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Abstract
The peptides derived from envelope proteins have been shown to inhibit the protein-protein

interactions in the virus membrane fusion process and thus have a great potential to be

developed into effective antiviral therapies. There are three types of envelope proteins each

exhibiting distinct structure folds. Although the exact fusion mechanism remains elusive, it

was suggested that the three classes of viral fusion proteins share a similar mechanism of

membrane fusion. The common mechanism of action makes it possible to correlate the

properties of self-derived peptide inhibitors with their activities. Here we developed a sup-

port vector machine model using sequence-based statistical scores of self-derived peptide

inhibitors as input features to correlate with their activities. The model displayed 92% predic-

tion accuracy with the Matthew’s correlation coefficient of 0.84, obviously superior to those

using physicochemical properties and amino acid decomposition as input. The predictive

support vector machine model for self- derived peptides of envelope proteins would be use-

ful in development of antiviral peptide inhibitors targeting the virus fusion process.

Introduction
Fusion process is the initial step of viral infection, therefore targeting the fusion process repre-
sents a promising strategy in design of antiviral therapy [1]. The entry step involves fusion of
the viral and the cellular receptor membranes, which is mediated by the viral envelope (E)
proteins. There are three classes of envelope proteins [2]: Class I E proteins include influenza
virus (IFV) hemagglutinin and retrovirus Human Immunodeficiency Virus 1 (HIV-1) gp41;
Class II E proteins include a number of important human flavivirus pathogens such as Dengue
virus (DENV), Japanese encephalitis virus (JEV), Yellow fever virus (YFV), West Nile virus
(WNV), hepatitis C virus (HCV) and Togaviridae virus such as alphavirus Semliki Forest virus

PLOSONE | DOI:10.1371/journal.pone.0144171 December 4, 2015 1 / 15

OPEN ACCESS

Citation: Xu Y, Yu S, Zou J-W, Hu G, Rahman
NABD, Othman RB, et al. (2015) Identification of
Peptide Inhibitors of Enveloped Viruses Using
Support Vector Machine. PLoS ONE 10(11):
e0144171. doi:10.1371/journal.pone.0144171

Editor: Massimiliano Galdiero, Second University of
Naples, ITALY

Received: April 24, 2015

Accepted: November 13, 2015

Published: December 4, 2015

Copyright: © 2015 Xu et al. This is an open access
article distributed under the terms of the Creative
Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: All relevant data are
within the paper and its Supporting Information files.

Funding: These authors have no support or funding
to report.

Competing Interests: The authors have declared
that no competing interests exist.

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0144171&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


(SFV); Class III E proteins include vesicular stomatitis virus (VSV), Herpes Simplex virus-1
(HSV-1) and Human cytomegalovirus (HCMV). Although the exact fusion mechanism
remains elusive and the three classes of viral fusion proteins exhibit distinct structural folds,
they may share a similar mechanism of membrane fusion [3].

A peptide derived from a protein-protein interface would inhibit the formation of that inter-
face by mimicking the interactions with its partner proteins, and therefore may serve as a
promising lead in drug discovery [4]. Enfuvirtide (T20), a peptide that mimicks the HR2 region
of Class I HIV-1 gp41, is the first FDA-approved HIV-1 fusion drug that inhibits the entry pro-
cess of virus infection [5–7]. Then peptides mimicking extended regions of the HIV-1 gp41
were also demonstrated as effective entry inhibitors [8, 9]. Furthermore, peptides derived from
a distinct region of GB virus C E2 protein were found to interfere with the very early events of
the HIV-1 replication cycle [10]. Other successful examples of Class I peptide inhibitors
include peptide inhibitors derived from SARS-CoV spike glycoprotein [11–13] and from
Pichinde virus (PICV) envelope protein [14]. Recently, a peptide derived from the fusion initia-
tion region of the glycoprotein hemagglutinin (HA) in IFV, Flufirvitide-3 (FF-3) has pro-
gressed into clinical trial [15].

The success of developing the Class I peptide inhibitors into clinical use has triggered the
interests in the design of inhibitors of the Class II and Class III E proteins. e.g. several hydro-
phobic peptides derived from the Class II DENV and WNV E proteins exhibited potent inhibi-
tory activities [16–20]. In addition, a potent peptide inhibitor derived from the domain III of
JEV glycoprotein and a peptide inhibitor derived from the stem region of Rift Valley fever
virus (RVFV) glycoprotein were reported [21, 22]. Examples of the Class II peptide inhibitors
of enveloped virus also include those derived from HCV E2 protein [23, 24] and from Claudin-
1, a critical host factor in HCV entry [25]. Moreover, peptides derived from the Class III HSV-
1 gB also exhibited antiviral activities [26–31], as well as those derived from HCMV gB [32].

Computational informatics plays an important role in predicting the activities of the pep-
tides generated from combinatorial libraries. In silicomethods such as data mining, generic
algorithm and vector-like analysis were reported to predict the antimicrobial activities of pep-
tides [33–35]. In addition, quantitative structure-activity relationships (QSAR) [36–40] and
artificial neural networks (ANN) were applied to predict the activities of peptides [41, 42].
Recently, a support vector machine (SVM) algorithm was employed to predict the antivirus
activities using the physicochemical properties of general antiviral peptides [43]. However, the
mechanism of action of antiviral peptides is different from antimicrobial peptides; in fact, vari-
ous protein targets are involved in the virus infection. e.g. HIV-1 virus infection involves virus
fusion, integration, reverse transcription and maturation, etc. Thus it is difficult to retrieve the
common features from general antiviral peptides to represent their antiviral activities. Virus
fusion is mediated by E proteins. Although E proteins are highly divergent in sequence and
structure, they share a common pathway of membrane fusion dynamics. i.e. E proteins experi-
ence significant conformational change to form a-trimer-of-hairpin, which drives the fusion of
viral membrane and host membrane [44]. The antiviral peptides derived from enveloped pro-
teins function by in situ binding to their respective accessory proteins, disrupting forming of
the trimer-of-hairpin and membrane fusion, and therefore inhibiting the virus infection. In
view of the important role of E proteins in virus fusion process and common mechanism of
action of self-derived peptides, we developed a SVMmodel to predict the antiviral activities of
self-derived peptides using sequence-based statistical scores as input features. The sequence-
based properties were calculated by a conditional probability discriminatory function which
indicates the propensity of each amino acid for being active at a specific position. Our model
exhibited remarkably higher accuracy in predicting the activities of self-derived peptides,
compared to the previous models developed for general antiviral peptides using classical
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physicochemical properties as descriptors [43]. The method would be useful in identification
of entry inhibitors as a new generation of antiviral therapies.

Methods

Data collection
202 peptide virus entry inhibitors of enveloped viruses were collected, among them, 101 are
active peptides and 101 are non-active peptides. These peptides comprised the 75p+75n train-
ing set of SVMmodels. The remaining 26 active peptides and 26 non-active peptides inhibitors
were used as the test set.

Amino acid composition. Amino acid composition is the fraction of each amino acid in a
peptide. The fraction of the 20 amino acids was calculated using the following equation:

Fraction of amino acid X ¼ Total number of X =peptide length

Physicochemical properties
Five physicochemical properties were used in SVMmodels. Isoelectric point (PI), Molecular
weight (MW) and Grand average of hydropathicity (GRAVY) [45] were calculated using the
Protparam tool implemented in Expasy web server. Solvent accessibility and secondary struc-
ture features were calculated using SSpro and ACCpro packages implemented in the
SCRATCH protein predictor server [46].

Sequence-based statistical scoring function. The knowledge-based statistical function is
developed from the concept of residue-specific all-atom probability discriminatory function
(RAPDF) [47]. RAPDF is a structure-based statistical scoring function. It is based on the
assumption that averaging over different atom types in experimental conformations is an ade-
quate representation of the random arrangements of these atom types in any compact confor-
mation. Here we developed a sequence-based statistical scoring function, where we presume
that averaging over different amino acid sequences with experimental validated inhibitive
activities is an adequate representation of the random amino acid sequences with any inhibi-
tory activity. The basis of this assumption is that the peptides share a common mechanism of
action, i.e. the peptides derived from E proteins bind competitively to their partner proteins,
disrupt the forming of a-trimer-of-hairpin, and therefore inhibit the virus membrane fusion.

The sequence-based scoring function is described in the following form:

SðfqiagÞ ¼ �ln
PðqiajCÞ
PðqiaÞ

ð1Þ

Here, qia 2 factiveg.
PðqiajCÞ is the probability of observing amino acid i in an active peptide sequence;
PðqiaÞ is the probability of observing amino acid i in any peptide sequence, active or non-

active. They are approximately estimated using the following forms:

PðqiajCÞ �
Nobsði; aÞ
NobsðaÞ

ð2Þ

PðqiaÞ �
NobsðiÞ
Ntotal

ð3Þ

Nobs(i,a): The number of observed amino acid i within active peptides.
Nobs(i): The number of observed amino acid i within active peptides and non-active

peptides.
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Nobs(a): The number of observed amino acid types within active peptides.
Ntotal: The number of observed amino acid types within active peptides and non-active

peptides.
Similarly, we employed a dataset of experimentally verified non-active peptides in develop-

ing the statistical function, where qia 2 finactiveg.
For a given amino acid sequence, 20 columns of input are generated, corresponding to the

occurrence of twenty natural amino acids at each position. Each column is assigned a value of
N � (−log–likelihood), where N is the number of amino acid and −log–likelihood is derived
from the statistical function score. Each of the features thus combines the propensity of the
amino acid for being active or non-active with the corresponding amino acid composition.

Below is an example of calculating the statistical scores for a given peptide sequence:
The amino acid order for SVM input features is set as:

ACDEFGHIKLMNPQRSTVWY.

If the amino acid sequence of an active peptide inhibitor is:
DCPNGPWVWVPAFCQAVGWG,

the statistical N values of the sequence would be:
2,2,1,0,1,3,0,0,0,0,0,1,3, 1,0,0,0,3,3,0
The scores in the statistical function library based on the active peptide inhibitors are

decided by Eq (1): -0.0856, 0.5057, 0.4740, 0.4133, -0.0856, -0.0856, 0.6439, 0.2508, 0.9440,
-0.4670, 1.8603, 0.1330, 0.2261, -0.0115, 0.2761, 0.3288, 0.0479, -0.1207, 0.0079, 0.6816,

Therefore, the 20 SVM input features for the sequence would be: -0.1712, 1.0114, 0.4740, 0,
-0.2568, -0.2568, 0, 0, 0, 0, 0, 0.1330, 0.6783, -0.0115, 0, 0, 0, -.3621, 0.0237, 0.

SVM Parameter Optimization
SVMmodels combined with radial basis function (RBF) kernel parameters were developed
using the C-SVC module in LIBSVM (version 3.1) [48, 49] and executed under the Matlab
interface. The performance of SVM depends on two parameters, gamma -g and cost–c [50].
The default value is 1 for -c and 1/k for -g, where k is the number of input entries. Various
pairs of (c, g) values were converted to exponential values (i.e. 2x;2y) and optimized using
cross-validation and the pair with the best cross-validation accuracy was selected.

5-fold cross validation was performed to evaluate the performance of SVMmodels. In the
evaluation process, dataset was partitioned randomly into five equally sized subsets. The train-
ing and testing were carried out five times, each time four distinct subsets being used as train-
ing sets and the remaining subset as test set. The results were averaged over all five rounds of
validation. The following equations were used to evaluate the prediction quality of the SVM
models [48, 51]:

Sensitivity ¼ TP=ðTPþFN Þ

h i
� 100

Specificity ¼ TN=ðTNþFPÞ

h i
� 100

Accuracy ¼ ðTPþTN Þ�
ðTPþTNþFPþFN Þ

h i
� 100

MCC ¼ TP � TN � FP � FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðTP þ FPÞ � ðTP þ FNÞ � ðTN þ FPÞ � ðTN þ FNÞp
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In the above equations, TP is the number of true positives, TN is the number of true nega-
tives, FP is the number of false positives and FN is the number of false negatives. Matthew’s
correlation coefficient (MCC) reflects the performance of the model. It ranges between -1 to
1 and a larger MCC value indicates a better prediction.

Results and Discussion
SVM learning algorithm is a powerful machine learning method that has been widely used in
pattern recognition and classification. SVM trains a dataset of experimentally validated positive
and negative samples and generates a classifier to classify unknown samples into two distinct
categories (positive or negative).

Collection of dataset
We performed an exhaustive literature search on self-derived peptide inhibitors of enveloped
proteins and collected experimentally validated peptides derived from the three classes of E
proteins. For those peptides with overlapping segments, only one peptide sequence was kept.
202 peptides were found, among them, 101 are active peptides and 101 are non-active peptides
(Table 1). 75 active peptide inhibitors and 75 non-active peptides (75p+75n) of E proteins were
used as the training dataset in SVM learning; the remaining 26 active and 26 non-active pep-
tides (26p+26n) were used as the test set.

SVM input features. Three SVMmodels were developed using different features as input
descriptors, namely physicochemical properties (denoted as EAPphysico), amino acid compo-
sition (EAPcompo) and statistical scoring function amino acid composition (EAPscoring).

Knowledge-based statistical functions are rooted in the Bayesian (conditional) probability
formalism and derived directly from properties observed in the known folded proteins [52–
54]. In knowledge-based scoring function, it was presumed that averaging over different atom
types in experimental conformations is an adequate representation of the random arrange-
ments of these atom types in any compact conformation [55]. Because the three classes of E
proteins have different structural folds, it is difficult to retrieve a structure-based feature that is
relevant to their antiviral activities. Generally speaking, any property associated with folded
proteins can be converted into an energy function [56]. Since amino acid sequence determines
the structural folds and properties of proteins/peptides, we presumed that a sequence-based
statistical scoring function averaging over different amino acid sequences exhibiting inhibitive
activities is an adequate representation of the random combinations of all twenty amino acid
exhibiting any activity. In this approach, a peptide sequence derived from E protein is repre-
sented by twenty features each corresponding to the propensity of observing each of the twenty
natural amino acids to be either active or non-active. A vector space of twenty sequence-based
statistical scores was used as the EAPscoring input entries in the SVM learning.

We also built a SVMmodel using physicochemical properties as input features. Because of
the feature of membrane fusion process, it was suggested that functional regions in glycopro-
teins need to be solvent accessible, hydrophobic and flexible [57]. Actually the majority of
known peptide entry inhibitors share a common physicochemical property of being hydropho-
bic and amphipathic with a propensity for binding to lipid membranes [58]. Therefore, here
the properties of E peptide inhibitors were described by five physicochemical parameters: PI,
MW, GRAVY index (positive and negative GRAVY values indicate hydrophobic and hydro-
philic peptides, respectively), solvent accessibility (exposed or buried) and secondary structure
features (propensity for adopting α-helix, β-sheet or turn structure). These physicochemical
features were calculated for each of the peptides and used as the EAPphysico input entries in
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Table 1. Experimentally validated peptide inhibitors of E proteins.

Active peptides Non-active peptides Ref

HIV DCPNGPWVWVPAFCQAVGWG SPLGFGSYTMTKIRDSLHLV [9]

16p+31n GPWVWVPAFCQAVGWGDPIT ANGSRIPTGERVWDRGNVTL

LCDCPNGPWVWVPAFCQAVG CGTCVRDCWPETGSVRFPFH

PNGPWVWVPAFCQAVGWGDP CRANGSRIPTGERVWDRGNV

PTGERVWDRGNVTLLCDCPN CSCRANGSRIPTGERVWDRG

RGNVTLLCDCPNGPWVWVPA DLEAVPFVNRTTPFTIRGPL

RIPTGERVWDRGNVTLLCDC ELSEWGVPCVTCILDRRPAS

TLLCDCPNGPWVWVPAFCQA ETGSVRFPFHRCGTGPRLTK

WDRGNVTLLCDCPNGPWVWV GAPASVLGSRPFDYGLKWQS

WVWVPAFCQAVGWGDPITHW GLTGGFYEPLVRRCSELMGR

GNQGRGNPVRSPLGFGSYTM

GSRIPTGERVWDRGNVTLLC

HWSHGQNQWPLSCPQYVYGS

KCPTPAIEPPTGTFGFFPGV

LGSSDRDTVVELSEWGVPCV

LSCPQYVYGSVSVTCVWGSV

PFDYGLKWQSCSCRANGSRI

PPINNCMPLGTEVSEALGGA

QAVGWGDPITHWSHGQNQWP

RCGTGPRLTKDLEAVPFVNR

SKIDVWSLVPVGSASCTIAA

SPLGFGSYTMTKIRDSLHLV

SWFASTGGRDSKIDVWSLVP

TCILDRRPASCGTCVRDCWP

TEVSEALGGAGLTGGFYEPL

TGTFGFFPGVPPINNCMPLG

TKIRDSLHLVKCPTPAIEPP

TTPFTIRGPLGNQGRGNPVR

VGSASCTIAALGSSDRDTVV

VRRCSELMGRRNPVCPGYAW

VSVTCVWGSVSWFASTGGRD

LSGIVQQQNNLLRAIEAQQHLLQLTVWGIKQLQ [10]

SGIVQQQNNLLRAIEAQQHLLQLTVWGIKQLQARIL

NNLLRAIEAQQHLLQLTVWGIKQLQARILAVERYLKDQ

YTSLIHSLIEESQNQQEKNEQELLELD

WMEWDREINNYTSLIHSLIEESQNQQEKNEQELL

YTSLIHSLIEESQNQQEKNEQELLELDKWASLWNWF [8]

DENV RWMVWRHWFHRLRLPYNPGKNKQNQQWP RWRHLKKMQRLQPRNPNWPGQFWVHYNW [17]

5p+9n FWFTLIKTQAKQPARYRRFC MVIVQHQWMQIMRWPWQPE

RQMRAWGQDYQHGGMGYSC QQCFRFPALRKKATYTRFWI

YPENLEYRVYITPHPGEEHH

EWSKHREGRWHTALTGATEI

WHTVEPIVTEKDRPVNYEWE

AWDFGSLGGVFTSIGKALHQVFGAIYGAA [19]

MAILGDTAWDFGSLGGVFTSIGKALHQVFGAIY MVDRGWGNGCGLFGKGGIV [18]

MVDRGWGNGCGLFGKGGIV

AWLVHTQWFLDLPLPWLPGADTQGSNWI

DENV-DET PWLKPGDLDL [20]

AGVKDGKLDF

2p+0n

WNV TFLVHREWFMDLNLPWSSAGSTVWR VVDRGWGNGAGLFGKGSID [16]

7p+13n TFLVHREWFMDLNLPWSSA

DTRACDVIALLCHLNT TGPEFPGRPTRP [18]

CDVIALLCHLNT NTTHYRVIRLTIG

CDVIALLACHLNT DTRACDVIALL

CDVIALLCHLNTPSFNTTHYRESWY CDVIALLACHLNTPSFNTTHYRESWY

(Continued)
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Table 1. (Continued)

Active peptides Non-active peptides Ref

CDVIALLCHLNTPSF TRACDVIALLECHLNT

DTRACDVIALLECHLNT

DTRACDVIPLL

CDVIALL

DTRAPLAI

CDVIALLACHLNTPSF

CDVIALLECHLNT

DTRACDVIALLECHLNT

HCMV WEIHHINKFAQAYSSYSRVIGGTVFVA [32]

4p+0n WHSRGSTWLYRETANLNAMLTITTARSKYPY

HFFATSTGDVVYISPFYNGTNRNASYFG

FFIFPNYTIVSDFGRPNAA

HSV KTTSSIEFARLQFTY CPPPTGATVVQFEQP [31]

4p+20n GHRRYFTFGGGYVYF CYSRPLVSFRYEDQG

HEVVPLEVYTRHEIK DARDAMDRIFARRYN

TTPKFTVAWDWVPKR DCIGKDARDAMDRIF

DDHETDMELKPANAA

DLKYNPSRVEAFHRY

DMELKPANAATRTSR

DNATVAAGHATLREH

DPKPKKNKKPKNPTP

EVIDKINAKGVCRST

EYPLSRVDLGDCIGK

FADIDTVIHADANAA

HVNDMLGRVAIAWCE

LEVYTRHEIKDSGLL

PVPFEEVIDKINAKG

PYKFKATMYYKDVTV

TVSTFIDLNITMLED

APTSPGTPGVAAATQ

AYQPLLSNTLAELYV

CIVEEVDARSVYPYD

HSV-gH AAHLIDALYAEFLGGRVLTTPVVHRALFYASAVLRQPFLAGVPSA TWLATRGLLRSPGRYVYFSPSASTWPVGIWTTGELVLGCDAAL [26]

3p+2n GLASTLTRWAHYNALIRAF RLTGLLATSGFAFVNAAHANGAVCLSDLLGFLAHSRALAG

AAHLIDALYAEFLGGRVLTT

HSV-pTM APSVFSSDVPSTALLLFPNGTVIHLLAFDTQPVAAIA GPTEGAPSVFSSDVPSTALLLFPNG [27]

6p+7n TVIHLLAFDTQPVAAIAPGFLAA APSVFSSDVPSTALLLFPNGTVIHL

SSDVPSTALLLFPNGTVIHLLAFDTKKKK LFPNGTVIHLLAFDTQPVAAIAPGF

KKSSDVPSTALLLFPNGTVIHLLAFDTKK GTVIHLLAFDTQPVAAIA

STALLLFPNGTVIHLLAFDTQPVAAKKKK TVIHLLAFDTQPVAAIA

KKSTALLLFPNGTVIHLLAFDTQPVAAKK TVIHLLAFDTQPVAAIAPGFLAASA

SHVLTAPALTFNLTDFVPILALAGIQA

HSV-HB VTVSQVWFGHRYSQFMGIF FVLATGDFVYMSPFYGYRE [28]

4p+4n SVERIKTTSSIEFARLQFTYNHIQ YGGSFRFSSDAISTTFTTN

PCTVGHRRYFTFGGGYVYF YYLANGGFLIAYQPLLSNT

YAYSHQLSRADITTVSTFI FVRGHTGFVYCYGYTGFPR

HSV-HR TARLQLEARLQHLVAEILEREQSLALHALGYQLAFV LQLEARLQHLVAEILER [29]

4p+9n ALHALGYQLAFVLDSPSAY YQFHLVLHEALRAQALSRQLILGRELAQELVAELAT

RARRSLLIASALCTSDVAAATNADLRTALARADHQKTLFWL TSDVAAATNADLRTALARADHQKTLFWL

AGDNATVAAGHATLREHLRDIKAENTDAN HATCSLAFALATSVALATRNDLLLRWAAARDAQTILSKRDRAGH

ATLREHLRDIKAENTDAN

TAAGDARANAVAKAGLHDLNIETDTERNH

VEGQLGENNELRLTRDAIE

GENNELRLTRDAI

DVREEEQLGERATGLNLNI

HSV-gBh SIEFARLQFTYNHIQRHVNDMLGRVAIAWCELQNHELTLWNEARK [30]

(Continued)
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Table 1. (Continued)

Active peptides Non-active peptides Ref

11p+0n SIEFARLQFTYNHIQRHVNDMLGR

VAIAWCELQNHELTLWNEARK

FARLQFTYNHIQRHVNDMLGR

FARLQFTYNHIQRHVRDMEGR

YNHIQRHVNDMLGR

YNHIQRHVNDMLGRVAIAWCE

YNHIQRHVNDMLGRVKKAWEE

FARLQFTYNHIQRHVNDMLGRVAIAWCE

FARLQFTYNHIQRHVNDMLGRVKKAWEE

SIEFARLQFTYNHIQRHVNDMLGRVAIAWCELQNHE

JEV ATSSANSKA [21]

1p+0n

RVFV SGSWNFFDWFSGLMSWFGGPL [22]

2p+0n WNFFDWFSGLMSWFGGPLK

HCV MANAGLQLLGFILAFLGWIGAIVS [25]

CLDN-1 MANAGLQLLGFILAFLGW

11p+0n LLGFILAFLGWIGAIVST

FILAFLGWIGAIVSTALP

AFLGWIGAIVSTALPQWR

GWIGAIVSTALPQWRIYS

GAIVSTALPQWRIYSYAG

MANAGLQLLGFILAFL

MANAGLQLLGFILAFLGWIG

MANAGLQLLGFILAFLGWIGAI

MANAGLQLLGFILAFLGW

SARS MWKTPTLKYFGGFNFSQIL [11]

11p+6n ATAGWTFGAGAALQIPFAMQMAY

GYHLMSFPQAAPHGVVFLHVTW

GVFVFNGTSWFITQRNFFS

AACEVAKNLNESLIDLQELGKYEQYIKW

PTTFMLKYDENGTITDAVDC [12]

YQDVNCTDVSTAIHADQLTP

QYGSFCTQLNRALSGIAAEQ

IQKEIDRLNEVAKNLNESLI

NGIGVTQNVLYENQKQIANQFNKAISQIQESLTTTSTA FKLPLGINITNFRAILTAFS [13]

IQKEIDRLNEVAKNLNESLIDLQELGK VLYNSTFFSTFKCYGVSATK

PALNCYWPLNDYGFYTTSGI

RDVSDFTDSVRDPKTSEILD

SNNTIAIPTNFSISITTEVM

GIGVTQNVLYENQKQIANQF

FF-3 VEDTKIDLWSYNAELL [15]

1p+0n

PICV GHTLKWLLELHFNVLHVTRHIGARCKT [14]

5p+0n HLIASLAQIIGDPKIAWVGK

HYNFLIIQNTTWENHCTYT

PGGYCLEQWAIIWAGIKCF

LNLFKKTINGLISDSLVIR

HCV VSGIYHVTNDCSNSSIVY [24]

4p+0n PSQKIQLVNTNGSWHINR

DYPYRLWHYPCTVNFTVF

YLYGIGSAVVSFAIKWEY

* The sequences in bold were used in the 75p+75n training set; the rest sequences were used in the 26p+26n test set.

doi:10.1371/journal.pone.0144171.t001
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the SVM learning. A third SVMmodel EAPcompo was also built where the fractions of amino
acids in a peptide were used as input features in the machine learning process.

SVM training. The SVMmodels were trained using the experimentally validated 75p+
75n data sets. During 5-fold cross validation, the training set was randomly partitioned into
four subsets with equal size of (15p+15n) and a remaining subset (15p+15n). Three SVMmod-
els were built using sequence-based statistical scores, physicochemical properties and amino
acid composition, respectively. The performances of the three models are shown in Table 2. It
can be seen that the EAPscoring model performed best among the three models during 5-fold
cross validation. A "grid-search" combined with cross-validation was adopted to search for the
optimal parameters -c and -g in SVMmodels [49]. The result of the grid search is shown in the
support information (S1 File). It is shown that the performances of three EAP models during
5-fold cross validation have been improved significantly using the optimized parameters
(Table 2).

Evaluation of the predictive efficiency of SVMmodels on independent
test set
The performance of the SVMmodels was evaluated using an independent dataset of experi-
mentally validated peptides that were not contained in the learning dataset (Table 1). In the
EAPphysico model where physicochemical properties of peptides were used as input features,
an accuracy of 65% with a MCC value of 0.31 was observed (Table 3). In the EAPcompo model
where amino acid composition features were used, the predictive accuracy and the MCC value
are slightly higher. When the sequence-based statistical function scores were used as input in
the EAPscoring model, a remarkable accuracy of 92% was achieved with a MCC value of 0.84.
Thus the sequence-based statistical scores developed in the present research are predominantly
superior to the conventional physicochemical properties or amino acid decomposition features
in identifying active peptides derived from enveloped proteins.

Table 2. Performance of the AVPpred and EAPpred models training set V75p+75n.

Data set Model Sensitivity Specificity Accuracy MCC

EAP EAPphysico 79.37 71.26 74.67 0.5

(default parameters)

EAPcompo 66.99 87.23 73.33 0.5

EAPscoring 100 92.59 96 0.92

EAP EAPphysico 80 72.94 76 0.52

(optimized parameters)

EAPcompo 94.67 94.67 94.67 0.89

EAPscoring 100 97.4 98.67 0.97

doi:10.1371/journal.pone.0144171.t002

Table 3. Performance of AVPpred and EAPpred models on independent test set V26p+26n.

Model Features Sensitivity Specificity Accuracy MCC

AVPpred AVPmotif 100 50.98 51.92 0.14

AVPphysico 72.22 61.76 65.38 0.32

AVPcompo 63.16 57.58 59.62 0.20

AVPalign 92.86 65.79 73.08 0.52

EAPpred EAPphysico 68.18 63.33 65.38 0.31

EAPcompo 72.41 78.26 75 0.5

EAPscoring 92.3 92.3 92.3 0.84

doi:10.1371/journal.pone.0144171.t003
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Comparison of the predictive efficiency of the AVP and EAPModels
AVPpred is a web server for prediction of the activities of general antiviral peptides (AVPs)
based on a number of experimentally validated positive and negative data sets [43]. The peptide
inhibitors employed in AVPpred target a variety of biological targets involved in virus infec-
tion. In contrast, the self-derived peptides of enveloped proteins being studied in the present
research competitively bind to E proteins so as to mediate the virus fusion process. Because the
self-derived peptides share similar mechanism of action, it is feasible to retrieve common fea-
tures from them to build predictive SVMmodels. In order to evaluate the performance in pre-
dicting peptide inhibitors of the enveloped virus, we compared the AVPpred models with our
EAPpred models using an independent 26p+26n dataset as test set. The results are shown in
Table 3.

Four different features were employed in the AVPpred models, namely conserved motif
search using MEME/MAST, amino acid composition, sequence alignment using BLAST and
physicochemical parameters including secondary structure, charge, size, hydrophobicity and
amphiphilic character [43]. When the AVPmotif model was used to predict the activities of the
self-derived peptide inhibitors, it performed rather poorly with accuracy of 52% and MCC of
0.14. This is not surprising because AVPmotif was developed based on 20 general antiviral pep-
tide motifs. However, the self-derived peptide inhibitors may not share a conserved motif with
the general antiviral peptides since the latter interact with various biological targets with differ-
ent mechanisms of action. In the AVPalign model, the peptide sequences were classified into
active and non-active databases and the query peptide sequences were matched against the
active and non-active databases using the BLAST program. Compared with AVPcompo
and AVPphysico, AVPalign performed better with a predictive accuracy of 73% and MCC
value of 0.52. Fusion mechanism is highly conserved among related viruses and entry of viruses
into host cells has been inhibited by peptides derived from various regions of envelope glyco-
proteins [59]. Self-derived peptides would inhibit interactions of their original domain by mim-
icking its mode of binding to partner proteins [4]. Because similar sequences are often
associated with similar structure and function, the sequence-based property AVPalign would
account for the activities of the self-derived peptide inhibitors which regulate the virus fusion
by mimicking the binding to E proteins.

In the AVPphysico model, 25 best performing physicochemical properties were selected out
of the 544 properties to build the SVMmodel [43]. Antiviral peptide inhibitors are generally
amphiphilic [60] and the activities of peptide entry inhibitors are dependent on their interfacial
hydrophobicity [58]. Therefore we only employed five physicochemical properties reflecting
hydrophobicity, solvent accessibility and secondary structure features as SVM input features. It
was demonstrated that the accuracy and MCC of EAPphysico is comparable to that of AVP-
physico model, indicating the five properties used in current modeling building are critical for
their activities.

The MCC value of the AVPcompo models is 0.20, indicating that the antiviral activities of
the peptides are related to amino acid composition. When the amino acid composition was
used as input, the predictive accuracy of the EAPcompo model was higher than that of the
AVPcompo model, indicating the peptide inhibitors of E proteins employed in the training set
is sufficient to represent the contribution of amino acid composition to their inhibitive activi-
ties. In the EAPcompo model, the preference of the amino acid composition was ranked as: P,
R, Q, D, F, W, E, L, T, I, N, H, Y, C, A, S, M, V, K, G (Fig 1). The role of arginine-arginine pair-
ing and its contribution to protein-protein interactions has been investigated by computational
approaches [61]. The higher abundance of R at protein-protein interfaces compared to K may
be attributed to the formation of cation-π-interactions and the greater capacity of the
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guanidinium group in R to form hydrogen bonds (compared to K) [62–64]. Furthermore, it
was suggested that the interface regions are enriched in aliphatic (L, V, I, M) and aromatic (H,
F, Y, W) residues and depleted in charged residues (D, E, K) with the exception of arginine [62,
65–69]. This is in agreement with our amino acid composition analysis, where higher popula-
tion of aliphatic Leu residue as well as aromatic residues Trp and Phe was observed, whereas
positively charged Lys was hardly observed. The predominant occurrence of proline and gluta-
mine residues is characteristic for the unique protein-protein interactions for E proteins. e.g. a
conserved proline-rich motif was suggested to be engaged in monomer-monomer interactions
in Dengue E proteins [70]. A conserved glutamine-rich layer is involved in the extensive H-
bond network in HIV-1 gp41 E proteins [71]. Thus the preference of the amino acid composi-
tion identified from the EAPcompo model is generally in accordance with the predominant
residues involved in protein-protein interactions, manifesting the amino acid composition of
the self- derived peptide inhibitors are closely related to their potential activities in mediating
the protein-protein interactions in the virus fusion process.

Because the antiviral activities of peptides are dependent on amino acid composition, we
presume amino acid composition discriminated by the propensity of their activities would be
an intrinsic feature in the self-derived peptide inhibitors which share a common mechanism of
action. When statistical function scores were employed in the SVMmodel (EAPscoring), a
remarkable predictive accuracy of 92% with an ideal MCC value of 0.84 was achieved, signifi-
cantly better than any AVP models. The logarithm form of the discriminatory function (Eq 1)
can be deemed as the pseudo energy of the system. In our previous study, we suggested that the
stability of proteins is related to their in situ binding potential to the partner regions [72]. The
prominent performance of EAPscoring model indicates the sequence-based stability feature of
self-derived peptides may reflect their potential of binding to E proteins so as to regulate the
virus entry process.

Conclusions
We developed three SVMmodels using physicochemical properties, amino acid composition
and statistical discriminative function as input features. The prediction accuracy and the MCC
value of the EAPphysico model where five physicochemical properties were employed are com-
parable with the previous AVPphysico model where 25 physicochemical properties were used.
The AVPcompo and EAPcompo models demonstrated that the activities of antiviral peptides
are dependent on amino acid composition. A sequence-based scoring function was developed
for the self-derived peptide inhibitors of E proteins. The outperformance of the EAPscoring

Fig 1. Feature ranking of the EAPcompomodel. X-axis is the type of amino acid, Y-axis isW *W.

doi:10.1371/journal.pone.0144171.g001
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models supports our hypothesis that an intrinsic feature, represented by the propensity of each
amino acid for being active in self-derived peptides, is responsible for the activities of the pep-
tides to regulate virus fusion by mimicking the binding to their accessory proteins. The
sequence-based statistical scoring function would be useful in development of novel antiviral
therapies to target the initial step of viral infection.

Supporting Information
S1 File. Parameters optimization by Grid-research combined with 5-fold cross validation.
x-axis is log2g, y is log2c and z-axis represents accuracy(%) (Figure A) Parameters Optimiza-
tion for EAPphysico model. (Figure B) Parameters Optimization for EAPcompo model.
(Figure C) Parameters Optimization for EAPscoring model.
(DOCX)
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