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Key changes in denervated muscles and their impact 
on regeneration and reinnervation

1 Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
2 Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China
3 Departments of Orthopedic Surgery and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
4 Department of Neurology, Mayo Clinic, Rochester, MN, USA
5 Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, China
6 Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China 
7 Department of Orthopedic Surgery, Wake Forest School of Medicine, Winston-Salem, NC, USA

Corresponding author:
Huan Wang, M.D., Ph.D., Department of 
Neurologic Surgery, Mayo Clinic, 200 First 
Street SW Rochester, MN 55905, USA, 
wang.huan@mayo.edu.

doi:10.4103/1673-5374.143424

http://www.nrronline.org/

Accepted: 2014-08-11

Peng Wu1, 2, 6, Aditya Chawla1, 7, Robert J. Spinner1, Cong Yu2, Michael J. Yaszemski3, Anthony J. Windebank4, Huan Wang1, 5

Introduction
After denervation, the neuromuscular junction (NMJ) and 
muscles undergo several changes. At the NMJ level, insta-
bility results in remodeling that increases fragment number, 
gutter depth and plantar area (Ma et al., 2005). At the same 
time, target muscles gradually atrophy, and muscle wet 
weight and muscle fiber diameter (MFD) gradually decrease. 
In turn, muscle fiber conduction velocity (MFCV) decreases 
(Kraft, 1990). Denervated muscle fibers begin spontaneously 
discharge, thereby producing a fibrillation potential (Fib) 
(Kraft, 1990; Jiang et al., 2000; Burns et al., 2007). Finally, 
the mRNA expression of nicotinic acetylcholine receptor 
(nAChR) and myogenic regulatory factors (MRFs) is initial-
ly up-regulated before rebounding to normal or subnormal 
levels (Voytik et al., 1993; Adams et al., 1995; Weis et al., 
2000; Farina and Merletti, 2004; Ma et al., 2005, 2007). 

Following an immediate nerve repair, the target muscle 
Fib gradually disappears (Chuang et al., 2002; Kerns et al., 

2003; Heaton and Kobler, 2005); the mean MFCV (Van der 
Hoeven et al., 1993; Cruz-Martinez and Arpa, 1999), muscle 
wet weight (Bain et al., 2001; Brown et al., 2002; Aydin et al., 
2004) and MFD all increase (Van der Hoeven et al., 1993; 
Cruz-Martinez and Arpa, 1999; Bain et al., 2001; Brown et 
al., 2002; Chuang et al., 2002; Kerns et al., 2003; Aydin et al., 
2004; Heaton and Kobler, 2005). Muscle experiences excel-
lent functional recovery as it returns to its pre-injury state 
(Brunetti et al., 1985; Brown et al., 2002; Aydin et al., 2004). 
However, if repair is delayed, NMJs become progressively 
less receptive to regenerating axons (Aydin et al., 2004; Ma et 
al., 2007). 

Post denervation changes complicate clinical scenarios in 
patients who do not present immediately. With a delayed 
presentation it is difficult to ascertain the denervated mus-
cle’s residual receptivity and to gauge the appropriateness 
of performing a neuroplasty (Wu et al., 2013). Although 
patients may be evaluated in terms of electrophysiological 
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testing, age, extent of injury, and delay to presentation, there 
are no concrete criteria for choosing between treatment 
modalities. The current consensus is that neuroplasty can be 
considered for up to 1 year after injury (Totosy et al., 1992). 
Patients presenting beyond this cutoff are evaluated for 
functional reconstruction. This stems from multiple obser-
vations that nerve repairs performed after the 1-year mark 
produce poor recovery (Gregory, 2009). Nevertheless, multi-
ple case reports have documented transected nerves regain-
ing full function as late as 9 years post injury (Trail, 1985). 
These outliers suggest that time alone does not dictate target 
muscle receptivity. It follows that improving the criteria by 
which physicians assess denervation and receptivity to repair 
would enhance both clinical judgment and treatment plan-
ning. As previously mentioned, Fib, MFCV, MFD, muscle 
wet weight, Po, gene expression levels, and NMJ remodeling 
have all been correlated with the time course and extent of 
muscle denervation. These parameters may indirectly reflect 
muscle receptivity to regenerating axons, providing an index 
for judging the likelihood of a successful nerve repair. An 
overview of these indices, the techniques to detect them and 
their clinical significance are provided.

Fibrillation potentials (Fibs)
After denervation, individual muscle fiber cell membranes 

spontaneously depolarize creating an unstable resting mem-
brane potential at the end-plate known as Fib (Thesleff and 
Ward, 1975; Wiechers, 1977).

Parameters of Fib
A Fib always presents as biphasic or triphasic waves, lasting 
1–5 ms with peak amplitudes of 20–200 μV (Thesleff and 
Ward, 1975; Burns et al., 2007). Fib frequency or firing den-
sity can either be numerically quantified or semi-quantita-
tively accounted for on a scale of (+) to (++++) (Izumi et al., 
1999). Fib frequency, which peaks 7–10 days after initial inju-
ry, is directly proportional to the number of denervated mus-
cle fibers (Smith and Thesleff, 1976; Izumi et al., 1999). Fib 
recording morphology depends heavily on electrode place-
ment. Maximal Fib recordings are obtained in close proximi-
ty to the muscle end plate and distancing the electrodes from 
the end plate attenuates the signal. Maximal Fib recordings 
demonstrate stable morphology and positively correlate with 
MFD (Jiang et al., 2000). Using this relationship Fib record-
ing can indicate the degree of muscle denervation.

Fib changes in denervated muscles
Table 1 shows the time of first Fib appearance, Fib persistent 
time and maximal amplitude of Fib in denervated muscles 
of humans and rats after nerve crush injury, transection, and 

Table 1 Fibrillation potential (Fib) in denervated muscles of humans and rats

Author

Subjects
(number)
Nerve (treated)

Fib (after nerve injury or treatment)

First appearance 
time of Fib

Muscle 
tested Amplitude (μV)

Duration of 
existence Test duration

Kraft (1990)

Heaton and Kobler (2005)

Kerns et al. (2003)

Chuang et al. (2002)

Salafsky et al. (1968)

Izumi et al. (1999)

Tsubahara et al. (1990)

Arancio et al. (1989)

Patients (69)
Peripheral N
(complete or partial injury)

Rats (12)
Facial N 
Hypoglossal N (crush)
SD rats (16)
Pudendal N
(crush)
SD rats (18)
C6, C7 root (transection, graft repair)
Rats (160)
Tibial N
Sciatic N
(transection)
Wistar rats (27)
Sciatic N
(transection)
Rats (18)
Sciatic N
(transection)
Wistar (15)
L5 root (partial transection)
L3–6 root (total transection)

7th d

4th d

2nd  w

6th w

42nd h

1st w

2nd w

3rd – 4th d

Various 
target 
muscles

Tongue

ASM

BBM
TBM
DM
Soleus
TA

EDL

EDL
Soleus

Soleus

Largest: 700–1000
Mean 1, 2 m: 612
Mean 3, 4 m: 521
Mean 5, 6 m:  320
6 m:  sharp drop
1 year: < 100
Years:  20
N/A

N/A

N/A
6 w: profound
6 m: obvious decrease 
0–200
42 h: 10–15
60 h: 60
96 h: 150
1 w: 451.8 ± 110

> 100

N/A

10.5 y

4–16 d

8 w
(2/6 rats)

6 m

96 h

N/A

N/A

6 d

7 d–10.5 y

4 d–3 w

2–8 w

6 w–6 m

0–96 h

1 w

Only once

2–6 d

SD: Sprague-Dawley; ASM: anal sphincter muscle; BBM: biceps brachii muscle; TBM: triceps brachii muscle; DM: deltoid muscle; TA: tibialis 
anterior; EDL: extensor digitorumlongus; N: nerve(s); d: day(s); h: hour(s); w: week(s); m: month(s); y: year(s); N/A: not available.
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repair. The time course of Fib development varies between 
species and individuals. Fib first manifests 1–3 weeks post 
denervation in humans and 3–7 days in rats (Salafsky et al., 
1968; Arancio et al., 1989; Izumi et al., 1999; Burns et al., 
2005; Heaton and Kobler, 2005). The literature lacks a stan-
dard timeline of Fib resolution as most studies do not use 
this as an end point (Desmedt and Borenstein, 1975; Heck-
mann and Ludin, 1982; Arancio et al., 1989; Kraft, 1990; Tsu-
bahara et al., 1990). Some studies have reported resolution 
in as early as 8 weeks, while others document persistence 
up to 10 years after brachial plexus trauma. The mechanism 
by which Fibs are maintained for so long is unknown. One 
possible explanation is that proliferating connective tissue 
encircles denervated muscle preventing infiltration of the re-
generative axons. As per this account, Fibs will persist as long 
as denervated muscles retain a blood supply (Dumitru and 
King, 1998). Likewise, Fib resolution might indicate total re-
innervation (Chuang et al., 2002; Heaton and Kobler, 2005), 
substantial muscle atrophy or autonomic axon sprouting 
(Heaton et al., 2014). In humans, the maximal Fib amplitude 
can reach up to 1,600 μV in the first month (Kraft, 1990). 
While in rats, the maximal Fib amplitude is tested as 451 μV 
in extensor digitorum longus (EDL) muscle 1 week after the 
sciatic nerve transection (Izumi et al., 1999). 

Detection of Fibs
Detection of Fibs with needle electrodes
Fibs can be detected by inserting either concentric (Desmedt 
and Borenstein, 1975; Heckmann and Ludin, 1982; Arancio 
et al., 1989; Kraft, 1990; Jiang et al., 2000; Chuang et al., 2002; 
Kerns et al., 2003; Burns et al., 2007) or bipolar electrodes 
(Salafsky et al., 1968; Kraft, 1990; Heaton and Kobler, 2005) 
into the target muscle to a depth of 1–2 mm (Salafsky et al., 
1968). Maximal Fib is a stable parameter, while Fib morphol-
ogy is variable. Since Fib data are inherently variable, at least 
20 Fibs from three different positions are needed to accurately 
calculate maximal Fib amplitude (Jiang et al., 2000). Each Fib 
is analyzed for 10 seconds (Heckmann and Ludin, 1982). 

Detection of Fibs with surface electrode and high-density 
surface electromyography
Regular surface electrodes are inappropriate for measuring 
Fibs (Haig et al., 1996) as their large surface areas prohib-
it accurate detection of a single muscle fiber’s membrane 
potential (Keller et al., 2002). This problem is exacerbated 
in deeper fibers. High density surface electrodes which are 
composed of a series of smaller electrodes, may offer a work-
able non-invasive alternative to needle electrodes, allowing 
them to pinpoint individual fiber potentials (Merletti et al., 
2008). 

Fib determinants
Fib is affected by factors including species, temperature and 
others as described below:

Species
The interval between injury and Fib onset varies by species 

(Table 1). Fib appears 1–3 weeks in humans (Kraft, 1990; 
Jiang et al., 2000) while 3–7 days in rats after nerve injury 
(Salafsky et al., 1968; Arancio et al., 1989; Izumi et al., 1999; 
Heaton and Kobler, 2005). 

Temperature and metabolism
Fib firing rate and amplitude positively correlate with body 
temperature and metabolism (Izumi et al., 1999). Fib am-
plitude drops 42% for every ten degrees decrease in tem-
perature (Lee and Kwon, 1997). Accordingly, accurate data 
collection in humans requires careful monitoring (Salafsky 
et al., 1968; Smith and Thesleff, 1976; Heckmann and Ludin, 
1982; Kraft, 1990; Tsubahara et al., 1990; Izumi et al., 1999; 
Jiang et al., 2000; Chuang et al., 2002; Heaton and Kobler, 
2005; Burns et al., 2007) to maintain body temperature 
between 36–37.5°C (Salafsky et al., 1968; Heckmann and 
Ludin, 1982). Catecholamine, isoprenaline and adrenalin 
increase the Fib firing rate (Smith and Thesleff, 1976; Izumi 
et al., 1999) while ouabain and tetrodotoxin block it (Smith 
and Thesleff, 1976).

Blood supply and partial pressure of oxygen (PaO2)
Fib firing rate positively correlates with PaO2. Decreased 
perfusion to the denervated EDL in a rat prompts an initial 
increase and then rapid disappearance of Fibs (Izumi et al., 
1999). Subsequent reperfusion restores Fibs (Izumi et al., 
1999).

Muscle fiber type
Two weeks after a sciatic nerve excision, EDL and soleus 
fibers demonstrated Fib frequencies of 60.3 and 3.0 respec-
tively (Izumi et al., 1999), suggesting that Fib frequency is 
greater in fast twitch muscle fibers.

Electrolytes
The depolarization of a denervated muscle fiber membrane 
is affected by its surrounding electrolyte milieu. Decreases in 
calcium chloride concentration increase Fib activity (Thesleff 
and Ward, 1975; Smith and Thesleff, 1976). Hypokalemic 
and hyperosmotic solutions decrease Fibs (Smith and Thes-
leff, 1976).

Time course and extent of nerve injury
Fib magnitude is proportional to the number of denervated 
muscle fibers (Izumi et al., 1999). As compared to partial 
denervation, the Fib in complete denervation appears ear-
lier, has larger amplitude, and has a shorter latency peri-
od (Desmedt and Borenstein, 1975; Arancio et al., 1989). 
Notably, Fib amplitude increases during early denervation 
(Salafsky et al., 1968) and then decreases with time (Kraft, 
1990; Jiang et al., 2000). This change likely reflects the time 
course of reinnervation, indicating that Fib magnitude is 
closely tied to the interplay of injury severity and the extent 
of healing. Recent findings (Heaton et al., 2014) indicated 
that cholinergic, autonomic reinnervation of rat whisker 
pad muscles would cause the disappearance of Fibs, and that 
subsequent disruption of the autonomic input would cause 
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the re-appearance of Fibs. Therefore, the disappearance of 
Fibs might stem from autonomic input in the case of head 
& neck muscles, where parasympathetic (cholinergic) axons 
innervated blood vessels within muscles. It is not known 
whether this happens in other body locations or in animals 
aside from rats. 

Nerve injury level and recording position
Location of the injury affects Fib amplitude. Injuries locat-
ed more proximally along a nerve will create a longer distal 
nerve stump and are associated with smaller maximal Fib 
amplitudes (Salafsky et al., 1968). The cause is unclear, but 
the different onset time of fibrillation potentials and loss 
time of neuromuscular transmission following denervation 
in different nerve injury locations could probably partially 
explain this observation (Luco and Eyzaguirre, 1955; Salafsky 
et al., 1968; Willmott et al., 2012). As previously established, 
Fib amplitude is maximal when recorded near the end-plate 
area (Thesleff and Ward, 1975). 

Clinical significance of Fibs
Fib appears about 1 week after denervation (Desmedt and 
Borenstein, 1975; Thesleff and Ward, 1975; Heckmann and 
Ludin, 1982; Arancio et al., 1989; Kraft, 1990; Dumitru and 
King, 1998; Izumi et al., 1999; Heaton and Kobler, 2005), 
thereby providing a sensitive indication of early stage mus-
cle denervation. This makes Fibs a likely gold standard for 
electrophysiological diagnosis (Burns et al., 2007). Both Fib 
amplitude and muscle fiber diameter reflect the severity of 
and length of denervation (Kraft, 1990; Jiang et al., 2000). 
Longer delays in repair and more extensive injuries are asso-
ciated with poorer nerve recovery (Brown et al., 2002; Aydin 
et al., 2004; Ma et al., 2007). Fibs may therefore help predict 
the success of a delayed nerve repair.

Fib decreases over the course of reinnervation and fully 
disappears upon complete healing. Fib onset and gradual 
dissipation provides a qualitative index of how reinnervation 
is progressing. This information, in turn, can help evaluate 
the effectiveness of treatment modalities. One should also 
keep in mind that, aside from successful somatic reinner-
vation, Fibs can also disappear due to muscle atrophy and 
autonomic axon sprouting.

Muscle fiber conduction velocity (MFCV)
MFCV is primarily used to gauge muscle fatigue after bouts 
of exercise (Sakamoto and Mito, 2000). MFCV can also be 
used to reflect the extent of denervation (Troni et al., 1983; 
Van der Hoeven et al., 1993; Cruz-Martinez and Arpa, 1999; 
Ruegg et al., 2003; Blijham et al., 2006).

Parameters and changes of MFCV after denervation
MFCV encompasses the fastest, slowest, and mean values. 
Additionally, the ratio of fastest/slowest MFCV (F/S) is used 
to evaluate conduction variability. 

The fastest and slowest MFCV correspond with the largest 
and smallest muscle fiber diameters, respectively, in normal, 
myopathic and neuropathic muscles (Blijham et al., 2006). 

Post-denervation atrophy decreases the fastest MFCV. Like-
wise, reinnervation generates hypertrophy enabling maximal 
MFCV to rebound (Van der Hoeven et al., 1993; Cruz-Mar-
tinez and Arpa, 1999). Denervation can reduce the slowest 
MFCV to values as low as 0.5 m/s (Van der Hoeven et al., 
1993; Cruz-Martinez and Arpa, 1999). The slowest MFCV 
does not recover with reinnervation (Van der Hoeven et al., 
1993), suggesting that severely atrophied smaller fibers are 
rendered unreceptive to regenerating axons. 

Mean MFCV in normal muscle follows a Gaussian distri-
bution (Arendt-Nielsen and Zwarts, 1989; Cruz-Martinez 
and Arpa, 1999) with reported ranges of 3.4–4.0 m/s (Troni 
et al., 1983; Arendt-Nielsen and Zwarts, 1989). Mean MFCV 
begins to decrease exponentially soon after denervation. 
Therefore, MFCV distribution shifts to the left after dener-
vation, but loses its normal Gaussian distribution (Van der 
Hoeven et al., 1993). Reinnervation generates hypertrophy 
enabling maximal MFCV to rebound and MFCV distribu-
tion shifts back to the right (Van der Hoeven et al., 1993; 
Cruz-Martinez and Arpa, 1999).

F/S is small in a normal muscle (Andersen et al., 1996). 
There is a positive correlation between F/S and the time 
course of amyotrophic lateral sclerosis (ALS) (Van der Ho-
even et al., 1993), reflecting the coexistence of atrophy and 
hyperplasia. Likewise, F/S increases after a brachial plexus 
injury (Van der Hoeven et al., 1993; Cruz-Martinez and 
Arpa, 1999) indicating variability in atrophy of various mus-
cle fibers. An increase in F/S persists after reinnevation as 
larger fibers continue to grow while atrophic smaller fibers 
are unable to recover or become even more atrophic (Van 
der Hoeven et al., 1993; Cruz-Martinez and Arpa, 1999).

Detection of MFCV
MFCV can be detected with needle and surface electrodes. 
Troni and colleaguesintroduced the measurement of MFCV 
by needle electrodes in human biceps brachii (Troni et al., 
1983). The anode of thestimulatingelectrode is placed far 
from the end-plate to avoid inadvertently stimulating adja-
cent nerves. Then the cathode of the stimulating electrode is 
placed 3.0 mm proximal to the anode. This bipolar config-
uration minimizes the inadvertent spreading of stimulation 
current. Initial stimulation uses pulses 0.2 ms in duration, of 
1 Hz frequency, and at an intensity of 1–2 mA. The intensity 
is gradually increased until a small, localizedmuscle twitch 
is palpable. After careful palpation of the muscle twitch, a 
single fiber recording electrode is inserted proximally and at 
a constant distance (50 mm) from the stimulating cathode. 
Once a multiphase potential is recorded, indicating the elec-
trode is properly located within the activated muscle bundle, 
the stimulating intensity is gradually decreased until a vari-
able number of individual fiber potentials, known as MFCV 
of a single muscle fiber, can be recorded (Troni et al., 1983; 
Van der Hoeven et al., 1993; Andersen et al., 1996; Blijham et 
al., 2006). Then, 20 MFCV from three to five sites are collect-
ed (Van der Hoeven et al., 1993; Blijham et al., 2006).

The multichannel surface electrode, composed of more 
than three small electrodes, has also been used to measure 
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MFCV (Rainoldi et al., 2004; Gallinaet al., 2013; Butugan 
et al., 2014). These three electrodes are configured to yield 
two sets of EMG signals. Cross-correlation method is used 
to calculate the time lag between these two EMG recordings 
along the muscle. Combined with the distance between the 
electrodes, MFCV is calculated (Arendt-Nielsen and Zwarts, 
1989; Zwarts, 1989; McIntosh and Gabriel, 2012). Once 
again, accurate data collection hinges on electrode place-
ment. This is guided by three landmarks along the muscle 
fiber’s length: the tendon and end plates, at either end of 
the fiber, and the innervation zone (IZ). MFCV measure-
ments near the tendons are the most variable (Rainoldi et 
al., 2004; Nielsen et al., 2008). Data collected near the muscle 
belly are less variable, but the MFCV phase reverses as elec-
trodes cross the IZ (Rainoldi et al., 2004). To ensure optimal 
measurements, surface electrodes are placed between the IZ 
and the tendon, in-line with the muscle fiber. Theanatomic 
position of IZ in several muscles has been described in de-
tails (Rainoldi et al., 2004; Beretta et al., 2014), which helps 
to guide the placement of surface electrodes. The local skin 
is shaved, abraded, and cleansed with alcohol to reduce the 
impedance at the skin-electrode interface. The stimulation 
could be electrical (McIntosh and Gabriel, 2012) or voluntary 
contraction of the muscle (Gallinaet al., 2013; Butugan et al., 
2014). Surface electrodes offer a non-invasive means of mea-
suring MFCV. It should be noted that while MFCV measured 
by surface electrodes positively correlates with needle elec-
trode measurements, they are around 1.0 m/s higher (Aquilo-
nius et al., 1984; Zwarts, 1989). The reason for this difference 
is unclear. One possible explanation is that surface EMG mea-
surements are the average of a large amount of most normal 
conducting fibers, because surface electrodes are unable to 
record very slow MFCV (Arendt-Nielsen and Zwarts, 1989). 

MFCV determinants
Patient variables
Many factors influence MFCV acquisition. Men demon-
strate larger MFCV than women (Andersen et al., 1996). 
MFCV is temperature sensitive, so it is important to control 
body temperature when measuring MFCV (Arendt-Nielsen 
and Zwarts, 1989). Mean MFCV in human brachioradialis 
decreases from 3.9 to 3.2 m/s when local skin temperature 
drops from 30 to 18°C after the application of ice packs 
around the forearm and elbow (Blijham et al., 2008). MFCV 
decreases as muscle fibers are stretched (Trontelj, 1993; Van 
der Hoeven et al., 1993). As the elbow joint angle progressed 
through 90, 120 and 150 degrees with biceps brachii lengths 
of 12.8, 15.4 and 16.8 cm, the MFCV was 4.29, 4.02 and 3.96 
m/s respectively (Arendt-Nielsen and Zwarts, 1989).

Recording electrode diameter and position
Decreasing electrode diameter increases the noise in re-
cordings. Electrodes that are 30–50 μm in diameter are con-
sidered to optimally balance accuracy and noise reduction 
(Hakansson, 1956). MFCV magnitude is proportional to 
the recording electrode’s proximity to either the end-plate 
or tendon (Troni et al., 1983; Nielsen et al., 2008). MFCV 

recorded near either site by cross-correlation method of sur-
face electrodes approaches 10 m/s, and reduces to 4.5 m/s after 
moving 20–45 mm away from the end-plate (Li and Saka-
moto, 1996; Sakamoto and Li, 1997). 

Inserting direction of electrodes 
Accurate MFCV measurements require that the stimulating 
and recording needle electrodes be placed perpendicular to 
the muscle fiber. Improper placement can result in errors; in 
fact, deviation of as little as five degrees can produce errors 
of 5–8% (Andersen et al., 1996). Alternatively, it is important 
that surface electrodes be aligned parallel to muscle fibers. 

Clinical significance of MFCV 
MFCV acquired by surface electrodes provides a non-inva-
sive means of studying muscle in health, injury and recovery. 
A positive relationship has been reported between MFCV 
and human arm size (Troni et al., 1983). MFCV and target 
muscle fiber diameter both decrease after denervation (Troni 
et al., 1983; Van der Hoeven et al., 1993; Cruz-Martinez and 
Arpa, 1999; Ruegg et al., 2003; Blijham et al., 2006). The lin-
ear relationship between MFCV and quadriceps femoris di-
ameter has been used to non-invasively track atrophy in pa-
tients with knee degeneration (Gechev et al., 2004; Blijham 
et al., 2006). Interestingly, MFCV offers clues of diagnosing 
and following myopathy in Duchenne’s muscular dystrophy 
(DMD). In DMD atrophy and hyperplasia coexist. As these 
changes progress they decrease MFCV frequency and elicit a 
multi-peak frequency distribution (Al-Ani et al., 2001). F/S 
and slowest MFCV values can be used to monitor the health 
of motor axons in diabetic patients who suffer from mo-
tor neuropathy (Meijer et al., 2008). Specifically, the linear 
relationship between slowest MFCV and F/S and peroneal 
nerve conduction velocity facilitates a measurement of the 
extent of lower extremity motor axon denervation. This is 
of particular interest because the extent of damage is closely 
correlated with the success of nerve repairs. MFCV can help 
predict the success of delayed nerve repairs and, thereby, of-
fer evidence for or against pursing surgical intervention.

Muscle wet weight  
Changes of muscle wet weight after denervation and 
reinnervation
After denervation, rat muscle wet weight decreases dramat-
ically initially, and then stabilizes at 10–20% the weight of 
healthy, contralateral muscle by 3–12 months (Xu and Gu, 
1999; Wang et al., 2001; Ma et al., 2007). Wet weight recovers 
well with short-term and intermediate-delayed repairs, and 
poorly with long-term delays (Bain et al., 2001; Brown et al., 
2002; Aydin et al., 2004). Changes in rat muscle wet weight 
associated with denervation and repairs at different time 
points are shown in Table 2. 

Muscle wet weight of rat gastrocnemius muscles was 
55–60%, 33–40%, 25–32% and 18–20% of that of the con-
tralateral side at 2 weeks, 1 month, 3–5 months and 1 year 
after complete denervation (Schmalbruch et al., 1991; Ma et 
al., 2007). After prolonged denervation, muscle wet weight 
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stabilizes at 10–20% of that of the contralateral side, partially 
due to connective tissue proliferation (Al-Amood and Lewis, 
1989; Xu and Gu, 1999; Wang et al., 2001; Ma et al., 2007). 

Muscle wet weight recovery rate ranges from 19% to 100% 
after immediate repair of its innervating nerve (Table 2). Lon-
ger follow-up time, lower injury level and more motor axons 
will bring better recovery after immediate repair (Kobayashi 
et al., 1997; Bain et al., 2001; Brown et al., 2002; Aydin et al., 
2004). When nerve repair is delayed, muscle wet weight re-
covery is good when the delay is within 1 month, and is much 
poorer after more than 3 months of delay, being only 10 % to 
20% of the contralateral healthy side (Kobayashi et al., 1997; 
Bain et al., 2001; Aydin et al., 2004). This nearly equals the 
rate of 20% that is left after prolonged denervation (Wang et 
al., 2001; Dow et al., 2004; Ma et al., 2007). 

Clinical significance of muscle wet weight in denervation
The aforementioned changes in muscle weight associated 
with both denervation and delayed repair could theoretically 
be used to evaluate the extent of muscle atrophy and predict 
the success of nerve repair. However, these applications have 
limited clinical value as it is impossible to obtain muscle wet 
weight in patients. 

Muscle fiber types and diameter 
Classification of muscle fiber types
Several approaches can be used to classify muscle fiber types. 
Broadly, muscle fibers can be categorized as type I and type 
II. Metabolically, the former favors oxidative enzymes to 
phosphorylase and produces small sustained forces (slow 
twitch) and the latter favors phosphorylase and rapidly gen-
erates large forces (fast twitch). Type II fibers can be further 
sub-categorized by their ATPases or myosin heavy chain 
isoforms. Differentiation by ATPases yields subtypes IIA, IIB, 
and IIC (Brooke and Kaiser, 1970; Manetti et al., 2007) and 
by myosin heavy chain isoform renders MHCIIA, MHCIIB, 
and MHCIIX/MHCIID (Schiaffino et al., 1989; Bortolotto 
et al., 2000; Manetti et al., 2007; Naderi et al., 2009). Some 
fibers are a hybrid of two other fiber types (Bortolotto et al., 
2000) such as type IIC (Manetti et al., 2007; Naderi et al., 
2009). Types I and IIA have the smallest diameters while IIX 
and IIB have intermediate and the largest diameters, respec-
tively (Westgaard and Lomo, 1988). Individual muscles are 
composed of a mixture of different fiber types; the predom-
inance of a certain fiber type determines the muscle’s meta-
bolic profile and force generating capacity. Normal rat soleus 
primarily contains type I fibers, so it is considered slow 
twitch. By comparison, the tibialis anterior predominantly 
contains type II fibers and is considered fast twitch (Brooke 
and Kaiser, 1970; Dow et al., 2006).

Changes of muscle fiber types and diameter after 
denervation
Changes of muscle fiber diameter after denervation
Naturally, as muscle atrophies after denervation, individual 
muscle fiber’s diameter decreases (Rowan et al., 2012). By 4 
months post-musculocutaneous nerve injury, the diameter 

of rat biceps brachii muscle fibers has been measured at 20% 
that of fibers in the contralateral muscle (Wang et al., 2001). 
While debate exists over how atrophy rates vary by muscle 
fiber types, the consensus is that type II fibers atrophy more 
rapidly than type I (Niederle and Mayr, 1978; Kraft, 1990; 
Zealear et al., 1994; Lu et al., 1997; Prakash et al., 1999; Jiang 
et al., 2000; Kostrominova et al., 2005). However, the exact 
time course and rate of type I fiber atrophy remain unknown. 
Proposed timelines include: an initial augmentation of type 
I fiber (Prakash et al., 1999), a decrease in fiber size that fol-
lows type II fiber atrophy (Lu et al., 1997; Kostrominova et 
al., 2005; Blijham et al., 2006), and finally, the idea that type I 
fiber does not atrophy until several months after denervation 
(Ashley et al., 2007). While this issue remains unresolved, 
there is agreement that both type I and II fiber atrophy after 
denervation and that, in the short term, these changes are 
more evident in type II fibers (Zealear et al., 1994; Lu et al., 
1997; Jiang et al., 2000; Kostrominova et al., 2005).

Changes of muscle fiber type distributions after denervation
After denervation, the total number of muscle fibers does not 
change within the first 51 weeks (Ashley et al., 2007), rather 
the individual fibers shrink and change types, altering the 
distribution and proportion of fiber types within the muscle 
(Ashley et al., 2007). As an example, after denervation type 
IIB and IIC fast fibers in rat EDL and tibialis anterior muscles 
convert to type I and IIA slow fibers (Pette and Vrbova, 1985; 
Windisch et al., 1998; Kostrominova et al., 2005). If reinner-
vation is achieved, the signal generated by the motor cortex 
will determine the type of fibers, their proportion, and distri-
bution in the muscle (Hughes et al., 1993). 

Clinical significance of muscle fiber diameter change
Muscle fiber diameter is closely related to multiple electrical 
and structural parameters that are affected by denervation. 
Fiber diameter is negatively correlated with time since dener-
vation and it is positively correlated with mean MFCV and 
maximal Fib amplitude. In this way, muscle fiber diameter 
provides a reliable index by which to evaluate the extent of 
denervation and disuse (Cruz-Martinez and Arpa, 1999) and 
predict the degree of recovery achievable by nerve repair.

Isometric force and torque
Types and important parameters of muscle fiber 
contraction 
Isometric and isotonicare are two main types of muscle con-
traction. During isometric contractions, the joint angle does 
not change, while during an isotonic contraction the muscle 
shortens producing a constant force. Isometric force is com-
posed of individual contractions called twitches and is re-
ferred to as tetanic contractions. Isometric tetanic contraction 
force hinges on stimulating intensity, frequency, duration, and 
muscle fiber preload (Dow et al., 2004; Shin et al., 2008). 

Isometric force can be described in terms of twitch force, 
maximal isometric twitch force (Pt), time-to-peak tension 
(TPT), half-relaxation time (HRT), tetanic force, maximal 
isometric tetanic force (Po), the ratio of Pt/Po, and specific 
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force (SPo). SPo is defined as the ratio of Po and muscle fiber 
cross sectional area (Po/CSA). Isometric force, in particular 
Pt, Po, and SPo, are used to evaluate the extent of denervation 
(Dow et al., 2004). 

Changes of isometric force after denervation and 
reinnervation 
Changes of isometric force after denervation
Upon denervation isometric twitch and tetanic force both 
decrease. Po undergoes an initial rapid decrease followed by 
a sustained gradual decrease (Spector, 1985; Carlson et al., 
1996; Kalliainen et al., 2002; Dow et al., 2004). Changes in Po 
associated with denervation and subsequent reinnervation are 
detailed in Table 3, which illustrates the exponential nature 
of Po’s decrease. At 2 weeks, 4–5 weeks, 8 weeks, and 4–12 
months post-denervation, the Po in rat lower extremity is 
measured as 25.5–26% (Spector, 1985; Kalliainen et al., 2002) 
of contralateral value, then 6–13% (Spector, 1985; Carlson 
et al., 1996; Dow et al., 2004), 2% (Carlson et al., 1996), and 
finally 0–0.3% (Al-Amood et al., 1991; Carlson et al., 1996). 

SPo also decreases after denervation (Carlson et al., 1996; 
Dennis, 1998; Kalliainen et al., 2002; Ashley et al., 2007). In 

the rat lower extremity, SPo is 37% (Kalliainen et al., 2002), 
5–15% (Carlson et al., 1996; Dennis, 1998) and 0.2–1.6% 
(Carlson et al., 1996) at 2 weeks, 4–8 weeks and 4–12 months 
after denervation, respectively. Muscle fiber atrophy and de-
creased contractility account for these changes (Kalliainen et 
al., 2002). The rate at which Pt decreases is less than that at 
which Po drops off, so in the wake of denervation, Pt/Po in-
creases (Dow et al., 2004; Ashley et al., 2007). TPT and HRT 
increase after denervation (Al-Amood and Lewis, 1989; Buf-
felli et al., 1997; Leong et al., 1999), doubling and tripling the 
contralateral values by 5 weeks post injury (Dow et al., 2004).

Changes of isometric force after reinnervation
Electric stimulation can impact Po and SPo recovery, main-
tain Po, and prevent it from decreasing (Dow et al., 2004, 
2006) after denervation. Additionally, reinnervation grad-
ually restores Po (Cederna et al., 2000; Brown et al., 2002; 
Aydin et al., 2004). SPo undergoes a similar, but slower 
recovery with reinnervation (Cederna et al., 2000; van der 
Meulen et al., 2003; Aydin et al., 2004). This difference in re-
covery may be attributed to one of many factors including: 
decreased contractility among recovered fibers, failure of 

Table 2 Changes of muscle wet weight after denervation and reinnervation in rats

Author Strain of rat (number) Nerve (injury/treatment)
Muscle
tested

Muscle wet weight 
after denervation

Muscle wet weight after 
nerve repair Exam time

Ma et al. (2007)

Wang et al. 
(2001)

Xu and Gu 
(1999)

Dow et al. 
(2004)
Schmalbruch 
et al. (1991)
Aydin et al. 
(2004)

Brown et al. 
(2002)

Bain et al. 
(2001)

Kobayashi et al. 
(1997)

Sprague-Dawley (42)

Sprague-Dawley (120)

Sprague-Dawley (42)

WI/Hick-sCar (79)

Wistar (4)

Fischer-344
(40)

Sprague-Dawley (48)

Lewis (54)

Lewis (108)

Tibial N (transection)

Musculocutaneous N (transection)

Tibial N (transection)

Sciatic N (transection)

Sciatic N (transection)

Tibial N
(repair with isograft)

Sciatic N (repair with conduit)

Tibial N (repair with transfer)

Tibial N (repair with isograft)

GSM

BBM

GSM

EDL

Soleus

MGSM
 

MGSM

GSM

 
GSM

2 w: 60%
1 m: 40%
3 m: 25%
3 m–1 y: < 20%
1 m: 70%
2 m: 40–50%
4 m: 20–40%
2 w: 54.5%
4–6 w: 32.8%
8–12 w: 30.6%
16 w: 29.1%
20 w: 32.1% 
5 w: 34%

6–10 m: 18%

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

Immediate: 100% 
2 w delay: 50%  
≥ 3 m delay: 10–25% 
Immediate: 19%  
1 d delay: 49%  
1 w delay: 22%  
4 w delay: 26%  
Immediate: 50.0%
2 m delay: 30%
4 m delay: 19.7%
6 m delay: 13.2%
10 m delay: 14.0%
Immediate: 67.6%
2 w delay: 73.9%
3 m delay: 20.2%
6 m delay: 16.0%
9 m delay: 17.4%
12 m delay: 13.4%

N/A

N/A

N/A

N/A

N/A

6 m after repair

3 m after repair

3 m after repair

6 m after repair

GSM: Gastrocnemius muscle; BBM: biceps brachii muscle; EDL: extensor digitorumlongus; MGSM: medial gastrocnemius muscle; m: month(s); d: 
day(s); w: week(s); y:year(s); N: Nerve(s); N/A: not available.



1803

Wu P, et al. / Neural Regeneration Research. 2014;9(20):1796-1809.

some fibers to regain contractility, and impaired force con-
duction at the muscle tendon interface (Aydin et al., 2004). 
Regardless, Po and SPo recovery depends on the interval 
between injury and intervention. Longer delays are associ-
ated with poorer outcomes (Brown et al., 2002; Aydin et al., 
2004). However, it has been shown that delays of 20 days 
are associated with better Po and SPo recovery than repairs 
performed immediately or with shorter delay (Brunetti et 
al., 1985). This relationship may imply that mild to moder-
ate delays improve nerve regeneration. This coincides with 
the phenomena of nerve pre-degeneration which allows 
Wallerian degeneration and prepares the distal nerve for 
regenerating axons (Brunetti et al., 1985; Brown et al., 2002; 
Wu et al., 2013). The advantage may have subsequently ben-
efited the reinnervation of the target muscle and hence its 
contractile function.

Measurements of maximal isometric titanic force and torque 
Measurements of Po
When measuring Po in vitro, the target muscle is dissected 
out and placed in a ringer solution maintained at 26°C and 
oxygenated with a mixture of 95% O2 and 5% CO2. Muscle 
tendons are fixed in a clamp and force transducer, respec-
tively. Muscle preload is adjusted and electrodes are used to 
directly stimulate the tissue and obtain the Po (Buffelli et al., 
1997; Van Balkom et al., 1997; Johns et al., 2001). For in vivo 
measurement, the target muscle and its innervating branches 
are surgically exposed. The distal tendon is cut at its inser-
tion and clamped to a force transducer. Tissue is moistened 
with saline and maintained between 35–37°C (Cederna et 
al., 2000; van der Meulen et al., 2003; Shin et al., 2008). Adja-
cent muscles are dissected so that their respective nerves and 
tendons may be cut. Doing so eliminates extraneous muscle 

activity during electric stimulation (Cederna et al., 2000; van 
der Meulen et al., 2003). Bipolar electrodes are used to stim-
ulate the nerve for up to 15 seconds at a time with 5 minute 
rest intervals. Preload is adjusted and various stimulation 
frequencies and intensities are employed until Po is elicited 
(Shin et al., 2008).  

A non-invasive method of measuring Po was introduced 
by transcutaneously stimulating the sternocleidomastoid. 
This approach requires the head and chest to be fixed at a 
set angle. A transducer that is positioned over the tendon of 
the sternal head measures force (Moxham et al., 1980; Lewis 
et al., 1986). These measurements can longitudinally track 
muscle force recovery after nerve repair. The limitation of 
this method is that it can be affected by synergistic muscle 
activity. This method demonstrates a 4–6% variation in force 
measurement compared to the 3% seen with in vitro tech-
niques (Warren et al., 1999).

Measurement of maximal isometric torque 
Grill and Mortimer devised a method of three dimensionally 
capturing maximal isometric torque in an animal model us-
ing cats (Grill and Mortimer, 1996). They utilized a polyim-
ide cuff containing 12 electrodes arranged into four tripolar 
configurations. Once placed around the nerve, this cuff al-
lowed selective stimulation of different nerve branches. The 
cat’s knee and ankle angles were fixed and the ankle joint was 
connected to a force transducer. Their measurements were 
reproducible and demonstrated a mere 0.3% systemic error 
with a 2.7% deviation.

Clinical significance of Po
After denervation, Po exponentially decreases over time (Al-
Amood and Lewis, 1989; Al-Amood et al., 1991; Carlson 

Table 3 Changes of maximal isometric force (Po) after denervation and reinnervation in rats

Author Strain of rat (number)
Nerve (injury/treatment)
Muscle tested

Po after
denervation

Po after
nerve repair

SPo after
nerve repair Exam time

Kalliainen et al. (2002)

Spector (1985)

Dow et al. (2004)
Carlson et al. (1996)

Al-Amood et al. (1991)

Aydin et al. (2004)

van der Meulen et al. 
(2003)
Cederna et al. (2000)

Fischer-344
(16)
Sprague-Dawley (N/A)

WI/Hick-sCar (79)
Wistar (84)

Wistar (64)

Fischer-344 (40)

Fischer-344 (43)

Lewis (23)

Peroneal N (transection) EDL

Sciatic N (transection)
Soleus
Sciatic N (transection) EDL
Sciatic N (transection) EDL

Sciatic N (transection) EDL

Tibial N (repair with isograft) 
MGSM

Peroneal N (repair) EDL

Peroneal N (repair) EDL

0 d: 26%
2 w: 26%
2 w: 25.5%
4 w: 13%
5 w: 9%
1 m: 6%
2 m: 2%
4 m: 0.3%
7 m: 0.3%
12 m: 0.06%
4–10 m: 0

N/A

N/A

N/A

N/A

N/A

N/A
N/A

N/A

Immediate: 100% 
2 w delay: 62%  
1 m delay: 32% 
3 m delay: 15%
6 m delay: 3%
12 m delay: 5%
Immediate: 80%

Immediate: 100%         

N/A

N/A

N/A
N/A

N/A

Immediate: 100% 
2 w delay: 100%  
1 m delay: 50% 
3 m delay: 48%
6 m delay: 37%
12 m delay: 34%
Immediate: 93%

Immediate: 93%

N/A

N/A

N/A
N/A

N/A

6 m after repair

4 m after repair

4 m after repair

EDL: Extensor digitorumlongus; MGSM: medial gastrocnemius muscle; SPo: specific force; m: month(s); w: week(s); d: day(s); N: nerve(s); N/A: 
not available.
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et al., 1996; Dow et al., 2004). Po and SPo will recover after 
reinnervation (Brunetti et al., 1985; Cederna et al., 2000; van 
der Meulen et al., 2003; Aydin et al., 2004). Moreover, Po 
correlates with muscle wet weight and time course/extent of 
muscle atrophy. Po can be used as an index of post dener-
vation atrophy and as a predictor of nerve repair success. 
Clinically, these measurements could also be used for testing 
muscle fatigue of quadriceps femoris (Deley et al., 2014), 
evaluating thigh muscle force for stroke patients (Wen et al., 
2014), and detecting the effect of muscle training after trau-
ma (Jayaraman et al., 2013).

Myogenesis related genes
Many molecules play an important role in muscle regenera-
tion. Some of these molecules along with their physiological 

functions are listed in Table 4. Nicotinic acetylcholine recep-
tor (nAChR) subtypes (α, β, γ, δ or ε) constitute and main-
tain the neuromuscular junction (NMJ) (Raftery et al., 1980; 
Shen et al., 2006) and facilitate synaptic transmission. Muscle 
regulation factors (MRFs) regulate nAChR gene expression, 
promote muscle regeneration and maintain muscle fiber 
phenotypes (Apel et al., 2009). The mRNA expression levels 
of some of these genes have close relationships with the time 
course and extent of muscle denervation, which may reflect 
the microenvironment changes within the muscle. 

Changes of myogenesis related genes in denervated 
muscles of rats
The time course of MRFs gene expression changes in rat 
denervated muscles is shown in Table 5. MRFs include 

Table 4 Myogenesis related gene expression in rat denervated muscles and their physiological functions

Gene name Gene expression level Physiologic function

Myogenin

MRF4

MyoD

Mfy5

α-nAChR
β-nAChR
γ-nAChR
δ-nAChR
ε-nAChR

Up-regulated
(Shen et al., 2006; Ma et al., 2007; Lapalombella 
et al., 2008; Apel et al., 2009)
Up-regulated
(Shen et al., 2006; Ma et al., 2007; Lapalombella 
et al., 2008; Apel et al., 2009)
Up-regulated
(Adams et al., 1995; Ma et al., 2007)
Up-regulated
(Adams et al., 1995; Apel et al., 2009)
Up-regulated
(Adams et al., 1995; Ma et al., 2005; Shen et al., 
2006; Apel et al., 2009)

Myogenesis (Shen et al., 2006; Apel et al., 2009)
Regulation and maintenance of nAChR mRNA expression (Voytik et al., 1993; 
Kobayashi et al., 1997)
Myogenesis (Shen et al., 2006; Apel et al., 2009)
Maintain muscle phenotype (Voytik et al., 1993)
Regulate nAChR mRNA expression (Kobayashi et al., 1997)
Myogenesis (Shen et al., 2006; Apel et al., 2009)

Myogenesis (Shen et al., 2006; Apel et al., 2009)

NMJ components (Raftery et al., 1980)
NMJ regeneration and maintenance (Shen et al., 2006)

nAChR: Nicotinic acetylcholine receptors; MRF4: muscle regulation factor 4; MyoD: myoblast determination factor; Myf5: myogenic factors 5; 
NMJ: neuromuscular junction.

Table 5 Time course of MRFs gene expression changes in denervated muscles of rats

Author
Stains of rats 
(number)

Nerve or muscle MyoD (1); MRF4 (2); myogenin (3); Myf5 (4)

Name Treatment
Muscle 
tested Time to increase Peak time Time to normal Animal age

Ma et al. (2007)

Apel et al. (2009)

Adams et al. (1995)

Voytik et al. (1993)

Shen et al. (2006)

Sprague Dawley (42)

F344 (N/A)
BN F1 (68)

Wistar (N/A)

Wistar (10)

Sprague-Dawley (56)

Tibial N

Tibial N

Sciatic N

Peroneal N

GSM

Transection

Transection, 
immediate repair

Transection

Transection

Botulinum toxin A 
injection

GSM

GSM

GSM
TA

TA

GSM

3 d (1)
3 d (2)
3 d (3)
0 (1)
0 (2)
0 (3)
0 (0)
NA (1)
NA (2)
NA (3)
NA (4)
NA (1)
1 d (2)
12 h (3)
NA (4)
3 d (2)
3 d (3)

14 d (1)
7 d (2)
7 d (3)
2 w (1)
2 w (2)
2 w (3)
2 w (4)
1 m (1)
9 d (2)
9 d (3)
1 m (4)
7 d (1)
7 d (2) 
3 d (3)
3 d (4)
7 d (2)
7 d (3)

1 m (1)
1 m (2)
1 m (3)
16 w (1)
16 w (2)
16 w (3)
16 w (4)
7 m (1)
2 m (2)
2 m (3)
7 m (4)
> 28 d (1)
28 d (2)
28 d (3)
28 d (4)
1–3 m (2)
1–3 m (3)

1 m

4 m

5 m

> 6 m

1 m

MyoD: Myoblast determination factor; MRF4:muscle regulation factor 4; Myf5: myogenic factors 5; MRFs: muscle regulation factors; GSM: 
gastrocnemius muscle; TA: tibialis anterior; d: day(s); w: week(s); m: month(s); N: nerve(s); N/A: not available.
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MyoD (myoblast determination factor), Myf5 (myogenic 
factors 5), MRF4 and Myogenin which all belong to basic 
helix-loop-helix family members (Charbonnier et al., 2003). 
Myogenin is an important promoter and an essential factor 
for nAChR gene expression. In a myogenin gene knock-out 
mouse, α- and γ-nAChR are not expressed in target muscles 
(Brunetti and Goldfine, 1990; Eftimie et al., 1991; Voytik et 
al., 1993). MyoD and Myf5 are expressed in neonatal mus-
cles, while MRF4 is expressed in both neonatal and adult 
muscles (Lapalombella et al., 2008). Myf5 and MRF4 have 
a fair expression level in all muscle fiber types, (Voytik et 
al., 1993; Weis et al., 2000), while Myogenin and MyoD are 
evidently expressed in slow (Voytik et al., 1993; Adams et 
al., 1995) and fast muscle fibers (Voytik et al., 1993; Weis et 
al., 2000; Shen et al., 2006), respectively. Upon denervation 
skeletal muscle MRFs gene expression levels increase initially 
and then decrease (Table 5). Most reports show that these 
gene expression levels start to increase at 8 hours to 3 days 
(Eftimie et al., 1991; Voytik et al., 1993; Weis et al., 2000; 
Shen et al., 2006; Ma et al., 2007), peak at 1-2 weeks (Voytik 
et al., 1993; Adams et al., 1995; Ma et al., 2007), and drop to 
normal level at 1-3 months after denervation (Voytik et al., 
1993; Adams et al., 1995; Shen et al., 2006; Ma et al., 2007). 
Myogenin and MRF4 gene expression levels in rat gastroc-
nemius muscle  are lower than normal after prolonged de-
nervation, a phenomenon that can possibly be attributed to 
the fact that sources for genes expression in these severely 
atrophic muscles are exhausted (Ma et al., 2007). 

Myogenin and MRF4 gene expression levels are higher 
than MyoD and Myf5 (Witzemann and Sakmann, 1991; 
Voytik et al., 1993; Adams et al., 1995), and are maintained 
at a high level for shorter time (Voytik et al., 1993; Adams et 
al., 1995). Ten days after denervation, myogenin and MRF4 
mRNA expression levels are 100 and 40 times higher than 
that of the control muscle, while MyoD and Myf5 mRNA 
expression levels are 7 and 17 times higher than control, re-
spectively (Adams et al., 1995). The high expression of myo-
genin and MRF4 lasts less than one month, while MyoD and 
Myf5 gene expression is maintained at a high level for up to 
7 months (Adams et al., 1995). Initial up-regulation of myo-
genin mRNA expression in the muscle is earlier (starts to 
up-regulate at 8–16 hours post-denervation) than the initial 
up-regulation of MyoD (starts at 16–24 hours after denerva-
tion) (Eftimie et al., 1991).

nAChR is an important component of NMJ and helps syn-
aptic transmission in NMJ (Raftery et al., 1980). Embryonic 
nAChR is composed of α, β, δ and γ subtypes, distributing 
extensively in the whole muscle fiber, while adult nAChR is 
composed of α, β, δ and ε subtypes, distributing only in end-
plate area of the muscle (Adams et al., 1995; Ma et al., 2007). 
NMJ is unstable and post-synaptic nAChR turnover is faster 
after denervation (Adams et al., 1995; Ma et al., 2007) with 
a decrease of turnover half-time from ten days to 1–2 days 
(Loring and Salpeter, 1980). Embryonic nAChR increases 
initially after denervation and then returns to normal level.
Adult ε-nAChR will replace embryonic γ-nAChR and is 
expressed in end-plate area of the muscle for a long time 

after reinnervation (Adams et al., 1995). Electric stimulation 
prevents embryonic nAChR gene expression, elongates half-
time of turnover of nAChR and stabilizes NMJ structure 
(Adams et al., 1995; Bezakova et al., 2001).

Levels of mRNA expression of nAChR subtypes in the de-
nervated muscle increase initially before returning to normal 
(Adams et al., 1995; Ma et al., 2005; Shen et al., 2006; Ma et 
al., 2007), or even lower than normal after 3–12 months de-
nervation (Ma et al., 2007) (Table 6). Up-regulation of nA-
ChR subtype gene expression starts from 0-3 days (Adams et 
al., 1995; Li and Sakamoto, 1996; Ma et al., 2005; Shen et al., 
2006; Ma et al., 2007), peaks at 1–2 weeks (Ma et al., 2005, 
2007; Shen et al., 2006; Ma et al., 2007), drops to normal lev-
el, ranges in the time frame of 2 weeks (Ma et al., 2005; Shen 
et al., 2006) to 1 month (Ma et al., 2007), and even to 7–12 
months after denervation (Adams et al., 1995). 

 Various nAChR subtypes have different gene expres-
sion timelines: embryonic γ-nAChR drops to normal level 
whereas adult ε-nAChR is still maintained at a high level for 
a long time after sciatic nerve transection in rat (Adams et 
al., 1995). It is hard to detect embryonic γ-nAChR mRNA in 
normal rat muscles, while in denervated muscles, γ-nAChR 
gene expression increases significantly (Ma et al., 2005), 
making γ-nAChR gene expression level a hallmark of acute 
reaction after denervation. 

Clinical significance of myogenesis related genes
Expression of myogenesis related genes is initially up-reg-
ulated and then down-regulated in the course of muscle 
denervation, a characteristic that may be used to help deter-
mine the presence of denervation atrophy (Kostrominova 
et al., 2000). More importantly, the timeline of changes in 
mRNA levels of these molecules provides clues to as when 
nerve repair should be done to ensure good outcomes. MRFs 
regulate nAChR gene expressions, and both play an import-
ant role in NMJ stability (Ma et al., 2007), so nerve repair 
should be done before the NMJ becomes unstable. Schwann 
cell number peaks at 1weekafter denervation (Zhang et al., 
2008). In this very early phase of denervation the microen-
vironment in the denervated muscle is conducive for nerve 
regeneration making it an optimal time for nerve repair (Ma 
et al., 2007). One to 2 weeks after denervation is also when 
the highest gene expression is observed in denervated mus-
cles, indicating gene expression level can be used as a clue to 
optimal timing of nerve repair. Sunderland has demonstrat-
ed that the denervated muscle would gain best recovery if 
repair was done with high gene expression levels. Otherwise 
the recovery possibility of denervated muscles would largely 
decrease if the optimal time had passed (Sunderland, 1978). 
Comparing to immediate repair, moderate delayed repair 
(1–2 weeks) is found to have at least equal, if not even better, 
recovery (Jergovic et al., 2001; Kline, 2009). On the other 
hand, prolonged delay will result in poor recovery when the 
regenerating nerve axons are more likely to fail to enter atro-
phic muscle fibers, and fail to make contact with NMJs, and 
when the target muscles have lost the receptiveness to regen-
erating axons (Brunetti et al., 1985; Fu and Gordon, 1995; 
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Kobayashi et al., 1997). However, good functional recovery 
was reported when there was a two months’ delay in nerve 
repair due to elevated embryonic nAChR gene expression in 
sarcolemma. This underscores the importance of finding in-
dexes other than time for judgment of muscle receptiveness. 
Embryonic nAChR may be an acceptable marker (Adams 
et al., 1995). MRFs and nAChR gene expression levels can 
potentially reflect the receptiveness of denervated muscles 
to regenerating axons, offering important clues for surgery 
choices and predicting surgical effects.

Neuromuscular junction (NMJ)
Number and density of regenerating axons do not differ be-
tween immediate and delayed nerve repairs (Brunetti et al., 
1985; Fu and Gordon, 1995). Over time intramuscular nerve 
axon sheath degenerates (Kobayashi et al., 1997), which hinders 
axon infiltration into muscle fibers, and in turn decreases the 
number of motor units (Fu and Gordon, 1995). These changes 
induce a decrease in NMJ receptiveness to reinnervation.

Changes of NMJ after denervation
In normal rat muscle NMJ structure is very stable (Santos 
and Caroni, 2003). Specifically, in NMJ with nAChR, turn-
over half-time is ten days. NMJ’s extensive remodeling ability 
helps hasten recovery after a nerve repair (Santos and Caro-
ni, 2003). After denervation NMJ structure becomes unstable 
with turnover half-time of 1 day (Bezakova et al., 2001). At 
the same time, NMJ fragmentation and plantar area increas-
es (Ma et al., 2005; Apel et al., 2009) as well as gutter depth 
(Ma et al., 2005). Post injury pre-synaptic changes are more 
evident than post synaptic ones. Pre-synaptic NMJ struc-

tures, like nerve terminal axons disappear within one week 
of injury, as part of Wallerian degeneration (Ma et al., 2007).  

Clinical significance of NMJ in denervated muscle
NMJ fragments and plantar area increase initially and then 
decrease, following trends in nAChR and MRFs gene expres-
sion, which affect NMJ morphology (Ma et al., 2005). So, 
NMJ fragmentation and plantar area in denervated muscles 
can be used to evaluate the time course and extent of dener-
vation and to assess the potential success of a nerve repair.

Discussion
Relationships among key changes in denervated muscle
Changes in the aforementioned parameters are interrelat-
ed. MFD positively correlates with maximal Fib amplitude 
and MFCV (Troni et al., 1983; Van der Hoeven et al., 1993; 
Cruz-Martinez and Arpa, 1999; Jiang et al., 2000; Ruegg et 
al., 2003; Blijham et al., 2006). Po has a positive correlation 
with muscle wet weight (Zealear et al., 1994). MRFs regulate 
nAChR gene expression, muscle wet weight and muscle fiber 
conversion (Aguiar et al., 2013). nAChR affects NMJ stability 
and regeneration after denervation (Ma et al., 2005; Shen et 
al., 2006).

Relationships between key changes and time course of 
denervation 
Post denervation events can be divided into early and late 
stage changes (Ma et al., 2007). Early stage events create a 
microenvironment that is conducive to reinnervation (Ma 
et al., 2007). These acute changes include up-regulated ex-
pression of MRFs, nAChR (Kobayashi et al., 1997; Weis et al., 

Table 6 Time course of nAChR gene expression in denervated muscles of rats

Author Stains of rats (number)

Nerve or muscle α-nAChR(1); β-nAChR(2); γ-nAChR(3); ε-nAChR(4); δ-nAChR(5)

Name Treatment Muscle tested Time to increase Peak time Time to normal Animal age

Ma et al. (2007)
 

Apel et al. (2009)

Adams et al. (1995)

Shen et al. (2006)

Ma et al. (2005)

Sprague-Dawley (42)

F344 (N/A)
BN F1 (68)

Wistar (N/A)

Sprague-Dawley (56)

Sprague-Dawley (46)

Tibial N

Tibial N

Sciatic N

GSM

GSM

Transection

Transection

Transection

Botulinum toxin 
A injection
Botulinum toxin 
A injection

GSM

GSM

GSM
TA

GSM

GSM

3 d (1)
3 d (2)
3 d (3)
3 d (4)

0 d (1)
0 d (2)
0 d (3)
0 d (3)
0 d (5)
NA (1)
NA (2)
NA (3)
NA (4)
NA (5)
Early (1)

3 d (1)
3 d (2)
3 d (3)
3 d (4)
N/A (5)

7 d (1)
7 d (2)
7 d (3)
7 d (4)
3 d (5)
2 w (1)
2 w (2)
2 w (3)
2 w (4)
2 w (5)
9 d (1)
1 m (2)
1 m (3)
9 d (4)
9 d (5)
7 d (1)

7 d (1)
7 d (2)
7 d (3)
7 d (4)
3 d (5)

1 m (1)
1 m (2)
1 m (3)
1 m (4)
1 m (5)
16 w (1)
16 w (2)
16 w (3)
16 w (4)
16 w (5)
7 m (1)
12 m (2)
3 m (3)
7 m (4)
2 m (5)
14 d (1)

15 d (1)
15 d (2)
15 d (3)
15 d (4)
15 d (5)

1 m

4 m

5 m

1 m

1 m

nAChR: Nicotinic acetylcholine receptors; GSM: gastrocnemius muscle; TA: tibialis anterior; d: day(s); w: week(s); m:month(s); N: nerve(s); N/A: 
not available.



1807

Wu P, et al. / Neural Regeneration Research. 2014;9(20):1796-1809.

2000; Zhao et al., 2004; Ma et al., 2005; Shen et al., 2006; Ma 
et al., 2007; Lapalombella et al., 2008), and Schwann cell pro-
liferation. On the other hand, late stage denervation sets into 
motion changes that render the NMJ and target muscle un-
receptive to regenerating axons. Schwann cell number nor-
malizes, target muscles atrophy severely, muscle wet weight 
reduces to 15% by 12 months of denervation (Ma et al., 
2007), and connective tissues proliferate between muscle fi-
bers preventing regenerating axons from entering into intra-
muscular nerve sheaths (Kobayashi et al., 1997). Due to these 
late stage changes, nerve repairs are less likely to succeed. 
Intervention past the optimal window almost guarantees 
poor recovery. Naturally, any measurement sensitive enough 
to detect residual muscle receptivity to reinnervation would 
be invaluable in planning patient care. As we have discussed, 
Fib, MFD, MRFs and nAChR gene expression can be used in 
exactly this capacity. The information that these parameters 
yield would enable physicians to individualize their approach 
to each patient and to ensure the best outcome feasible on a 
case by case basis.

Conclusion
Fib amplitude, MFCV, MFD, and mRNA expression levels of 
MRFs and nAChR could well reflect the severity and length 
of denervation as well as the receptiveness of denervated 
muscle to regenerating axons. They could possibly offer an 
important clue for surgical choices and predict the outcomes 
of delayed nerve repair.
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