker. In the second step,

homology arms T3 T4 against BSSL-Neo BAC and T5 T6 against hLF BAC were designed and then connection of those two pairs of

homology arms by pre-designed restriction enzyme cutting site before link to pBR322 vector. Cutting T3 T4 by Not I, then we get the linear

targeting vector 1. Electroporated it into competent SW102 cells containing BSSL-Neo BAC for recombination. By this step BSSL-Neo was

captured and circular plasmid pBR322 containing BSSL-Neo was success prepared and we named it BSSL-Neo targeting vector. In the final

step, cutting the isolated recombinant plasmid pBR322 by Asc I which was pre-designed at the two flank of T5 T6, collect the fraction contain

BSSL-Neo and homology arms T5 T6 by gel extraction. The fragment was then electroporated into competent SW105 stains containing hLF

BAC for recombination by homology arms T5 T6. Then the chimeric BAC pBAC-hLF-hBSSL was prepared. It contained a 90 kb 5’flanking

region of the hLF gene, the 9,8-kb hBSSL genomic fragment and a 30-kb 3’ flanking region of the hLF gene, and a Neo cassette for future

selection.

https://doi.org/10.1371/journal.pone.0176864.g001

Purification and characterization of rhBSSL expressed in milk of transgenic cloned cows

PLOS ONE | https://doi.org/10.1371/journal.pone.0176864 May 5, 2017 7 / 18

https://doi.org/10.1371/journal.pone.0176864.g001
https://doi.org/10.1371/journal.pone.0176864


Table 1. Cell screening of pBAC-hLF-hBSSL transfection.

Cell

line

Screening method Operation

times

Isolated

colonies

Cell colonies selected for

nuclear transfer

Freezing cell

colonies

Cell colonies selected for

nuclear transfer

094FFB Low concentration

G418

1 73 15 11 BSSL-1#

094FFB Low concentration

G418

2 421 21 16 BSSL-2#

Cell line 094FFB was transfected with linear expression plasmid pBAC-hLF-hBSSL.

https://doi.org/10.1371/journal.pone.0176864.t001

Table 2. Summary of nuclear transfer results.

No. of cell clone Oocytes Re-construct embryos Blastocysts Recipients Pregnacy at 3 months(%) Birth rate

BSSL-1# 73 35 0 0 0 0

BSSL-2# 421 268 145 17 6(35%) 3(17.6%)

Birth rate of transgenic cows after nuclear transfer.

https://doi.org/10.1371/journal.pone.0176864.t002

Fig 2. Identification of transgene in isolated cell colonies and transgenic cows. (A) 6 cell colonies were

analyzed by PCR. M, 100bp DNA ladder; P, postive control construct pBAC-hLF-hBSSL; N, genomic DNA

from non-transfection cells; 1–6 represent 6 cell colonies. (B) PCR analysis and (C) Southern blot

identification of transgenic cloned cows. B1,B2, genomic DNA from transenic cows; P, postive control

construct pBAC-hLF-hBSSL; N, genomic DNA from wildtype cows.

https://doi.org/10.1371/journal.pone.0176864.g002
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cow’s milk (Fig 3B). ELISA and the 3H -labeled radioactivity method were used to quantify the

rhBSSL expression level and activity in the transgenic milk. The expression level of rhBSSL in

the induced milk was 9.8 mg/ml.

rhBSSL purification, recovery rate and purity analysis

Fat and casein of transgenic cow milk were removed by adjusting the pH to 4.0. The whey was

filtered through a 0.22-μm filter and loaded onto a HiTrap Heparin HP 5-ml column. The

binding buffer was 10-mM sodium phosphate, pH 7.0. Bound protein was eluted by a linear

gradient of 0 to 1M NaCl in 10-mM sodium phosphate, pH 7.0. One major peak containing

Fig 3. Expression of rhBSSL in transgenic milk. (A) SDS-PAGE of milk from transgenic cloned cow milk

and wild type cow milk. WT1 and WT2, milk from wild type cow milk; B1 and B2, milk from transgenic cloned

cows. The red row show extra band between 100–130 kDa in transgenic cow milk compare with wild type cow

milk. (B) Western blot identification of rhBSSL in milk. P, purified human BSSL; H, human milk; B1, B2, milk

from transgenic cloned cows. N,milk from wild type cow. (C) Comparison of purified rhBSSL from transgenic

milk with native BSSL and CHO-produced BSSL by western blot. N, purified human native BSSL (nBSSL);

N1, 10 ng nBSSL; N2, 5 ng nBSSL; N3, 1 ng nBSSL; R, purified rhBSSL from transgenic cow milk (rhBSSL);

R1, 10 ng rhBSSL; R2, 5 ng rhBSSL; R3, 1 ng rhBSSL; C, purified rhBSSL from CHO cells (CHO-rhBSSL);

C1, 10 ng CHO-rhBSSL; C2, 5 ng CHO-rhBSSL; C3, 1 ng CHO-rhBSSL; B, blank.

https://doi.org/10.1371/journal.pone.0176864.g003
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the BSSL protein was eluted at approximately 0.4 M NaCl (Fig 4A). The flow through and peak

fraction were collected for SDS-PAGE and Coomassie blue staining (Fig 4B). The purity of the

collected rhBSSL was analyzed by high-performance liquid chromatography (HPLC). Super

SW300 was used for the analysis. The purity was 89.7% after the first heparin chromatography.

Further purification was obtained by Superdex200 gel filtration chromatography (Fig 4C),

yielding 98.1% pure rhBSSL. Silver staining confirmed the purity (Fig 4D).

Fig 4. Purification and identification of rhBSSL from transgenic milk. (A) purification of rhBSSL by heparin-chromatography with

HiTrap Heparin HP. 25ml milk whey was loaded onto a HiTrap Heparin HP 5ml column. F, the flow through; P, the elution peak. (B) 12%

SDS-PAGE and Coomassie blue staining of the flow-through and elution peak. (C) Purification of rhBSSL from the first chromatographic

step by Superdex 200 gel filtration chromatography. The P fraction from first step was loaded on the column after being desalted by 10mM

sodium phosphate buffer (pH 7.0). P1, impurities and P2, purified rhBSSL. (D) Purity of rhBSSL (P2) was examined by SDS-PAGE and

silver staining. 1, 6 μg rhBSSL; 2, 12 μg rhBSSL; 3, 10 μg rhBSSL.

https://doi.org/10.1371/journal.pone.0176864.g004
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Characterization of purified rhBSSL

The molecular mass of the purified rhBSSL was determined by matrix-assisted laser desorp-

tion/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) to be 79800.4 Da. Thus,

compared with native human BSSL (nBSSL), which had a molecular mass of 116232.4 Da,

rhBSSL was smaller. However, rhBSSL from the transgenic milk have a similar size with the

rhBSSL expressed by CHO cells (Fig 3C), possibly due to rhBSSL by these cells and the trans-

genic cows has considerably lower degree of glycosylation. The N-terminal amino acid

sequence of purified rhBSSL was identical to that of the native BSSL from human milk (Gen-

Bank accession no. AAH42510.1). Furthermore, rhBSSL had the same isoelectric point as

nBSSL. Enzymatic activity was analyzed with TG as substrate with no significant difference

between rhBSSL and native BSSL (Table 3).

Bile salt dependency and stability of rhBSSL

rhBSSL was compared with human native BSSL (nBSSL) and CHO cell-expressed BSSL

(CHO-BSSL) with respect to bile salt dependency and stability towards different pH, heat and

trypsin. BSSL requires primary bile salt (sodium cholate or chenodeoxycholate) for activity

against long-chain TG emulsions. For bile salt dependency assessment the BSSL activity was

analyzed at sodium cholate concentrations ranging from 0 to 14 mM. The activity of BSSL was

optimal in the presence of a minimum of 6 mM sodium cholate (Fig 5A). To test the pH stabil-

ity, rhBSSL, nBSSL and CHO-BSSL were first incubated for 30 min at different pH (pH 2–12)

for 30 min where after BSSL activity assays were performed. The results showed that all three

sources of BSSL were stable between pH 4 to 9. However, inactivation occurred at pH values

below 4 and above 9, and CHO-BSSL seemed to be slightly more sensitive to low or high pH

(Fig 5B). The heat stability test showed that they all gradually lost activity above 45˚C and that

incubation at 55˚C for 30 min resulted in a complete loss of activity (Fig 5C). In summary,

BSSL is sensitive to heat, and the pasteurization of transgenic milk or exposure to trypsin grad-

ually destroys the activity. Human native BSSL is sensitive to trypsin as is the rhBSSL, although

the latter seems more resistant to trypsin digestion than does the nBSSL. However, in the pres-

ence of bile salt both enzymes are protected from this degradation, and the activity thus main-

tained (Fig 5D). No notable differences in the characteristics were found between the rhBSSLs

or between these and nBSSL.

Kinetic behaviour of BSSL with pnpC10 as substrates in the presence of

sodium cholate

Plots of initial velocity versus pnpC10 concentration with 10 mM sodium cholate, curves of

rhBSSL and nBSSL well fit the Michaelis-Menten model are shown in Fig 6. Km of rhBSSL and

nBSSL were 77±23 μM vs 77±33 μM, respectively while the respective Kcat of rhBSSL and

nBSSL were 55±8 s-1 vs 59±12 s-1.

Table 3. Characteristics of purified rhBSSL compared with human native BSSL(nBSSL).

characteristic nBSSL rhBSSL

Molecular mass 116232.4 Da 79800.4 Da

N-terminal sequence NH 2 -Ala-Lys-Leu-Gly-Ala-Val-Tyr-Thr-

Glu-Gly-Gly-Phe-Val-Glu-Gly

NH 2 -Ala-Lys-Leu-Gly-Ala-Val-Tyr-Thr-

Glu-Gly-Gly-Phe-Val-Glu-Gly

Isoelectric point 4,0 3.99

Enzymatic activity

(mU/mg)

102.7±4.8 102.1±7.2

https://doi.org/10.1371/journal.pone.0176864.t003
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Discussion

In the present study, a vector pBAC-hLF-hBSSL was constructed, which efficiently expressed

active rhBSSL in milk of transgenic cloned cows with a concentration of 10 mg/ml. The

rhBSSL purified from cow milk had the same specific lipase activity, N-terminal amino acid

sequence, isoelectric point and physicochemical characteristics as human native BSSL. Our

study thus supports the use of transgenic cattle for large-scale production of rhBSSL for thera-

peutic use.

Cow milk and breast milk differ substantially in their composition. Disregarding a continu-

ous development of infant formulas breast-fed infants still exhibit better performance in sev-

eral outcomes than formula-fed infants[31]. Modern infant formulas, of which most are based

on cow milk protein, were developed using the composition of human milk as a reference[32].

Bioactive substances present in human milk but not bovine milk are ingredients of interest for

the production by transgenic cloned cows. BSSL is one of these substances, and it has an

important effect on fat digestion and energy utilization, particularly in preterm infants[33]. In

this study, we provide the first report of expression of human BSSL in transgenic cow’s milk.

Fig 5. Bile salt dependency and stability of rhBSSL. A. Bile salt dependency of BSSL. BSSL activity was measured at sodium cholate

concentrations 0, 2, 4, 6, 8, 10, 12 and 14 mM. Values are present as the percentage of activity under 10 mM sodium cholate. B. Stability of

BSSL at different pH. BSSL were incubated at 37˚C for 30 min in buffer containing 1mg/ml bovine serum albumin with pH ranging from 2 to

12. Aliquots were withdrawn and assayed for lipase activity. Values are present as the percentage of activity at pH7.0. CHO-rhBSSL is less

stable than native and rhBSSL at pH3.4 and pH10. C. Heat stability of BSSL. BSSL were incubated in 50 mM Tris/HCl, pH 7.5 containing 1

mg/ml bovine serum albumin at the temperatures indicated, 37˚C, 40˚C, 45˚C, 50˚C and 55˚C. After 30 min incubation, samples were

withdrawn and assayed for lipase activity. Values are present as the percentage of activity at 37˚C. D. Effect of bile salts on the inactivation

of BSSL by trypsin. Purified samples (1.5μg) were added to 600μl 1.0M Tris/HCl, pH 7.4 with 100 μg trypsin at 25˚C absence and presence

of 10 mM sodium cholate. At the times indicated, aliqots were withdrawn and assayed for lipase activity. Values are expressed as the

percentage of values obtained in control incubations in absence of trypsin. rhBSSL and CHO-rhBSSL are more resistance to trypsin after

incubate 60 min. All the experiment were repeated at least three times, and the results were presented as mean ± SD. * means p<0.05,

student’s t-test.

https://doi.org/10.1371/journal.pone.0176864.g005
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Human BSSL is not abundant in breast milk relative to other multifunctional proteins in

human milk, such as lactoferrin[34]. The level of BSSL in human milk is approximately 100–

200 μg/ml[35]. Nevertheless, human BSSL plays an important role in milk fat absorption,

together with PLRP2 and gastric lipase[36]. Over the past two decades, rhBSSL has been found

to be expressed in C127 cells[37], Chinese hamster ovary (CHO) cells[21], Pichia pastoris[38,

39] and transgenic mice[16, 40, 41] and sheep[42]. For the large-scale collection of rhBSSL,

transgenic sheep and CHO cells producing rhBSSL have the potential to be developed for com-

mercial production. Transgenic sheep were generated by genomic BSSL regulated by the beta-

lactoglobulin (BLG) promoter. The expression levels were in excess of 3 g/L in transgenic

sheep milk[42]. The rhBSSL in transgenic sheep milk was fully active and exhibited the same

enzyme characteristics as the native BSSL. Human BSSL expressed and purified from CHO

cells has been developed for medicinal use to ameliorate fat malabsorption in preterm infants.

Clinical phase II trials have shown that the addition of rhBSSL to formula or pasteurized breast

milk significantly improves the growth rate of preterm infants[19]. Furthermore, rhBSSL

improved the absorption of the long-chain polyunsaturated fatty acids docosahexaenoic acid

and arachidonic acid which are important fatty acids for infant neurodevelopment[43]. How-

ever, the recent phase III study confirmed the positive effect on weight gain only in the sub-

group of small for gestational age (SGA) infants[20].

The cattle mammary bioreactor has been developed for the large-scale production of func-

tional human milk proteins[28, 44–46]. Here, we sought to produce high-efficiency and active

rhBSSL in cow milk using this principal technique. Optimizing the expression construct was

essential to achieve high expression of rhBSSL. In a previous study, we used a beta-casein pro-

moter as the regulatory sequence coupled with a human BSSL cDNA sequence. rhBSSL was

expressed in transgenic mice up to 377μg/ml[16]. The use of cDNA may explain the low

expression level of BSSL. The genomic DNA of BSSL has been shown to raise the expression

Fig 6. Michaelis Menten graphs for rhBSSL and nBSSL with pnpC10 as substrates, with 10 mM sodium cholate. The velocity of

release of pnp was calculated as initial velocity (vi expressed as μM/min). The substrate pnpC10 concentrations were from 0 μM to 200 μM.

Data are present under 10 mM sodium cholate. Km of rhBSSL and nBSSL were 77±23 μM vs 77±33 μM.

https://doi.org/10.1371/journal.pone.0176864.g006
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level in the mammary gland above that of BSSL cDNA. To improve the rhBSSL level in milk, a

new expression vector—pBAC-hLF-hBSSL—was constructed. The hLF-BAC regulating con-

struct has the advantage of fully integrated regulatory elements, thus facilitating efficient

expression of the recombinant protein. In the induced milk of transgenic cloned cows, the

rhBSSL expression level increased to approximately 10 mg/mL confirming that pBAC-hLF-

hBSSL is an efficient construct to induce rhBSSL production in milk of transgenic cloned

cows. When compared with the method used for obtaining rhBSSL from commercial CHO

cells, the advantage of our method is that rhBSSL can be harvested several times per day at a

larger scale and it can be readily prepared from cow’s milk.

Methods of purifying BSSL from human milk have been developed as previously research

[29, 47–49]. A two-step chromatography procedure using Heparin Sepharose and gel filtration

is widely used because of its ease of use, high recovery rate, low cost, and ease of scaling up.

The procedure that we used to purify rhBSSL from transgenic milk involved two steps: hepa-

rin-Sepharose chromatography followed by gel-filtration chromatography. The final purity

was of the rhBSSL was 98% with a specific lipase activity virtually identical to that of purified

human native BSSL. Importantly, this purification procedure could be scaled up and thus pro-

vide a foundation for industrial purification of rhBSSL from transgenic cow milk.

For physiological and biochemical characterization of rhBSSL, it was compared with those

of human native BSSL and CHO cells expressed BSSL. Comparison revealed that they have

similar physiological and biochemical characteristics. The molecular weight of rhBSSL from

transgenic milk appears to be the same as that of CHO-BSSL, and both are smaller than

human native BSSL. These differences are likely attribute to different post-translational modi-

fications. It is of note that because of different post-translational modifications, the glycosyla-

tion level and pattern of rhBSSL is different compared with that of native BSSL[40]. Even for

the native human BSSL, the glycosylation pattern changes during the lactation period in milk

of same mother [50]. rhBSSL was confirmed keep stability in absence of bile salt and play the

optimal activity under certain concentration of sodium cholate just as human native BSSL[50].

Human Bile salt-stimulated lipase was reported to resistance to acid environment and it could

keep stability at pH3.5 for 1 hour[22]. However, in our study rhBSSL and nBSSL are gradually

losing their activity between pH3 to pH4. The possible reason is that the buffers prepared had

some influence on the formulation of BSSL[51]. rhBSSL also show sensitive to heat and the

activity was totally destroy store at 55˚C for 30 min. N-terminal sequencing revealed the cor-

rect amino acid sequence, indicating that the signal peptide was cleaved correctly. The mature

rhBSSL was expressed correctly and secreted into the milk.

In conclusion, we successfully generated rhBSSL transgenic cows with rhBSSL specifically

and highly efficiently expressed in the mammary gland and then secreted into milk. In addi-

tion, we successfully purified the rhBSSL from the transgenic cow’s milk and achieved a

purity of 98% using a two-step chromatographic procedure. The purified rhBSSL main-

tained its biological activity and exhibited physical and chemical characteristics similar to

those of the native protein, e.g., stability at low pH, resistance to inactivation by pancreatic

proteases in presence of bile salts, activity at the pH and bile salt concentrations of duodenal

content during fat digestion and broad substrate specificity comparable to those of the native

human BSSL and CHO cell-derived BSSL. Thus it is suited for oral administration and taken

together these characteristics build a solid foundation for further development aiming at

improving fat absorption in patients with exocrine pancreatic insufficiency and fat malab-

sorption for pathological reasons, and improving fat absorption in preterm infants with

immature exocrine pancreatic function and thus transient fat malabsorption when fed infant

formula which lacks BSSL, or pasteurized human milk in which BSSL has been inactivated

by the pasteurization.
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42. Dalrymple M, Lundberg L, STRÖMQVIST M. Human bile salt-stimulated lipase (bssl) obtainable from

transgenic sheep. Google Patents; 1999.

43. Uauy R, Hoffman DR, Mena P, Llanos A, Birch EE. Term infant studies of DHA and ARA supplementa-

tion on neurodevelopment: results of randomized controlled trials. The Journal of pediatrics. 2003; 143

(4 Suppl):S17–25. Epub 2003/11/05. PMID: 14597910

44. Yang B, Wang J, Tang B, Liu Y, Guo C, Yang P, et al. Characterization of bioactive recombinant human

lysozyme expressed in milk of cloned transgenic cattle. PloS one. 2011; 6(3):e17593. Epub 2011/03/

26. https://doi.org/10.1371/journal.pone.0017593 PMID: 21436886

45. Yang P, Wang J, Gong G, Sun X, Zhang R, Du Z, et al. Cattle mammary bioreactor generated by a

novel procedure of transgenic cloning for large-scale production of functional human lactoferrin. PloS

Purification and characterization of rhBSSL expressed in milk of transgenic cloned cows

PLOS ONE | https://doi.org/10.1371/journal.pone.0176864 May 5, 2017 17 / 18

https://doi.org/10.1159/000213888
https://doi.org/10.1159/000213888
http://www.ncbi.nlm.nih.gov/pubmed/19390191
http://www.ncbi.nlm.nih.gov/pubmed/4020576
https://doi.org/10.1038/srep22947
http://www.ncbi.nlm.nih.gov/pubmed/26961596
http://www.ncbi.nlm.nih.gov/pubmed/6788548
https://doi.org/10.1093/jb/mvq132
http://www.ncbi.nlm.nih.gov/pubmed/21081507
https://doi.org/10.1097/MPG.0b013e31819f1e05
http://www.ncbi.nlm.nih.gov/pubmed/19502997
https://doi.org/10.1159/000325572
http://www.ncbi.nlm.nih.gov/pubmed/21335987
http://www.ncbi.nlm.nih.gov/pubmed/25326648
http://www.ncbi.nlm.nih.gov/pubmed/8556166
https://doi.org/10.1097/MCO.0b013e328337bbf0
http://www.ncbi.nlm.nih.gov/pubmed/20179589
http://www.ncbi.nlm.nih.gov/pubmed/8253803
https://doi.org/10.1006/prep.2001.1509
https://doi.org/10.1006/prep.2001.1509
http://www.ncbi.nlm.nih.gov/pubmed/11676603
https://doi.org/10.1006/prep.1998.0974
https://doi.org/10.1006/prep.1998.0974
http://www.ncbi.nlm.nih.gov/pubmed/9882578
http://www.ncbi.nlm.nih.gov/pubmed/8840531
http://www.ncbi.nlm.nih.gov/pubmed/9792415
http://www.ncbi.nlm.nih.gov/pubmed/14597910
https://doi.org/10.1371/journal.pone.0017593
http://www.ncbi.nlm.nih.gov/pubmed/21436886
https://doi.org/10.1371/journal.pone.0176864


one. 2008; 3(10):e3453. Epub 2008/10/23. https://doi.org/10.1371/journal.pone.0003453 PMID:

18941633

46. Wang J, Yang P, Tang B, Sun X, Zhang R, Guo C, et al. Expression and characterization of bioactive

recombinant human alpha-lactalbumin in the milk of transgenic cloned cows. Journal of dairy science.

2008; 91(12):4466–76. https://doi.org/10.3168/jds.2008-1189 PMID: 19038921

47. Wang CS, Johnson K. Purification of human milk bile salt-activated lipase. Analytical biochemistry.

1983; 133(2):457–61. Epub 1983/09/01. PMID: 6638506

48. Wang CS. Purification of human milk bile salt-activated lipase by cholic acid-coupled Sepharose 4B

affinity chromatography. Analytical biochemistry. 1980; 105(2):398–402. Epub 1980/07/01. PMID:

6779661

49. Blackberg L, Duan RD, Sternby B. Purification of carboxyl ester lipase (bile salt-stimulated lipase) from

human milk and pancreas. Methods in enzymology. 1997; 284:185–94. Epub 1997/01/01. PMID:

9379934

50. Lombardo D, Guy O. Studies on the substrate specificity of a carboxyl ester hydrolase from human pan-

creatic juice. II. Action on cholesterol esters and lipid-soluble vitamin esters. Biochim Biophys Acta.

1980; 611(1):147–55. PMID: 7350913

51. Zbacnik TJ, Holcomb RE, Katayama DS, Murphy BM, Payne RW, Coccaro RC, et al. Role of Buffers in

Protein Formulations. Journal of pharmaceutical sciences. 2017; 106(3):713–33. https://doi.org/10.

1016/j.xphs.2016.11.014 PMID: 27894967

Purification and characterization of rhBSSL expressed in milk of transgenic cloned cows

PLOS ONE | https://doi.org/10.1371/journal.pone.0176864 May 5, 2017 18 / 18

https://doi.org/10.1371/journal.pone.0003453
http://www.ncbi.nlm.nih.gov/pubmed/18941633
https://doi.org/10.3168/jds.2008-1189
http://www.ncbi.nlm.nih.gov/pubmed/19038921
http://www.ncbi.nlm.nih.gov/pubmed/6638506
http://www.ncbi.nlm.nih.gov/pubmed/6779661
http://www.ncbi.nlm.nih.gov/pubmed/9379934
http://www.ncbi.nlm.nih.gov/pubmed/7350913
https://doi.org/10.1016/j.xphs.2016.11.014
https://doi.org/10.1016/j.xphs.2016.11.014
http://www.ncbi.nlm.nih.gov/pubmed/27894967
https://doi.org/10.1371/journal.pone.0176864

