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Abstract: Inflammation plays an important role in the pathogenesis of many diseases, including
cardiovascular diseases, atherosclerosis, diabetes, asthma, and cancer. An appropriate diet and
the active compounds contained in it can affect various stages of the inflammatory process and
significantly affect the course of inflammatory diseases. Recent reports indicate that polyphenolic
acids, vitamins, minerals, and other components of fruits may exhibit activity stimulating an anti-
inflammatory response, which may be of importance in maintaining health and reducing the risk
of disease. The article presents the latest data on the chemical composition of fruits and the health
benefits arising from their anti-inflammatory and antioxidant effects. The chemical composition of
fruits determines their anti-inflammatory and antioxidant properties, but the mechanisms of action
are not fully understood.
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1. Introduction

Epidemiological, toxicological, and nutritional studies indicate a link between fruit
consumption and the reduced incidence of chronic diseases, such as coronary disease,
cancers, diabetes, and neurodegenerative diseases. The growing interest in fruits as dietary
components mainly stems from their antioxidant and anti-inflammatory potential. The
last few years have seen increased interest in fruits as raw plant materials with anti-
inflammatory properties. Research has focused on explaining the mechanisms of anti-
inflammatory and antioxidant activity. The health effects of the active substances present in
fruit also include the effective detoxification of the body, increased immune system activity,
the equalization of blood pressure, and anti-aggregation activity, as well as antibacterial
and antiviral properties.

The consumption of red meat and highly processed food has been shown to lead to the
development of pro-inflammatory processes, whereas a healthy and active lifestyle and a
diet rich in fruit and vegetables are correlated with the prevention of inflammatory diseases
and support their treatment [1,2]. Bioactive substances in fruits and vegetables, including
flavonoids, carotenoids, vitamins, minerals, and dietary fiber, can act independently or
synergistically to provide high nutritional value and health benefits for consumers [3,4].

2. Targets of the Anti-Inflammatory Action

Phytochemical compounds, vitamins, and minerals present in fruit exhibit anti-
inflammatory properties through a variety of mechanisms, including the inhibition of regu-
latory enzymes, free radical scavenging, and the regulation of arachidonic acid metabolism,
gene expression, and immune cell activity (Figure 1).
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Figure 1. Selected targets of the anti-inflammatory activity of bioactive substances in fruits. 

2.1. Inhibition of Protein Kinases and Transcription Factors 
Protein kinases are involved in signal transduction during the activation of cells dur-

ing inflammation. Certain chemical compounds present in fruit can affect the activity of 
protein kinases by inhibiting transcription factors, such as NF-κB [5]. This is one of the 
most important transcription factors regulating the expression of cytokines, chemokines, 
immune receptors, and cellular adhesion molecules [6]. NF-κB is present in the cytoplasm 
of cells in an inactive form bound to regulatory proteins known as κB inhibitors (IκB), 
including IκBα, IκBβ and IκBϵ. The activation of NF-κB requires its release from the NF-
κB–IκB complex, which is mediated by inhibitor of the nuclear factor kappa-B kinase 
(IKK). The IKK complex consists of three subunits, of which IKK beta (β) may play the 
most important role in chronic inflammation. The activation of NF-κB further leads to the 
transcription of genes coding for molecules, including cytokines, which are usually in-
volved in the inflammation process. Similarly, AP-1, a transcription factor involved in in-
flammation, is stimulated by stress factors, including infections and cytokines. Other im-
portant mediators of inflammation include pattern recognition receptors, such as toll-like 
receptors (TLR), and kinases, such as the mitogen-activated protein kinase (MAPK) and 
the stress-activated kinase JNK [7]. CD4+ T lymphocytes can differentiate into subpopu-
lations performing helper functions in the body (Th2). Some plant flavonoids are believed 
to be competitive inhibitors of PDE4 (cyclic nucleotide phosphodiesterase 4) and to mod-
ulate inflammation in the liver by altering cAMP (cyclic adenosine monophosphate) levels 
[8,9]. 

2.2. Antioxidant Activity 
Clinical symptoms of inflammation are induced by fatty acid derivatives (eico-

sanoids), the platelet-activating factor (PAF), large proteins, such as IL-1, small peptides 
(bradykinin), and amines (histamine) released from damaged and migrating cells as a 
consequence of increased vascular permeability. Nitrogen monoxide can perform a regu-
latory function at every stage of the development of inflammation, including the regula-
tion of the pro-inflammatory properties of the endothelium and the early stages of leuko-
cyte migration to the site of inflammation. The activity of this isoenzyme depends on the 
concentration of pro-inflammatory cytokines (TNF-α, IFN-γ and IL-1). Released NO• to-
gether with other reactive oxygen species plays an important role in the development of 
inflammatory reactions and the regulation of leukocyte adhesion to endothelial cells, 
which is the initial stage of inflammation, dependent on the expression of numerous 
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2.1. Inhibition of Protein Kinases and Transcription Factors

Protein kinases are involved in signal transduction during the activation of cells
during inflammation. Certain chemical compounds present in fruit can affect the activity
of protein kinases by inhibiting transcription factors, such as NF-κB [5]. This is one of the
most important transcription factors regulating the expression of cytokines, chemokines,
immune receptors, and cellular adhesion molecules [6]. NF-κB is present in the cytoplasm
of cells in an inactive form bound to regulatory proteins known as κB inhibitors (IκB),
including IκBα, IκBβ and IκBε. The activation of NF-κB requires its release from the
NF-κB–IκB complex, which is mediated by inhibitor of the nuclear factor kappa-B kinase
(IKK). The IKK complex consists of three subunits, of which IKK beta (β) may play the
most important role in chronic inflammation. The activation of NF-κB further leads to
the transcription of genes coding for molecules, including cytokines, which are usually
involved in the inflammation process. Similarly, AP-1, a transcription factor involved in
inflammation, is stimulated by stress factors, including infections and cytokines. Other
important mediators of inflammation include pattern recognition receptors, such as toll-like
receptors (TLR), and kinases, such as the mitogen-activated protein kinase (MAPK) and the
stress-activated kinase JNK [7]. CD4+ T lymphocytes can differentiate into subpopulations
performing helper functions in the body (Th2). Some plant flavonoids are believed to be
competitive inhibitors of PDE4 (cyclic nucleotide phosphodiesterase 4) and to modulate
inflammation in the liver by altering cAMP (cyclic adenosine monophosphate) levels [8,9].

2.2. Antioxidant Activity

Clinical symptoms of inflammation are induced by fatty acid derivatives (eicosanoids),
the platelet-activating factor (PAF), large proteins, such as IL-1, small peptides (bradykinin),
and amines (histamine) released from damaged and migrating cells as a consequence of
increased vascular permeability. Nitrogen monoxide can perform a regulatory function
at every stage of the development of inflammation, including the regulation of the pro-
inflammatory properties of the endothelium and the early stages of leukocyte migration
to the site of inflammation. The activity of this isoenzyme depends on the concentration
of pro-inflammatory cytokines (TNF-α, IFN-γ and IL-1). Released NO• together with
other reactive oxygen species plays an important role in the development of inflammatory
reactions and the regulation of leukocyte adhesion to endothelial cells, which is the initial
stage of inflammation, dependent on the expression of numerous adhesion molecules on
the surface of both types of cells. The expression of adhesion molecules is stimulated by
various cytokines, bacterial LPS, and reactive oxygen species (ROS). Activated monocytes
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and neutrophils release myeloperoxidase, which produces hypochlorous acid (I) (HClO)
involved in damage to amino acids, proteins, fats, and nucleic acids. Another important
mechanism is the formation of chloramines and their later conversions. The reactions of
HClO with proteins generating free radicals are also significant, which contribute to adduct
formation and protein fragmentation [10]. In normal conditions, living organisms are
protected against the effects of free radicals by the activity of enzymes, such as superoxide
dismutase and glutathione peroxidase and the presence of natural antioxidants—ascorbic
acid, polyphenols, tocopherols, and carotenoids. When cells are exposed to an excessive
level of oxidants, including free radicals, natural defense mechanisms fail. This results in
free radical damage to cellular structures involving destruction within the cell membranes—
lipid peroxidation, deactivation of structural and enzymatic proteins, and damage to
genetic material. Fruits are believed to be a valuable source of a variety of antioxidants,
e.g., vitamins C and E, carotenoids, and polyphenols—anthocyanins, flavonoids, phenolic
acids, and tannins. Studies have shown that antioxidants neutralize free radicals, which
are reactive oxygen species, peroxide radicals, and singlet oxygen. In addition, they protect
against collagen degradation and inhibit the activity of xanthine oxidase. Antioxidants also
reduce capillary permeability and exert a strong anti-inflammatory effect [11].

2.3. Effects on Arachidonic Acid Metabolism

Prostaglandins, thromboxanes, and leukotrienes are mediators inducing inflamma-
tion. Arachidonic acid (AA) is released from membrane phospholipids as a result of the
activity of phospholipase A2 (PLA2). Released AA is then converted to prostaglandins
and thromboxanes in a series of enzymatic reactions catalyzed by cyclooxygenases (COX).
Similarly, the activity of 5-lipoxygenase (5-LOX) catalyzes the conversion of arachidonic
acid to leukotrienes [12].

2.4. Effects on the Immune System

Some substances in fruits promote the activation of cells, signal transduction, cy-
tokine production, or secretory processes in certain immune cells. Flavonoids inhibit the
maturation of dendritic cells (DC) in the mesenteric lymph nodes and human MDDCs
(monocyte-derived dendritic cells), and subsequently the function of CD4+ T-cells mediated
by DC in vitro [13,14]. Phenolic compounds can have an inhibitory effect on monocyte
adhesion and/or reduce the activation and proliferative response of certain immune cells
involved in chronic inflammation [15]. Certain flavonoids reduce the release of histamine
or prostaglandin from mast cells or inhibit production of pro-inflammatory cytokines or
chemokines in mast cells, neutrophils, and other immune cells [16].

3. Inflammation and Tumor Induction

Carcinogenesis in humans is characterized by the accumulation of numerous muta-
tions in genes regulating cellular homeostasis, primarily oncogenes, suppressor genes, and
genes regulating apoptosis. Mutations are caused by xenobiotics and endogenous DNA
damage, generated throughout a person’s lifetime and affecting every stage of carcino-
genesis. The main factor causing this endogenous damage not only to DNA but also to
lipids and proteins is reactive oxygen and nitrogen species generated in inflammatory
states by neutrophils and macrophages stimulated by this process [17]. The source of
endogenous ROS in physiological conditions is the respiratory chain. Endogenous ROS and
RNS react directly with DNA, modifying its structure and functions [17,18]. Inflammation
and mutations induced by exogenous (environmental) factors are therefore linked. Cells
stimulated during inflammation can intensify the carcinogenesis process, sometimes as
the result of other mechanisms, such as the production of cytokines or other proteins that
increase the proliferation and invasiveness of preneoplastic cells, as well as the formation
of new blood vessels in the angiogenesis process [19].

Inflammation plays a decisive role at various stages of tumor development, includ-
ing initiation, promotion, malignant transformation, and invasion during metastasis. Its
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presence affects the immune system and the response to therapy. Environmental fac-
tors affecting cancer development, such as chronic infections, polluted air, or obesity, are
associated with the occurrence of chronic inflammation [20].

Some studies suggest that as many as 50% of tumors may be associated with in-
flammation, which has given rise to the concept of ‘cancer-related inflammation’. Anti-
inflammatory treatment has been shown to contribute to the prevention and treatment
of cancer, confirming their correlation. Immune cells have been shown to be involved in
various stages of tumor formation, which has enabled the development of new cancer
treatment strategies [21,22].

4. Mechanism of the Anti-Inflammatory Action of Phenolic Compounds in Fruits
4.1. Flavonoids

An increasing number of scientific reports indicate that polyphenolic compounds,
such as flavonoids, can inhibit regulatory enzymes or transcription factors playing impor-
tant roles in the inflammatory process. Flavonoids are also known as compounds with
antioxidant properties [23].

Flavonoids are polyphenolic compounds that are widespread in the plant kingdom.
They are abundant in fruits such as blackberries, blueberries, raspberries, black currants,
strawberries, grapes, cranberries, apples, and sour cherries [24]. They protect plants against
damage caused by pathogens, wounds, or excessive UV radiation. Flavonoids are usually
present as yellow pigments dissolved in cell sap in flowers and leaves and as red and
blue pigments in fruits. Flavonoids are the predominant phenolic compounds in the diet.
They are most often found in bound form as glycosides or esters, and less often as free
compounds (Table 1) [25].

Studies have shown that the number and position of hydroxyl groups is of key im-
portance for the chemical structure of flavonoids and their biological activity. Flavonoids
present in fruits are bound to sugars. The skeleton of flavonoids consists of diphenyl-
propane, two benzene rings connected by a three-carbon chain, which forms a closed
heterocyclic pyran ring with a benzene ring. Their subclasses are flavonols (apples and
berries), flavanones flavones (citrus fruits), flavonols, isoflavones, flavan-3-ols, and antho-
cyanins (blueberries, strawberries, cherries, and grapes) [25,26].

The degree of glycosylation directly influences the antioxidant capacity of flavonoids.
In vitro research has shown that aglycone forms of myricetin and quercetin are more active
than glycoside forms. The antioxidant activity of flavonols is determined by the carbohy-
drate moiety, and the differences in activity can be explained by the varied oxidizability of
glycosides containing a monosaccharide or disaccharide at carbon 3 [27].

4.1.1. Flavonols

The set of flavonoids in many fruits includes flavonol derivatives, quercetin and
kaempferol, and their glycosides: rutoside, glucoside, galactoside, and glucuronide. Flavonols,
particularly quercetin derivatives, have strong antioxidant properties, which together with
other active compounds are responsible for the therapeutic effect of fruits. At the same
time, quercetin exhibits properties inhibiting cyclooxygenase and lipoxygenase, enzymes in-
volved in arachidonic acid conversions, thereby reducing the production of prostaglandins
and leukotrienes [28,29]. Apples, cranberries, chokeberries, blueberries, grapes, raspberries,
sour cherries, and black currants are the richest fruit sources of quercetin [30–32]. Quercetin
is described as one of the strongest antioxidants protecting against oxidative stress induced
by amyloid deposits [33].

Black currants contain flavonols, such as myricetin, quercetin, and, in smaller quan-
tities, kaempferol [34]. Consumption of black currants has been shown to increase the
quercetin concentration in human serum. Similar results have been obtained for consump-
tion of European blueberries and lingonberries [35].
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Table 1. Structural formulas of selected flavonoid aglycons and glycosides.
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Compound R1 R2 R3 R4 R5

Kaemferol H H H H OH

Kaemferol 3-O-glucoside H H H H O-glucose

Kaemferol 7-O-glucoside glucose H H H OH

Kaemferol 7-O-rhamnoside rhamnose H H H OH

Quercetin H OH H H OH

Quercetin 3-O-glucoside H OH H H O-glucose
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Quercetin 7-O-glucoside glucose OH H H OH

Rutin H OH H H O-rutinose

Quercetin 3-O-glucuronide H OH H H O-glucuronic
acid

Apigenin H H H H H

Luteolin H OH H H H

Myricetin H OH H OH OH

Rutin (quercetin 3-O-rhamnoglucoside) is a flavonol glycoside, a component of
quercetin bound to rutinose by a glycoside bond. It is present in apricots, sour cher-
ries, grapes, grapefruit, plums, and oranges [36,37]. Rutin exhibits antioxidant activity.
It can donate electrons to free radicals, converting them to more stable and less reactive
forms. Rutin can also prevent oxidative stress by inhibiting enzymes responsible for ROS
production, which can play a role in the treatment of diseases associated with oxidative
stress, e.g., neurodegenerative diseases [38]. The anti-inflammatory activity of rutin, to-
gether with quercetin and hesperidin, has been tested in rats using a model of acute and
chronic inflammation. The daily intraperitoneal administration of flavonoids inhibited
both acute and chronic stages of induced inflammation. Rutin was found to be most ac-
tive in the chronic stage [39]. The anti-inflammatory activity of rutin may be due to its
modulation of expression of the ASC complex (apoptosis-associated speck-like protein),
which mediates inflammation [40]. An experimental colitis model showed that rutin has
an anti-inflammatory effect on the intestines. Reduced secretion of pro-inflammatory cy-
tokines (IFNγ and TNF-α) by the mesenteric lymph nodes was observed. The RT-qPCR
method was used to show that the use of rutin resulted in an 80% decrease in the ex-
pression of pro-inflammatory genes in the cells of the large intestine, including IFNγ,
TNF-α, and IL-1β. The reduced activation of splenic CD4+ cells (the phosphorylation
of STAT4 and the expression of IFNγ) and lower cytokine concentrations in the plasma
were noted in mice receiving flavonoids. This effect was also seen in the lymphocytes
of the mucosa, which was linked to a reduced phosphorylation of STAT4 [41]. Research
has shown that oral administration of rutin (100 mg/kg BW) in a study conducted using
the plethysmometric method resulted in a reduction in a λ-carrageenan-induced oedema
of rat paws. Rutin significantly inhibited the chemotaxis of neutrophils stimulated with



Nutrients 2022, 14, 2496 6 of 27

fMLP (N-formylmethionyl-leucyl-phenylalanine). In addition, elastase exocytosis induced
by fMLP and cytochalasin B was partially inhibited by rutin [42]. The subject of another
study on the anti-inflammatory activity of rutin was human umbilical vein endothelial cells
(HUVECs). HMGB1 (high mobility group box 1) protein acts as a late mediator of severe
vascular inflammation. Pro-inflammatory responses in HUVECs were induced by HMGB1
and the associated signaling pathways. Rutin inhibits the release of HMGB1, deactivates
HMGB1-dependent processes in human endothelial cells, and reduces hyperpermeability
and leukocyte migration mediated by HMGB1 in mice. Rutin was shown to inhibit the pro-
duction of TNF-α and IL-6 and the activation of NF-κB and extracellular signal-regulated
kinases 1

2 by HMGB1 [43]. The latest in vitro studies show that rutin inhibits the secretion of
NO and TNF-α and the activity of MPO (myeloperoxidase) in a model of activated human
neutrophils [44]. Interesting reports on the anti-inflammatory activity of flavonoids include
results obtained in an in vitro model indicating the varied effects of different flavonoids on
TNF-α production in LPS-stimulated J774.1 cells. Flavonoids, such as flavones, flavonols,
and chalcones, were observed to inhibit production of TNF-α. Flavanone (naringenin)
and anthocyanidins (pelargonin and cyanidin) showed moderate activity inhibiting the
secretion of tumor necrosis factor. The double bond between carbons 2 and 3 and the
ketone group in position 4 in the structure of flavonoids were shown to be responsible for
the strong inhibitory effect on secretion of TNF-α [45].

4.1.2. Flavones

One of the best-known compounds in terms of anti-inflammatory effects is apigenin
(4′,5,7-trihydroxylaflavon). This compound, which is one of the flavones, is present in
fruits, such as apples, sour cherries, grapes, oranges, and lemons. Apigenin inhibits syn-
thesis of prostaglandin E2 (PGE2) and the activity of cyclooxygenase (COX-2). Evidence
of its anti-inflammatory effects was presented by Liang et al. [46]. The authors demon-
strated the dose-dependent suppression of nitric oxide (II) and prostaglandins through
the suppression of the enzymes nitric oxide synthase (iNOS) and COX-2 in LPS-activated
RAW 264.7 macrophages. Apigenin inhibits the activity of NF-kB-dependent pathways.
It has been shown to inhibit LPS- or INFλ-induced activity of the IkB kinase. Research
suggests that apigenin and related flavonoids have a role in preventing carcinogenesis and
inflammation. Th17 lymphocytes mediate the appearance of inflammation in diseases, such
as Crohn’s disease and psoriasis, as well as cancers associated with the overexpression
of COX-2 (breast and colon cancer). Apigenin also causes the apoptosis of hyperactive
antigen-presenting cells and T and B cells in lupus, most likely by inhibiting the expression
of anti-apoptotic molecules regulated by NF-κB, especially COX-2 and the apoptosis regu-
lator c-FLIP, which are constantly overexpressed by immune cells in lupus [47]. Another
study showed that apigenin inhibits the LPS-initiated production of pro-inflammatory
cytokines, such as IL-6, IL-1β, and TNF-α, through the modulation of many intracellular
signaling pathways in macrophages in a model of THP-1-induced human macrophages
and murine J774A.1 macrophages [48].

4.1.3. Flavanones

Flavanones are abundant in citrus fruits. Naringenin (5,7,4′-trihydroxyflavon) is
present in grapefruits, oranges, and mandarins, most often in the form of rutinosides
with sugar fragments, glucose, and rhamnose. In vitro studies have shown that these
compounds exhibit antioxidant and anti-inflammatory activity [49]. Besides naringenin and
its derivatives, citrus fruits have also been shown to contain rutin (a flavonol glycoside) and
tangeretin (a methylated flavone) [24]. Narirutin and naringin are dominant in grapefruit;
hesperidin and narirutin in oranges; and eriocitrin in lemons. A recent review of the
biochemical and pharmacological activity of citrus flavanones emphasized correlations
between their structure and their function and ability to modulate signaling cascades
both in vitro and in vivo [26]. In hesperidin, a lipophilic chain attached to a 7-hydroxyl
group was shown to increase the anti-inflammatory effect [50]. Another study showed
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that both hesperidin and diosmin inhibited the synthesis and biological activity of various
pro-inflammatory mediators, mainly arachidonic acid derivatives, prostaglandins E2 and
F2, and thromboxane A2 [51].

Apples, sour cherries, grapes, lemons, and pomegranates contain luteolin (3′,4′,5,7-
tetrahydroxyflavon) and its derivatives. In addition to its anti-inflammatory effects, antibac-
terial, cardioprotective and anti-tumor effects have been described as well [52–54]. Luteolin
has been shown to protect mice against acute pancreatitis, inducing anti-inflammatory
and antioxidant activity mediated by HO-1, in combination with the suppression of the
activation of the NF-κB pathway [55]. Another study demonstrated that luteolin reduces
the concentrations of TNF-1α, IL-1β, and IL-6 and may protect against changes in cognitive
functions and synaptic plasticity induced by chronic cerebral hypoperfusion [56]. Luteolin,
together with apigenin, inhibits the production of Th2 cytokines, such as IL-4 and IL-5 or
IL-13, by activated human basophils [57].

4.1.4. Chalcones

Chalcones are lipophilic compounds with a yellow color. The characteristic fea-
ture of the chalcone molecule is an open heterocyclic ring whose closure transforms the
chalcone into a flavanone configuration. Chalcones are unstable compounds [58]. Di-
hydropochalcones (such as phloridzin) are present in apples and apple products (juice,
cider, and pomace) [59]. The naringenin chalcone exhibits anti-inflammatory properties
by inhibiting monocyte chemotactic protein MCP-1, TNF-α, and NO in LPS-stimulated
RAW 264 macrophages and reduces the expression of iNOS [60]. The hesperidin methyl
chalcone inhibits the carrageenan-induced production of cytokines (TNF-α, IL-1β, IL-6,
and IL-10) and influences the level of oxidative stress and activation of NF-kB [61].

4.1.5. Anthocyanins

Anthocyanins are water-soluble pigments included among polyphenols, commonly
present in plants and responsible for the colors red, purple, and blue. Numerous reports
based on vitro cultures, animal models, and clinical trials indicate the health benefits of
plant extracts rich in anthocyanins. Anthocyanins are highly unstable compounds that are
rapidly degraded. The stability of the compound depends on numerous factors, including
pH, temperature, light, the chemical structure of the compound, its concentration, and the
presence of enzymes, flavonoids, proteins, and metal ions [62].

Anthocyanins differ in the number of hydroxyl groups in the molecule; their level of
methylation; the site, form, and number of attached sugar molecules; and the number and
form of aromatic and aliphatic acids attached to the sugars. In berry fruits, anthocyanins
are present in various (mono-, di-, or tri-) glycoside forms, where the glycoside residues
are usually substituted at C3, or rarely at C5 or C7. The dominant sugars are sophorose,
sambubiose, rutinose, arabinose, rhamnose, galactose, and glucose (Table 2) [63]. Many
anthocyanins are acylated by aliphatic or aromatic acids, such as coumaric, caffeic, ferulic,
p-hydroxybenzoic, sinapic, malonic, acetic, succinic, oxalic, and malic acids [64].

Xie et al. [65] conducted an in vivo study on mice receiving supplements of blueberry
extract. The phytochemical components of the extract were shown to effectively inhibit
the production of the inflammatory cytokines TNF-α and IL-6 in murine macrophages
by influencing the signaling pathways involved in their production (the inhibition of the
phosphorylation of IκB, NF-κB p65, MAPK p38, and JNK). One randomized controlled
trial showed that patients with hypercholesterolaemia who consumed a purified mixture
of anthocyanins (320 mg once a day) for 24 weeks had significantly lower plasma levels
of interleukin 1 (IL-1β), C-reactive protein (hsCRP), and soluble vascular cell adhesion
molecule-1 (SVCAM-1) than patients receiving a placebo. In addition, the anthocyanin
compounds delphinidin 3-O-β-glucoside and cyanidin 3-O-β-glucoside were shown to
exhibit additive or synergistic anti-inflammatory effects. They have a dose-dependent
inhibitory effect on CRP (C-reactive protein) production induced by IL-6 and IL-1β in the
HepG2 cell line and the LPS-induced secretion of VCAM-1 in porcine iliac artery endothe-
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lial cell lines [66]. The anti-inflammatory activity of fruits has been confirmed in many
in vitro studies, which indicates that anthocyanins inhibit activity of the inflammatory
enzyme cyclooxygenase-2 (COX-2), responsible for prostaglandin synthesis. An in vitro
study comparing the anti-inflammatory activities of extracts of sour cherries, sweet cherries,
and berries found the highest COX-2-inhibiting activity for extracts of sweet cherry (47%),
blueberry (46%), strawberry (43%), and raspberry (41%). The inhibition of cyclooxygenase
1 and 2 by anthocyanins has been confirmed to increase as the number of sugar residues in
the molecule decreases and is strongest for the free aglycone cyanidin [67]. A similar depen-
dency was observed for the antioxidant activity of anthocyanins [67–70]. The antioxidant
activity of fruits is influenced not only by the content of anthocyanins but by their structure
as well, i.e., the degree of hydroxylation and glycosidation. Cyanidin derivatives present
in raspberries (mono-, di-, and triglycosides) exhibit the strongest antioxidant properties
among all known anthocyanins. Among analyzed anthocyanin compounds, cyanidin trigli-
coside (3-O-(xylosyl glucosyl)-5-O-galactoside) was observed to display dose-dependent
anti-inflammatory activity [71].

Table 2. Structural formulas of selected anthocyanins.
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Another mechanism of the anti-inflammatory activity of anthocyanins is their effect
on mitogen-activated protein kinases (MAPK). These are proteins involved in cell survival
and cellular processes, such as proliferation, differentiation, migration, and apoptosis.
The mitogen-activated protein kinase (MAPK) pathway is involved in the transmission of
signals from the cell membrane to the nucleus in response to a variety of stimuli and in
various intracellular processes affecting the growth, differentiation, and stress response
of cells. This pathway has also been shown to play a key role in tumor progression [72].
Other researchers suggest that peonidin 3-O-glucoside may inhibit the metastasis of lung
cancer cells via a mechanism of impairment of the phosphorylation of extracellular signal-
regulated kinase (ERK)1/2, a member of the family of mitogen-activated protein kinases
(MAPK) and also inhibits the activator protein-1 (AP-1) [73]. Interesting reports on the
activity of pomegranate extract, a rich source of anthocyanin compounds, include the find-
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ings of American researchers who showed a positive effect of the extract at a concentration
of 20 µg/mL on the UV-B-dependent phosphorylation of the MAPK pathway (ERK l/2,
protein p38, and JNK 1/2) in human epithelial keratinocytes [74]. The antioxidant activity
of fruit containing anthocyanins has been shown to depend not only on their total content
but also on their structure—the degree of hydroxylation and glycosylation. An example
is the presence of a hydroxyl group on the B ring of the flavonoid, which modulates the
antioxidant activity of compounds [75].

One of the fruits most abundant in anthocyanins is black raspberry (Rubus occidentalis L.).
The activity of black raspberry extract was analyzed in terms of the treatment and preven-
tion of colorectal and oesophageal cancer. To determine the specific mechanisms underlying
the potential anti-inflammatory effect of black raspberry extract, primary endothelial cells
were used to model endothelium-leukocyte interactions. Black raspberry extract inhibited
the TNF-α/IL-1β-induced translocation of NFκB p65; PGE2 production; the regulation of
the COX-2, ICAM-1, and VCAM-1 genes; protein expression; and the binding of leukocytes
in human oesophageal microvascular endothelial cells [76].

Another fruit containing mainly anthocyanins (primarily cyanidin glycosides) is el-
derberry (Sambuci fructus), used in folk medicine as an antipyretic, diuretic, diaphoretic,
analgesic, and anti-inflammatory agent [77,78]. The anti-free radical effect of fruit is as-
cribed to the presence of anthocyanins [79]. The anti-inflammatory effects of the extracts of
elderberry fruits have been demonstrated. In animal models, a methanol and n-hexanol el-
derberry extract had an anti-inflammatory effect comparable to that of diclofenac, inhibiting
the carrageenan-induced oedema of rat paws [80].

Anthocyanins from sour cherries have been shown to suppress indicators of pain
caused by inflammation in rats [81].

The anti-inflammatory effect of anthocyanins from chokeberries (Aronia melanocarpa
L.) involves blocking LPS-induced expression of the proteins iNOS and COX-2 in RAW
264.7 cells, which leads to the inhibition of the release of TNF-α and PGE2 and a significant
reduction in NO production [82]. Among the molecular mechanisms responsible for the
protective effect of chokeberry extract on ethanol-induced stomach ulcers in a rat model, we
can distinguish a decrease in the inflammatory process (the infiltration of inflammatory cells
and oedema formation) and a decrease in the levels of MCP-1, MDA, NF-κB and TNF-α [83].
A reduction in the plasma levels of cytokines TNF-α and IL-6, following the administration
of chokeberry extract, was also observed in rats with artificially induced hypertension [84].
In a study by Zapolska et al. [85], chokeberry extract exhibited anti-inflammatory activity
and inhibited TNF-α-stimulated transcription of the ICAM-1 and VCAM-1 genes, thereby
reducing the expression of adhesion molecules in human aortic endothelial cells in an
experiment. In addition, the extract inhibited activation of nuclear transcription factor by
TNF-α and reduced ROS production in human aortic endothelial cells.

Studies have shown that anthocyanins exert an anti-inflammatory effect by inhibiting
the expression of COX-2 in lipopolysaccharide-activated RAW 264 cells or inhibit inducible
iNOS and mRNA expression in mouse LPS-activated J774 macrophages. Among five
anthocyanidins, delphinidin and cyanidin inhibited the LPS-induced expression of COX-2,
in contrast to peonidin and malvidin. Delphinidin, the strongest inhibitor, caused the
dose-dependent inhibition of COX-2 expression at both the mRNA level and the protein
level [86,87]. In addition, delphinidin was shown to inhibit all three subfamilies of mitogen-
activated protein kinase (MAPK): stress-activated c-Jun amino terminal kinase (JNK),
extracellular signal-regulated kinase (ERK), and p38 kinase [86].

4.1.6. Flavan-3-ols

Flavonoids also include flavan-3-ols, present in many fruits, such as blueberries,
strawberries, gooseberries, sour cherries, black grapes, cranberries, and apples [88,89].
According to some authors, catechin and epicatechin are present in higher concentrations in
dark grapes, blackberries, apricots, raspberries, and some varieties of apples. Gallocatechin,
epigallocatechin, and epigallocatechin gallate have been found in grapes (Figure 2), [90,91].
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Hanrly et al. [89] showed that the flavan-3-ols present in fruits in the highest con-
centrations are catechin, epicatechin, epicatechin gallate, gallocatechin, epigallocatechin
gallate, and epigallocatechin. The increase in the incidence of diseases with free-radical
etiology has led to an intensive search for natural antioxidants, of which many fruits are
a rich source. The health-promoting activity of flavan-3-ols/catechins relies mainly on
their antioxidant effects. The antioxidant effect of catechin can be effective in preventing
and treating cardiovascular and other inflammatory diseases [92–94]. In patients with
neurodegenerative diseases, the use of flavan-3-ols has been shown to eliminate unfa-
vorable changes in neurons through the inhibition of oxidative stress, the scavenging of
reactive oxygen species, and the activation of antioxidant enzymes [95]. Flavan-3-ols have
inhibited carcinogenesis induced by inflammation in various models [96]. Flavan-3-ols
also exhibit anti-inflammatory effects in human intestinal diseases, influencing cellular
signaling pathways associated with oxidative stress, such as nuclear factor kappa B (NF-
κB), mitogen-activated protein kinases (MAPK), nuclear factor erythroid 2-related factor
2 (Nrf2), and the signal transducer and activator of transcription 1/3 (STAT1/3) [97]. Di-
etary supplementation with catechin effectively reduced the risk of inflammation in patients
with allergic rhinitis. Catechin reduces expression of TSLP (thymic stromal lymphopoietin)
and NF-κBp65 in the nasal mucosa of mice with allergic rhinitis. It inhibits the TSLP
expression and activation of the NF-κB signaling pathway in human nasal epithelial cells
(HNEpC) [98].

4.2. Elagitannins

Another group of polyphenolic compounds in fruits is tannins, present mainly as
phenolic polymers. Tannins are able to precipitate proteins and have astringent properties.
They have varied molecular weights, and some of them, especially hydrolyzing tannins,
are water-soluble. These tannins include esters of ellagic and gallic acid. A second type is
condensed tannins present in grapes, known as proanthocyanidins. They are responsible
for sensory impressions upon the consumption of fruit, such as an astringent taste [24,25].
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Ellagitannins are hydrolyzing tannins, derivatives of ellagic acid. They accompany
anthocyanin compounds in most fruits, especially those of the genus Rubus (raspberries,
blackberries, and cloudberries) and the genus Fragaria (strawberries), as well as the species
Punica granatum (pomegranate). It is significant that there are more ellagitannins in the
seeds than in the fruits, e.g., in raspberries [99]. Mullen et al. [100] and Ross et al. [101]
showed that the ellagitannin fraction isolated from raspberries, including sanguiin H-6,
has stronger antioxidant properties than the anthocyanin fraction (Figure 3). An analysis
was conducted of the antioxidant activity of extracts from the fruits of black raspberry
(Rubus occidentalis L.) with or without crushed seeds, obtained using 60% ethanol or water.
The aqueous extract from fruits with crushed seeds had the strongest antioxidant effect,
with the lowest IC50 in the DPPH assay (130 µg/mL) [102]. Vuorela et al. [103] tested
the antioxidant activity of an extract of raspberry fruits by the DPPH method. For the
concentrations of 0.5 mg/mL and 1 mg/mL of extracts, the results were 47 and 56%. A
comparison was also made of the activity of the ellagitannin and anthocyanin fractions,
which at concentrations of 0.5 mg/mL and 1 mg/mL showed antioxidant activity at levels
of 66% and 88% (ellagitannins) and 29 and 48% (anthocyanins).
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Jean-Gilles et al. [104] published the results of a study carried out in arthritic rats
that were orally administered an extract of red raspberry fruits (Rubus idaeus L.) at 30
and 120 mg/kg BW for 30 days. The higher dose of red raspberry extract was shown to
inhibit the inflammatory process and to reduce cartilage damage and bone resorption. The
dominant polyphenols in the raspberry extract were ellagitannins.

The antioxidant and anti-inflammatory activity of a black raspberry seed extract and a
grape seed extract were compared. The tannin fraction of the black raspberry seed extract
consists of ellagitannins, including sanguiin H-6 and H-10 isomers and galloyl-bis-HHDP
glucose isomer, while the grape seed extract contained proanthocyanidins. The antioxidant
activity of the tannin fraction of the black raspberry seed extract, evaluated using FRAP
(ferric reducing antioxidant power), DPPH (2,2-diphenyl-1-picrylhydrazyl), and ABTS
(2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) assays, was much higher than in the
case of the grape seed extract. The anti-inflammatory effect was analyzed by measuring the
ability to inhibit LPS-induced NO production in RAW 264.7 cells. The extracts with higher
antioxidant activity (from black raspberry seeds) were also confirmed to have a stronger
inhibitory effect on NO than the grape seed extract [105].
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The anti-inflammatory effect of extracts of pomegranates (Punica granatum L.), which
are rich in ellagitannins, was analyzed. An extract of pomegranate shell, containing the
ellagitannin punicalagin, exhibited anti-inflammatory properties in Caco-2 cells in an
in vitro model of the human intestinal epithelium. It acted on the level of transcription of
pro-inflammatory genes (encoding IL-6 and MCP-1) as well as protein secretion (IL-6, IL-8
or MCP-1) [106].

4.3. Phenolic Acids

Another important group of phytocompounds present in fruit is phenolic acids, which
account for nearly a third of polyphenols in the diet. They are present in fruits in bound
form as esters and glycosides. They can be divided into two main types according to their
structure: hydroxyl derivatives of benzoic or cinnamic acid [25]. Most berries, particularly
blackberries, raspberries, blueberries, and cranberries, as well as apples, oranges, and sour
cherries, are rich in hydroxybenzoic and hydroxycinnamic acid derivatives (Tables 3 and 4)
and their depsides and other phenolic acids (Figure 4).

Table 3. Structural formulas of selected benzoic acid derivatives.

Nutrients 2022, 14, x FOR PEER REVIEW 12 of 28 
 

 

using FRAP (ferric reducing antioxidant power), DPPH (2,2-diphenyl-1-picrylhydrazyl), 
and ABTS (2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) assays, was much higher 
than in the case of the grape seed extract. The anti-inflammatory effect was analyzed by 
measuring the ability to inhibit LPS-induced NO production in RAW 264.7 cells. The ex-
tracts with higher antioxidant activity (from black raspberry seeds) were also confirmed 
to have a stronger inhibitory effect on NO than the grape seed extract [105].  

The anti-inflammatory effect of extracts of pomegranates (Punica granatum L.), which 
are rich in ellagitannins, was analyzed. An extract of pomegranate shell, containing the 
ellagitannin punicalagin, exhibited anti-inflammatory properties in Caco-2 cells in an in 
vitro model of the human intestinal epithelium. It acted on the level of transcription of 
pro-inflammatory genes (encoding IL-6 and MCP-1) as well as protein secretion (IL-6, IL-
8 or MCP-1) [106]. 

4.3. Phenolic Acids 
Another important group of phytocompounds present in fruit is phenolic acids, 

which account for nearly a third of polyphenols in the diet. They are present in fruits in 
bound form as esters and glycosides. They can be divided into two main types according 
to their structure: hydroxyl derivatives of benzoic or cinnamic acid [25]. Most berries, par-
ticularly blackberries, raspberries, blueberries, and cranberries, as well as apples, oranges, 
and sour cherries, are rich in hydroxybenzoic and hydroxycinnamic acid derivatives (Ta-
bles 3 and 4) and their depsides and other phenolic acids (Figure 4). 

Table 3. Structural formulas of selected benzoic acid derivatives 

 
Compound R1 R2 R3 R4 R5 
benzoic acid H H H H H 
salicylic acid OH H H H H 
m-hydroxybenzoic 
acid H OH H H H 

p-hydroxybenzoic acid H H OH H H 
2,3-dihydroxybenzoic 
acid 

OH OH H H H 

β-rezorcylic acid OH H OH H H 
gentysinic acid OH H H OH H 
γ-rezorcylic acid OH H H H OH 
protocatechic acid H OH OH H H 
α-rezorcylic acid H OH H OH H 
gallic acid H OH OH OH H 
2,4-dimetoxybenzoic 
acid OCH3 H OCH3 H H 

veratric acid H OCH3 OCH3 H H 
vanillic acid H OCH3 OH H H 
syryngic acid H OCH3 OH OCH3 H 
  

Compound R1 R2 R3 R4 R5

benzoic acid H H H H H

salicylic acid OH H H H H

m-hydroxybenzoic acid H OH H H H

p-hydroxybenzoic acid H H OH H H

2,3-dihydroxybenzoic acid OH OH H H H

β-rezorcylic acid OH H OH H H

gentysinic acid OH H H OH H

γ-rezorcylic acid OH H H H OH

protocatechic acid H OH OH H H

α-rezorcylic acid H OH H OH H

gallic acid H OH OH OH H

2,4-dimetoxybenzoic acid OCH3 H OCH3 H H

veratric acid H OCH3 OCH3 H H

vanillic acid H OCH3 OH H H

syryngic acid H OCH3 OH OCH3 H

Phenolic acids play a key role as antioxidants. They can also reduce tissue damage
caused by oxidative stress due to chronic illnesses and cancer. Phenolic acid derivatives
differ in the methoxylation and hydroxylation patterns of their aromatic rings. They
are mainly present in bound form and have strong antioxidant properties due to the
reactivity of the phenolic part—the hydroxyl substituent in the aromatic ring. This is a
group of compounds capable of scavenging reactive oxygen species, including hydroxyl
and superoxide radicals, thereby reducing the number of lipid peroxide radicals and
preventing lipid peroxidation. Phenolic acids act as strong antiradical agents owing to their
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redox properties, which makes them effective hydrogen donors and metal chelators. Some
hydroxybenzoic acid derivatives are currently used as additives to reduce the oxidation of
nutrients and ensure the high nutritional quality of food products [26]. An early study on
the relationship between the structure and activity of phenolic acids and their derivatives
showed that hydroxycinnamic acid derivatives have stronger antioxidant properties than
benzoic acid derivatives [24]. This potential stems from the existence of a propionic side
chain in cinnamic derivatives and a conjugated double bond in their side chains [26].

Table 4. Structural formulas of selected cinamonic acid derivatives.
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Phenolic acids, such as caffeic, ferulic, and ellagic acid, are widespread as glycosides in
fruits. Ellagic acid is present in high concentrations in fruits of the family Rosaceae (blackber-
ries, strawberries, and raspberries) and in cranberries, goji berries, and pomegranates [107].
In raspberries, ellagic acid accounts for 88% of polyphenols determined as the sum of
flavonols and phenolic acids [108]. Ellagic acid comprises more than half of the total
phenolic content in berry fruits, such as raspberries, and is present in free and compound
form as glucosides and ellagitannins esterified with glucose. The inclusion of rich sources
of ellagic acid and its derivatives in the diet, such as cranberries, raspberries, blackberries,
strawberries, and grapes, has health benefits. The biological effects of ellagic acid include
antiviral, anti-inflammatory, antiproliferative, and antioxidant activity [109]. Gallic acid is
abundant in bananas, blueberries, lemons, lychee fruit, pears, and apples [110]. It is one of
the strongest antioxidants in which three hydroxyl groups are attached to a carbon atom in
a benzene ring [111].

Interesting reports on the biological activity of Korean black raspberry include the re-
sults of a study in which the fraction containing high concentrations of 3,4-dihydroxybenzoic
acid exerted the strongest anti-inflammatory effect in vivo in a model of the inhibition of
oedema of rat paws [112].

An experiment conducted by Ruifeng et al. [113] found that chlorogenic acid alleviates
the symptoms of mastitis in mice through the inhibition of the NF-κB signaling pathway,
mediated by toll-like receptor 4 (TLR4). Rowan berries (Sorbus aucuparia L) are a source of
chlorogenic and neochlorogenic acids [114]. Hydroxycinnamic acid derivatives, especially
caffeic, and m-coumaric and p-coumaric acids are present in black currants (Ribus nigrum
L.) [115]. Another study analyzed the composition of 14 varieties of blueberries grown
in China and their anti-inflammatory activity in a model of LPS-induced TNF-α and IL-6
secretion in RAW 264.7 macrophages [116]. Correlation analysis showed that blueberries
which had higher concentrations of phenolic acids exhibited stronger antioxidant and
anti-inflammatory properties.

Huang et al. [117] confirms that chlorogenic acid can improve the function of human
umbilical vein endothelial cells by inhibiting oxidative damage and pro-inflammatory
cytokines induced by TNF-α. Chlorogenic acid reduces levels of ROS and xanthine oxidase
and increases the concentrations of superoxide dismutase and haem oxygenase-1 in en-
dothelial cells. Chlorogenic acid was additionally shown to induce the TNF-α-stimulated
expression of intercellular adhesion molecule-1, vascular cell adhesion molecule-1, and
monocyte chemotactic protein 1. Other researchers report that ellagic acid lowers the
ROS level in the vascular endothelium [118]. Corbett et al. [119] and Rogerio et al. [120]
found that ellagic acid derivatives or extracts from plants containing ellagic acid inhibit
carrageenan-induced oedema in rodents. The anti-inflammatory activity of gallic acid was
demonstrated in similar research models in rodents, through the mechanisms of scavenging
of superoxide anions, the inhibition of the release and the activity of myeloperoxidase, and
interference with the formation of active NADPH oxidase [121]. Supplementation with
phenolic acids, including gallic, caffeic, ferulic, and protocatechuic acids, in metabolic syn-
drome induced by a high-fructose diet reduced plasma levels of markers of inflammation
in the serum, such as IL-6, IL-8, and TNF-α [122]. Anti-inflammatory effects of caffeic and
ellagic acid have also been reported by Chao et al. [123]. The enrichment of the diet with a
mixture of phenolic acids reduced the expression of mediators of inflammation, such as
IL-6, IL-1-β, and TNF-α. Da Cunha et al. [124] demonstrated the anti-inflammatory proper-
ties of caffeic acid and its derivatives as well as the strong inhibition of the LPS-induced
expression of nitric oxide synthase (iNOS) in RAW 264.7 macrophages.

4.4. Stilbenes

Stilbenes are polyphenols that have gained in importance in recent years. Certain
berries and grapes as well as their leaves, stems and roots are particularly rich in stil-
benes [125,126]. Stilbenes have been studied extensively in terms of their antioxidant,
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antibacterial, antifungal, cardioprotective, neuroprotective, anti-ageing, and anti-tumor
properties [127–131].

The best described compound belonging to this group is resveratrol (Figure 5). It
is present in high concentrations in red grape skins and in cranberries, blueberries, and
plums. The ‘French paradox’ is directly linked to the resveratrol in red wine. The French
have relatively low rates of coronary disease despite the fact that their diet is relatively rich
in saturated fats. In addition, the incidence of cardiac infarction in France is about 40%
lower than in other European countries. Regular, moderate consumption of grape products,
especially red wine, is believed to play a key role in preventing heart disease [25].
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Resveratrol exhibits anti-inflammatory and antioxidant effects [132]. It can act in syn-
ergy with other natural antioxidants, such as vitamins C and A. This natural phytoalexin
has the ability to reduce the risk of cardiovascular disease through the regulation of the
production of vasodilators and vasoconstrictors, the inhibition of oxidative stress and ROS
generation, anti-inflammatory effects, the inhibition of modification of low-density lipopro-
teins, and antiplatelet activity [97]. Apart from its antioxidant activity, resveratrol induces
quinone reductase, a phase II detoxification enzyme [133]. It exerts an anti-inflammatory
effect by inhibiting the activity of cyclooxygenase, thereby influencing the arachidonic
pathway of prostaglandins, which stimulate tumor cell growth [134]. Resveratrol inhibited
LPS-induced pro-inflammatory enzymes and pro-inflammatory cytokines by reducing
the phosphorylation of NF-κB, CREB, and MAPK in an mTOR-dependent manner in
LPS-stimulated mouse BV-2 microglia cells [135]. Other studies showed that resveratrol
reduces the expression of the mediators of inflammation TNF-α, IL-8, and MCP-1 in LPS-
stimulated monocytes [136]. Resveratrol promotes the conversion of RNS by limiting
the activity of nitric oxide synthase, decreases the cytotoxicity of NO, and reduces the
occurrence of inflammation. Its effects also involve blocking the activity of cyclooxygenase
and phospholipase A2 [137].

4.5. Lignans

Another group of polyphenols, present in low concentrations in fruits, mainly straw-
berries and cranberries, is lignans. In the digestive tract, lignan molecules are con-
verted to compounds (enterodiol and enterolactone) that exhibit both oestrogenic and
anti-oestrogenic properties. Lignans are included among phytoestrogens [138]. They have
been shown to exert a synergistic inhibitory effect, together with quercetin and resveratrol
in the diet, on oesophageal cancer development in humans. Deoxypodophyllotoxin, a
flavolignan, inhibits the LPS-induced expression of iNOS by activating NF-kappa B in RAW
264.7 macrophages [139]. An in vivo study in mice showed that a lignan present in the
fruit of magnolia berry (Schisandra chinensis), schisandrin B, can eliminate inflammation by
reducing the expression of pro-inflammatory cytokines TGF-β1 and TNF-α and the activa-
tion of eNOS pathways [140]. The results of another study indicate the role of neolignans
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obtained from the seeds of C. pinnatifida as potential anti-inflammatory and antioxidant
agents inhibiting the secretion of NO and TNF-α in RAW 264.7 cells [141].

5. Mechanism of the Anti-Inflammatory Action of Essential Oil Components,
Vitamins, Minerals, and Other Compounds in Fruits
5.1. Essential Oil Components

Citrus fruits, such as lemons, are a very important dietary component due to their
role in preventing obesity, diabetes, cardiovascular disease, and some cancers [142]. The
results of a study by Kil-Nam et al. [143] indicate that essential oil obtained from Citrus
medica L. inhibits LPS-stimulated inflammation by blocking the NF-κB, JNK, and ERK
pathways in macrophages, which is evidence of its effectiveness as an anti-inflammatory
agent. The main component of the oil, limonene, is the most commonly occurring terpene
in nature, present in oranges, mandarins, lemons, limes, and grapefruits. The antioxidant
and anti-inflammatory properties of terpenes, which modulate transcription factors, such
as NF-κB [144], have been extensively described in the literature. Research conducted
by Li et al. [145] demonstrated the anti-inflammatory activity of the peels and pulp of se-
lected varieties of pear, correlated with high content of triterpenes. Terpene compounds
present in apple peel reduce the expression of the IP-10 gene associated with the develop-
ment of inflammation and inflammatory bowel disease [146].

5.2. Vitamins

Oranges, grapefruits, sour cherries, apples, and other fruits contain vitamins C, E
and A in the form of carotenoids. These vitamins contribute to the normal functioning of
the immune system and, in this way, reduce the risk of inflammation in the body. Due to
their reducing properties, they are strong antioxidants and help to alleviate the effects of
oxidative stress in cardiac disease, diabetes, and certain cancers [69,147]. Berries and black
currants are also rich in vitamins C, E, and B, with higher concentrations of vitamins than
strawberries, raspberries, and gooseberries. Black currants and strawberries are a particu-
larly rich source of ascorbic acid [69,147,148]. Literature data indicate that the content of
vitamin C in black currants (Ribes nigrum) can range from 120 to 215 mg/100 g, depending
on the variety and on cultivation conditions [11,34,149]. Strawberries and citrus fruits
are also very rich sources of vitamin C (80 and 16–60 mg/100 g, respectively) [147,150].
Other fruits, such as apples, pears, and plums, contain low concentrations of vitamin C
(3–6 mg/100 g) [151]. The content of vitamin C in fruits depends on multiple factors, in-
cluding the species, variety, climate conditions, weather, ripeness, region, and storage time
and conditions [67,147,148]. The content of vitamin C has been shown to be closely corre-
lated with the antioxidant capacity of citrus fruits [152]. Rosehips are also rich in vitamin C,
with higher concentrations than strawberries, oranges, and peaches [151,153]. The stability
of ascorbic acid in rosehips has been shown to be higher in the matrix than in extracts,
and flavonoids from rosehips may prevent oxidation of ascorbic acid [153]. Vitamin C is a
strong antioxidant and free radical scavenger which prevents free-radical damage to DNA,
tissues, and cell membranes. A population study of healthy men aged 60–79 demonstrated
the anti-inflammatory effect of vitamin C. An elevated plasma concentration of vitamin C
due to the consumption of fruit and vegetables and the use of supplements was shown to
be inversely correlated with the levels of inflammatory markers, such as C-reactive protein
and tissue plasminogen activator antigen [154]. Vitamin C may alleviate the symptoms of
upper respiratory diseases, especially the common cold, and reduce their duration [155].
Research to date has shown that increasing the dosage of vitamin C to 200 mg/day does not
reduce the frequency of colds in the overall population, but supplementation with vitamin
C is justified in people during short-term intense physical exertion, in which it was shown
to reduce the frequency of colds by 52% [156]. Vitamin C deficiency has been observed in
patients with COVID-19, and, in accordance with the latest reports, supplementation with
this vitamin is recommended in patients in high risk groups for death from coronavirus
infection [157–159]. The mechanism of the antioxidant action of vitamin C stems from its
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free-radical deactivating properties, so that it prevents DNA damage [160] and inhibits the
development of inflammation [161]. Vitamin C increases the production of extracellular
collagen, which plays a key role in immune system function [162]. Jang et al. [163] showed
that a diet rich in vitamin C can reduce the level of pro-inflammatory cytokines, including
TNF-a and IL-6, through the significant down-regulation of hepatic mRNA expression.

Vitamin E exerts an antioxidant effect by scavenging lipid peroxide radicals in vivo
and in vitro and prevents the oxidation of fatty acids contained in the phospholipids of
biological membranes and plasma lipoproteins [164]. Muraoka et al. [165] reported that
α-tocopherol reduces the hypoxia-induced activation of NF-kB. Most studies focus on
the effect of vitamin E on T-cell activity and the modulation of the Th1 response, but
vitamin E also influences other immune/inflammatory cells. The use of vitamin E alleviates
diseases with concomitant inflammation: viral, bacterial, and allergic diseases as well as
asthma [166]. Studies in animals have shown that vitamin E in the form of tocotrienol and
α-tocopherol can inhibit the secretion of IL-1 and IL-6 and neutralize free radicals before
they are able to activate NF-κ B, thereby inhibiting cytokine production and the expression
of COX-2 [167]. In addition, supplementation with vitamin E in people and in animal
models has been shown to reduce lipid peroxidation, the release of pro-inflammatory
cytokines, and the concentrations of chemokine IL-8 and plasminogen activator inhibitor-1
(PAI-1), as well as reducing the adhesion of monocytes to the endothelium. Moreover, it
reduces CRP levels in patients with cardiovascular disease and in patients with risk factors
for its development [168].

Carotenoids are pigments present in the diet in fruit. Citrus fruits (oranges and
mandarins) and peaches are sources of β-cryptoxanthin and zeaxanthin. Watermelon
is a rich source of lycopene, while β-carotene is present in bananas. Large quantities
of carotenoids, primarily lutein and β-carotene, are found in black currants, rosehips,
chokeberries, and seaberries [169]. Fruits containing carotenoids in smaller amounts include
kiwi, lemon, apple, pear, apricot, sour cherries, melon, strawberries, and grapes [170,171].
In addition to antioxidant activity, α-carotene, β-carotene, γ-carotene, lycopene, and β-
cryptoxanthin also exhibit anti-inflammatory properties. Immune cells are particularly
susceptible to oxidative stress. β-carotene has been shown to protect the immune system
against reactive oxygen species [172]. Adequate intake of β-carotene in the diet contributes
to a stronger cellular response by increasing the number of monocytes producing MHC
II molecules [173]. Inadequate intake of β-carotene has an adverse effect on immune
function and increases the incidence of infectious diseases [174]. Vitamin A takes part in
immune system development and plays a regulatory role in cellular and humoral immune
processes. Retinoic acid plays a key role in the regulation of the differentiation, maturation,
and function of cells of the innate immune system. Vitamin A has been shown to be
essential to the development and differentiation of colonic CD169+ macrophages [175].
Vitamin A deficiency increases susceptibility to infection, possibly by decreasing the level
of cathepsin G in the azurophilic granules of neutrophils. Twining et al. [176] showed lower
activity of two cathepsin G-like enzymes (28 and 24 kDa) in rats with a vitamin A-deficient
diet compared to neutrophils of rats with a complete diet of unlimited vitamin A. Diet
supplementation with retinoids increases the release of tissue stores of latent TGF-β 1,
which is essential in the wound healing process [177]. Semba et al. [178] presented research
results demonstrating that children with vitamin A deficiency show reversible immune
abnormalities in T-cell subgroups. Decreased absorption of vitamin A in the intestines and
the release of retinol from the liver are observed during inflammation, which can limit
the availability of the vitamin in the tissues. During infections, vitamin A can be lost in
large quantities in the urine. Low plasma levels of retinol (hyporetinolaemia) have been
detected in n children and adults with infectious diseases, e.g., measles, malaria, diarrhea,
and HIV [179].
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5.3. Minerals

Fruits, such as strawberries, apples, blueberries, sour cherries, and grapes, are rich in
micro- and macroelements. The key minerals present in these fruits are potassium, magne-
sium, calcium, phosphorus, iron, sodium, copper, zinc, aluminum, selenium, cadmium,
and manganese. The highest concentrations of phosphorus, calcium, sodium, and iron are
found in berries. Some microelements, such as iron, selenium, zinc, copper, and manganese,
act as cofactors for antioxidant enzymes and take part in redox processes in the body, reduc-
ing the ROS level in cells [147,180]. Other studies have shown high content of potassium,
calcium, and magnesium but small amounts of sodium, in fruits of the genera Ribes and
Rubus, and the highest concentration of phosphorus in currants [181]. The consumption of
fruits such as bananas can help to meet requirements for potassium, magnesium, copper,
and boron [182]. Many studies have shown an inverse relationship between magnesium
concentrations in the diet and the occurrence of inflammation [183–185]. Sources of iron
in the diet include dates, black currants, avocado, cranberries, gooseberries, and citrus
fruits [186,187]. Iron performs an important function in the immune response. Studies in
animals have shown that iron deficiency causes inflammation and a stronger inflammatory
response to LPS in comparison with mice with normal iron levels [188,189]. Zinc, copper,
and selenium play an important role in maintaining redox homeostasis, which is essen-
tial to immune function, and changes in their levels can lead to oxidative stress and the
development of inflammation [190–192].

5.4. Fiber

Dietary fiber is a crucial component of a healthy diet. Observational studies support
associations between dietary fiber intake and inflammation. Long-term dietary fiber intake
was inversely associated with plasma levels of IL-6 and TNF-α-R2 (TNF-α-receptor-2),
in post-menopausal women [193] and decreased risk of inflammation and mortality in
kidney disease [194]. Anti-inflammatory activity of a fiber rich diet is a potential effect
of the modification of pH and the permeability of the gut and reduction in inflamma-
tory compounds production [195]. Pectin is a major fruit prebiotic that has been exten-
sively studied and shown to promote an anti-inflammatory colonic microbiota ecosystem.
Chung et al. [196] tested bacterial strains for their ability to utilize apple pectin and con-
firmed that E. eligens strongly promoted the production of the anti-inflammatory cytokine
IL-10 in vitro. Gut microbiota composition associated with anti-inflammatory effects differs
between individuals and is dependent on a variety of factors like diet and genetics [197]

5.5. Other Compounds

Research on the fruit of the Cornelian cherry (Cornus mas L.) of the family Cornaceae
indicates that the main fractions responsible for its anti-inflammatory effect are iridoids.
The secoiridoid cornuside isolated from the Cornelian cherry inhibited the LPS-induced
production of NO, PGE2, TNF-α, IL-6, and IL-1β; reduced the mRNA expression of COX-2
and iNOS; and inhibited the translocation of NF-κBp in vitro [198]. Glycosides isolated
from Cornus mas were found to inhibit oedema and the secretion of IL-1, IL-6, and TNF-α
in peritoneal macrophages and PGE2 in the plasma of rats [199]. An aqueous extract of the
fruit inhibited the LPS-induced expression of COX-2 and iNOS in RAW 264.7 macrophages.
It also inhibited PGE2 synthesis and NO production and reduced the level of NF-κB in the
cell nucleus [200].

Research has shown that anti-inflammatory compounds also include polysaccharides
from the fruit of Chaenomeles speciosa, which inhibits the gene induction of TNF-α or
IFN-γ in LPS-stimulated RAW 264.7 macrophages [201].

Ursolic acid is a pentacyclic triterpenoid, which is widespread in the skins of fruits,
including apples. Some studies indicate that ursolic acid has anti-inflammatory effects in
chronic kidney disease and kidney fibrosis. Ursolic acid has been shown to decrease the
occurrence of inflammation and inhibit the expression of inflammatory cytokines (TGF-β,
IL-6, and TNFα) in the muscle cells of mice with chronic kidney disease [202,203].
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The anti-inflammatory effect of the accessory fruits of dog rose (Rosa canina L.) is
due to galactolipid [204]. The presence of vitamins and flavonoids supports the action of
galactolipid [205]. Clinical trials on the anti-inflammatory properties of rosehips have been
conducted for several years. In patients with chronic arthritis and rheumatoid arthritis
taking powdered rosehips, improvement in the condition of the joints and pain relief have
been observed [206–208].

6. Conclusions

Inflammation plays an important role in the pathogenesis and course of many diseases,
including cardiovascular diseases, neurodegenerative diseases, musculoskeletal diseases,
cancers, diabetes, and allergies. Active compounds present in fruit can play an important
role in health maintenance by reducing the risk of inflammation and resolving it. Com-
ponents of fruits can modulate/suppress the process at several stages. Further research
is needed on the anti-inflammatory and antioxidant mechanisms of the action of fruit,
particularly their active components. Additional clinical trials are necessary to determine
their potential in preventing and treating inflammation, which will make it possible to
develop strategies for treatment and supporting treatment.

Author Contributions: Conceptualization, B.B.-K. and M.M.; writing—original draft preparation,
M.M.; writing—review and editing M.M. and B.B.-K., supervisor B.B.-K. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Maximova, K.; Moez, E.K.; Dabravolskaj, J.; Ferdinands, A.R.; Dinu, I.; Siou, G.L.; Al Rajabi, A.; Veugelers, P.J. Co-consumption of

Vegetables and Fruit, Whole Grains, and Fiber Reduces the Cancer Risk of Red and Processed Meat in a Large Prospective Cohort
of Adults from Alberta’s Tomorrow Project. Nutrients 2020, 12, 2265. [CrossRef] [PubMed]

2. Krusinska, B.; Wadolowska, L.; Slowinska, M.A.; Biernacki, M.; Drozdowski, M.; Chadzynski, T. Associations of Dietary Patterns
and Metabolic-Hormone Profiles with Breast Cancer Risk: A Case-Control Study. Nutrients 2018, 10, 2013. [CrossRef] [PubMed]

3. Van Breda, S.G.; De Kok, T.M. Smart Combinations of Bioactive Compounds in Fruits and Vegetables May Guide New Strategies
for Personalized Prevention of Chronic Diseases. Mol. Nutr. Food Res. 2018, 62, 1700597. [CrossRef] [PubMed]

4. Liu, R.H. Health-Promoting Components of Fruits and Vegetables in the Diet. Adv. Nutr. Int. Rev. J. 2013, 4, 384S–392S. [CrossRef]
[PubMed]

5. Peng, H.-L.; Huang, W.-C.; Cheng, S.-C.; Liou, C.-J. Fisetin inhibits the generation of inflammatory mediators in interleukin-1β–
induced human lung epithelial cells by suppressing the NF-κB and ERK1/2 pathways. Int. Immunopharmacol. 2018, 60, 202–210.
[CrossRef] [PubMed]

6. Pahl, H.L. Activators and target genes of Rel/NF-kappaB transcription factors. Oncogene 1999, 18, 6853–6866. [CrossRef]
7. Joseph, S.V.; Edirisinghe, I.; Burton-Freeman, B.M. Fruit Polyphenols: A Review of Anti-inflammatory Effects in Humans. Crit.

Rev. Food Sci. Nutr. 2015, 56, 419–444. [CrossRef]
8. Guo, L.; Liu, W.; Lu, T.; Guo, W.; Gao, J.; Luo, Q.; Wu, X.; Sun, Y.; Wu, X.; Shen, Y.; et al. Decrease of Functional Activated T and B

Cells and Treatment of Glomerulonephitis in Lupus-Prone Mice Using a Natural Flavonoid Astilbin. PLoS ONE 2015,
mboxemph10, e0124002. [CrossRef]

9. Wahlang, B.; McClain, C.; Barve, S.; Gobejishvili, L. Role of cAMP and phosphodiesterase signaling in liver health and disease.
Cell. Signal. 2018, 49, 105–115. [CrossRef]

10. Guzik, T.J.; Korbut, R.; Adamek-Guzik, T. Nitric oxide and superoxide in inflammation and immune regulation. J. Physiol.
Pharmacol. 2003, 54, 469–487.

11. Benvenuti, S.; Pellati, F.; Melegari, M.; Bertelli, D. Polyphenols, Anthocyanins, Ascorbic Acid, and Radical Scavenging Activity of
Rubus, Ribes, and Aronia. J. Food Sci. 2006, 69, FCT164–FCT169. [CrossRef]

12. Ricciotti, E.; FitzGerald, G.A. Prostaglandins and inflammation. Arterioscler. Thromb. Vasc. Biol. 2011, 31, 986–1000. [CrossRef]
[PubMed]

13. Masilamani, M.; Wei, J.; Bhatt, S.; Paul, M.; Yakir, S.; Sampson, H.A. Soybean isoflavones regulate dendritic cell function and
suppress allergic sensitization to peanut. J. Allergy Clin. Immunol. 2011, 128, 1242–1250.e1. [CrossRef] [PubMed]

http://doi.org/10.3390/nu12082265
http://www.ncbi.nlm.nih.gov/pubmed/32751091
http://doi.org/10.3390/nu10122013
http://www.ncbi.nlm.nih.gov/pubmed/30572623
http://doi.org/10.1002/mnfr.201700597
http://www.ncbi.nlm.nih.gov/pubmed/29108107
http://doi.org/10.3945/an.112.003517
http://www.ncbi.nlm.nih.gov/pubmed/23674808
http://doi.org/10.1016/j.intimp.2018.05.004
http://www.ncbi.nlm.nih.gov/pubmed/29758489
http://doi.org/10.1038/sj.onc.1203239
http://doi.org/10.1080/10408398.2013.767221
http://doi.org/10.1371/journal.pone.0124002
http://doi.org/10.1016/j.cellsig.2018.06.005
http://doi.org/10.1111/j.1365-2621.2004.tb13352.x
http://doi.org/10.1161/ATVBAHA.110.207449
http://www.ncbi.nlm.nih.gov/pubmed/21508345
http://doi.org/10.1016/j.jaci.2011.05.009
http://www.ncbi.nlm.nih.gov/pubmed/21696815


Nutrients 2022, 14, 2496 20 of 27

14. Li, Y.; Yu, Q.; Zhao, W.; Zhang, J.; Liu, W.; Huang, M.; Zeng, X. Oligomeric proanthocyanidins attenuate airway inflammation in
asthma by inhibiting dendritic cells maturation. Mol. Immunol. 2017, 91, 209–217. [CrossRef]

15. Del Bo’, C.; Cao, Y.; Roursgaard, M.; Riso, P.; Porrini, M.; Loft, S.; Møller, P. Anthocyanins and phenolic acids from a wild
blueberry (Vaccinium angustifolium) powder counteract lipid accumulation in THP-1-derived macrophages. Eur. J. Nutr. 2016, 55,
171–182. [CrossRef]

16. Weng, Z.; Patel, A.B.; Panagiotidou, S.; Theoharides, T.C. The novel flavone tetramethoxyluteolin is a potent inhibitor of human
mast cells. J. Allergy Clin. Immunol. 2014, 135, 1044–1052.e5. [CrossRef]

17. Hussain, S.P.; Hofseth, L.J.; Harris, C.C. Radical causes of cancer. Nat. Cancer 2003, 3, 276–285. [CrossRef]
18. Marnett, L.J. Oxyradicals and DNA damage. Carcinogenesis 2000, 21, 361–370. [CrossRef]
19. Sporn, M.B.; Liby, K.T. Cancer chemoprevention: Scientific promise, clinical uncertainty. Nat. Clin. Pract. Oncol. 2005, 2, 518–525.

[CrossRef]
20. Grivennikov, S.I.; Greten, F.R.; Karin, M. Immunity, inflammation, and cancer. Cell 2010, 140, 883–899. [CrossRef]
21. Song, X.-D.; Wang, Y.-N.; Zhang, A.; Liu, B. Advances in research on the interaction between inflammation and cancer. J. Int. Med.

Res. 2020, 48, 1–11. [CrossRef] [PubMed]
22. Ritter, B.; Greten, F.R. Modulating inflammation for cancer therapy. J. Exp. Med. 2019, 216, 1234–1243. [CrossRef] [PubMed]
23. Maleki, S.J.; Crespo, J.F.; Cabanillas, B. Anti-inflammatory effects of flavonoids. Food Chem. 2019, 299, 125124. [CrossRef]

[PubMed]
24. Dhalaria, R.; Verma, R.; Kumar, D.; Puri, S.; Tapwal, A.; Kumar, V.; Nepovimova, E.; Kuca, K. Bioactive Compounds of Edible

Fruits with Their Anti-Aging Properties: A Comprehensive Review to Prolong Human Life. Antioxidants 2020, 9, 1123. [CrossRef]
25. Haminiuk, C.W.I.; Maciel, G.M.; Plata-Oviedo, M.S.V.; Peralta, R.M. Phenolic compounds in fruits—An overview. Int. J. Food Sci.

Technol. 2012, 47, 2023–2044. [CrossRef]
26. Karasawa, M.M.G.; Mohan, C. Fruits as Prospective Reserves of bioactive Compounds: A Review. Nat. Prod. Bioprospect. 2018, 8,

335–346. [CrossRef]
27. Hopia, A.; Heinonen, M. Antioxidant activity of flavonol aglycones and their glycosides in methyl linoleate. J. Am. Oil Chem. Soc.

1999, 76, 139–144. [CrossRef]
28. Xiao, X.; Shi, D.; Liu, L.; Wang, J.; Xie, X.; Kang, T.; Deng, W. Quercetin Suppresses Cyclooxygenase-2 Expression and Angiogenesis

through Inactivation of P300 Signaling. PLoS ONE 2011, 6, e22934. [CrossRef]
29. Deng, S.; Palu, K.; West, B.J.; Su, C.X.; Zhou, B.-N.; Jensen, J.C. Lipoxygenase Inhibitory Constituents of the Fruits of Noni

(Morinda citrifolia) Collected in Tahiti. J. Nat. Prod. 2007, 70, 859–862. [CrossRef]
30. Häkkinen, S.H.; Kärenlampi, S.O.; Heinonen, I.M.; Mykkänen, H.M.; Törrönen, A.R. Content of the Flavonols Quercetin,

Myricetin, and Kaempferol in 25 Edible Berries. J. Agric. Food Chem. 1999, 47, 2274–2279. [CrossRef]
31. Aherne, S.A.; O’Brien, N.M. Dietary flavonols: Chemistry, food content, and metabolism. Nutrition 2002, 18, 75–81. [CrossRef]
32. Hertog, M.G.; Feskens, E.J.; Hollman, P.C.; Katan, M.B.; Kromhout, D. Dietary antioxidant flavonoids and risk of coronary heart

disease: The Zutphen Elderly Study. Lancet 1993, 342, 1007–1011. [CrossRef]
33. Pocernich, C.B.; Lange, M.L.B.; Sultana, R.; Butterfield, D.A. Nutritional Approaches to Modulate Oxidative Stress in Alzheimers

Disease. Curr. Alzheimer Res. 2011, 8, 452–469. [CrossRef] [PubMed]
34. Mikkonen, T.P.; Määttä, K.R.; Hukkanen, A.T.; Kokko, H.I.; Törrönen, A.R.; Kärenlampi, S.O.; Karjalainen, R.O. Flavonol Content

Varies among Black Currant Cultivars. J. Agric. Food Chem. 2001, 49, 3274–3277. [CrossRef] [PubMed]
35. Erlund, I.; Marniemi, J.; Hakala, P.; Alfthan, G.; Meririnne, E.; Aro, A. Consumption of black currants, lingonberries and bilberries

increases serum quercetin concentrations. Eur. J. Clin. Nutr. 2003, 57, 37–42. [CrossRef] [PubMed]
36. Enogieru, A.B.; Haylett, W.; Hiss, D.C.; Bardien, S.; Ekpo, O.E. Rutin as a Potent Antioxidant: Implications for Neurodegenerative

Disorders. Oxid. Med. Cell. Longev. 2018, 2018, 6241017. [CrossRef]
37. Huang, W.-Y.; Zhang, H.-C.; Liu, W.-X.; Li, C.-Y. Survey of antioxidant capacity and phenolic composition of blueberry, blackberry,

and strawberry in Nanjing. J. Zhejiang Univ. Sci. B 2012, 13, 94–102. [CrossRef]
38. Park, S.-E.; Sapkota, K.; Choi, J.-H.; Kim, M.-K.; Kim, Y.H.; Kim, K.M.; Kim, K.J.; Oh, H.-N.; Kim, S.-J.; Kim, S. Rutin from

Dendropanax morbifera Leveille Protects Human Dopaminergic Cells against Rotenone Induced Cell Injury Through Inhibiting
JNK and p38 MAPK Signaling. Neurochem. Res. 2014, 39, 707–718. [CrossRef]

39. Guardia, T.; Rotelli, A.E.; Juarez, A.O.; Pelzer, L.E. Anti-inflammatory properties of plant flavonoids. Effects of rutin, quercetin
and hesperidin on adjuvant arthritis in rat. Il Farm. 2001, 56, 683–687. [CrossRef]

40. Aruna, R.; Geetha, A.; Suguna, P. Expression of caspase activation recruitment and pyrin domain levels of apoptosis-associated
speck-like protein complex in the pancreas of rats subjected to experimental pancreatitis. Hum. Exp. Toxicol. 2013, 33, 940–948.
[CrossRef]

41. Mascaraque, C.; Aranda, C.; Ocón, B.; Monte, M.J.; Suárez, M.D.; Zarzuelo, A.; Marín, J.J.G.; Martínez-Augustin, O.; de Medina,
F.S. Rutin has intestinal antiinflammatory effects in the CD4+ CD62L+ T cell transfer model of colitis. Pharmacol. Res. 2014, 90,
48–57. [CrossRef] [PubMed]

42. Selloum, L.; Bouriche, H.; Tigrine, C.; Boudoukha, C. Anti-inflammatory effect of rutin on rat paw oedema, and on neutrophils
chemotaxis and degranulation. Exp. Toxicol. Pathol. 2003, 54, 313–318. [CrossRef] [PubMed]

43. Yoo, H.; Ku, S.-K.; Baek, Y.-D.; Bae, J.-S. Anti-inflammatory effects of rutin on HMGB1-induced inflammatory responses in vitro
and in vivo. Agents Actions 2013, 63, 197–206. [CrossRef]

http://doi.org/10.1016/j.molimm.2017.09.012
http://doi.org/10.1007/s00394-015-0835-z
http://doi.org/10.1016/j.jaci.2014.10.032
http://doi.org/10.1038/nrc1046
http://doi.org/10.1093/carcin/21.3.361
http://doi.org/10.1038/ncponc0319
http://doi.org/10.1016/j.cell.2010.01.025
http://doi.org/10.1177/0300060519895347
http://www.ncbi.nlm.nih.gov/pubmed/31885347
http://doi.org/10.1084/jem.20181739
http://www.ncbi.nlm.nih.gov/pubmed/31023715
http://doi.org/10.1016/j.foodchem.2019.125124
http://www.ncbi.nlm.nih.gov/pubmed/31288163
http://doi.org/10.3390/antiox9111123
http://doi.org/10.1111/j.1365-2621.2012.03067.x
http://doi.org/10.1007/s13659-018-0186-6
http://doi.org/10.1007/s11746-999-0060-0
http://doi.org/10.1371/journal.pone.0022934
http://doi.org/10.1021/np0605539
http://doi.org/10.1021/jf9811065
http://doi.org/10.1016/S0899-9007(01)00695-5
http://doi.org/10.1016/0140-6736(93)92876-U
http://doi.org/10.2174/156720511796391908
http://www.ncbi.nlm.nih.gov/pubmed/21605052
http://doi.org/10.1021/jf0010228
http://www.ncbi.nlm.nih.gov/pubmed/11453762
http://doi.org/10.1038/sj.ejcn.1601513
http://www.ncbi.nlm.nih.gov/pubmed/12548295
http://doi.org/10.1155/2018/6241017
http://doi.org/10.1631/jzus.B1100137
http://doi.org/10.1007/s11064-014-1259-5
http://doi.org/10.1016/S0014-827X(01)01111-9
http://doi.org/10.1177/0960327113512337
http://doi.org/10.1016/j.phrs.2014.09.005
http://www.ncbi.nlm.nih.gov/pubmed/25281414
http://doi.org/10.1078/0940-2993-00260
http://www.ncbi.nlm.nih.gov/pubmed/12710715
http://doi.org/10.1007/s00011-013-0689-x


Nutrients 2022, 14, 2496 21 of 27

44. Nassiri-Asl, M.; Nikfarjam, B.A.; Adineh, M.; Hajiali, F. Treatment with Rutin—A Therapeutic Strategy for Neutrophil-Mediated
Inflammatory and Autoimmune Diseases. J. Pharmacopunct. 2017, 20, 52–56. [CrossRef] [PubMed]

45. Herath, H.M.T.; Takano-Ishikawa, Y.; Yamaki, K. Inhibitory Effect of Some Flavonoids on Tumor Necrosis Factor-αProduction in
Lipopolysaccharide-Stimulated Mouse Macrophage Cell Line J774.1. J. Med. Food 2003, 6, 365–370. [CrossRef]

46. Liang, Y.-C.; Huang, Y.-T.; Tsai, S.-H.; Lin-Shiau, S.-Y.; Chen, C.-F.; Lin, J.-K. Suppression of inducible cyclooxygenase and
inducible nitric oxide synthase by apigenin and related flavonoids in mouse macrophages. Carcinogenesis 1999, 20, 1945–1952.
[CrossRef]

47. Kang, H.-K.; Ecklund, D.; Liu, M.; Datta, S.K. Apigenin, a non-mutagenic dietary flavonoid, suppresses lupus by inhibiting
autoantigen presentation for expansion of autoreactive Th1 and Th17 cells. Arthritis Res. Ther. 2009, 11, R59. [CrossRef]

48. Zhang, X.; Wang, G.; Gurley, E.C.; Zhou, H. Flavonoid Apigenin Inhibits Lipopolysaccharide-Induced Inflammatory Response
through Multiple Mechanisms in Macrophages. PLoS ONE 2014, 9, e107072. [CrossRef]

49. Assini, J.M.; Mulvihill, E.E.; Sutherland, B.G.; Telford, D.E.; Sawyez, C.G.; Felder, S.L.; Chhoker, S.; Edwards, J.Y.; Gros, R.; Huff,
M.W. Naringenin prevents cholesterol-induced systemic inflammation, metabolic dysregulation, and atherosclerosis in Ldlr mice.
J. Lipid Res. 2013, 54, 711–724. [CrossRef]

50. Parhiz, H.; Roohbakhsh, A.; Soltani, F.; Rezaee, R.; Iranshahi, M. Antioxidant and Anti-Inflammatory Properties of the Citrus
Flavonoids Hesperidin and Hesperetin: An Updated Review of their Molecular Mechanisms and Experimental Models. Phytother.
Res. 2014, 29, 323–331. [CrossRef]

51. Benavente-García, O.; Castillo, J. Update on Uses and Properties of Citrus Flavonoids: New Findings in Anticancer, Cardiovascular,
and Anti-inflammatory Activity. J. Agric. Food Chem. 2008, 56, 6185–6205. [CrossRef] [PubMed]

52. Zhu, S.; Xu, T.; Luo, Y.; Zhang, Y.; Xuan, H.; Ma, Y.; Pan, D.; Li, D.; Zhu, H. Luteolin Enhances Sarcoplasmic Reticulum
Ca2+-ATPase Activity through p38 MAPK Signaling thus Improving Rat Cardiac Function after Ischemia/Reperfusion. Cell.
Physiol. Biochem. 2017, 41, 999–1010. [CrossRef] [PubMed]

53. Wang, Q.; Xie, M. Antibacterial activity and mechanism of luteolin on Staphylococcus aureus. Acta Microbiol. Sin. 2010, 50,
1180–1184.

54. Zhang, Q.; Yang, J.; Wang, J. Modulatory effect of luteolin on redox homeostasis and inflammatory cytokines in a mouse model of
liver cancer. Oncol. Lett. 2016, 12, 4767–4772. [CrossRef]

55. Xiong, J.; Wang, K.; Yuan, C.; Xing, R.; Ni, J.; Hu, G.; Chen, F.; Wang, X. Luteolin protects mice from severe acute pancreatitis by
exerting HO-1-mediated anti-inflammatory and antioxidant effects. Int. J. Mol. Med. 2017, 39, 113–125. [CrossRef]

56. Yao, Z.-H.; Yao, X.-L.; Zhang, Y.; Zhang, S.-F.; Hu, J.-C. Luteolin Could Improve Cognitive Dysfunction by Inhibiting Neuroin-
flammation. Neurochem. Res. 2018, 43, 806–820. [CrossRef]

57. Hirano, T.; Higa, S.; Arimitsu, J.; Naka, T.; Shima, Y.; Ohshima, S.; Fujimoto, M.; Yamadori, T.; Kawase, I.; Tanaka, T. Flavonoids
such as Luteolin, Fisetin and Apigenin Are Inhibitors of Interleukin-4 and Interleukin-13 Production by ActivatedHuman
Basophils. Int. Arch. Allergy Immunol. 2004, 134, 135–140. [CrossRef]

58. Tomás-Barberán, F.A.; Clifford, M.N. Flavanones, Chalcones and Dihydrochalcones—Nature, Occurrence and Dietary Burden. J.
Sci. Food Agric. 2000, 80, 1073–1080. [CrossRef]

59. Lu, Y.; Foo, L. Identification and quantification of major polyphenols in apple pomace. Food Chem. 1997, 59, 187–194. [CrossRef]
60. Hirai, S.; Kim, Y.-I.; Goto, T.; Kang, M.-S.; Yoshimura, M.; Obata, A.; Yu, R.; Kawada, T. Inhibitory effect of naringenin chalcone on

inflammatory changes in the interaction between adipocytes and macrophages. Life Sci. 2007, 81, 1272–1279. [CrossRef]
61. Pinho-Ribeiro, F.A.; Hohmann, M.S.; Borghi, S.M.; Zarpelon, A.C.; Guazelli, C.F.; Manchope, M.F.; Casagrande, R.; Verri, W.A.

Protective effects of the flavonoid hesperidin methyl chalcone in inflammation and pain in mice: Role of TRPV1, oxidative stress,
cytokines and NF-κB. Chem. Interact. 2015, 228, 88–99. [CrossRef] [PubMed]

62. Khoo, H.E.; Azlan, A.; Tang, S.T.; Lim, S.M. Anthocyanidins and anthocyanins: Colored pigments as food, pharmaceutical
ingredients, and the potential health benefits. Food Nutr. Res. 2017, 61, 1361779. [CrossRef] [PubMed]

63. Lätti, A.K.; Kainulainen, P.S.; Hayirlioglu-Ayaz, S.; Ayaz, F.A.; Riihinen, K.R. Characterization of Anthocyanins in Caucasian
Blueberries (Vaccinium arctostaphylos L.) Native to Turkey. J. Agric. Food Chem. 2009, 57, 5244–5249. [CrossRef] [PubMed]

64. Welch, C.R.; Wu, Q.; Simon, J.E. Recent Advances in Anthocyanin Analysis and Characterization. Curr. Anal. Chem. 2008, 4,
75–101. [CrossRef] [PubMed]

65. Xie, C.; Kang, J.; Ferguson, M.E.; Nagarajan, S.; Badger, T.M.; Wu, X. Blueberries reduce pro-inflammatory cytokine TNF-α and
IL-6 production in mouse macrophages by inhibiting NF-κB activation and the MAPK pathway. Mol. Nutr. Food Res. 2011, 55,
1587–1591. [CrossRef] [PubMed]

66. Zhu, Y.; Ling, W.; Guo, H.; Song, F.; Ye, Q.; Zou, T.; Li, D.; Zhang, Y.; Li, G.; Xiao, Y.; et al. Anti-inflammatory effect of purified
dietary anthocyanin in adults with hypercholesterolemia: A randomized controlled trial. Nutr. Metab. Cardiovasc. Dis. 2013, 23,
843–849. [CrossRef]

67. Seeram, N.P.; Momin, R.A.; Nair, M.G.; Bourquin, L.D. Cyclooxygenase inhibitory and antioxidant cyanidin glycosides in cherries
and berries. Phytomedicine 2001, 8, 362–369. [CrossRef]

68. Beekwilder, J.; Hall, R.D.; De Ric Vos, C.H. Identification and dietary relevance of antioxidants from raspberry. BioFactors 2005, 23,
197–205. [CrossRef]

69. Pantelidis, G.E.; Vasilakakis, M.; Manganaris, G.A.; Diamantidis, G. Antioxidant capacity, phenol, anthocyanin and ascorbic acid
contents in raspberries, blackberries, red currants, gooseberries and Cornelian cherries. Food Chem. 2007, 102, 777–783. [CrossRef]

http://doi.org/10.3831/KPI.2017.20.003
http://www.ncbi.nlm.nih.gov/pubmed/28392963
http://doi.org/10.1089/109662003772519930
http://doi.org/10.1093/carcin/20.10.1945
http://doi.org/10.1186/ar2682
http://doi.org/10.1371/journal.pone.0107072
http://doi.org/10.1194/jlr.M032631
http://doi.org/10.1002/ptr.5256
http://doi.org/10.1021/jf8006568
http://www.ncbi.nlm.nih.gov/pubmed/18593176
http://doi.org/10.1159/000460837
http://www.ncbi.nlm.nih.gov/pubmed/28222421
http://doi.org/10.3892/ol.2016.5291
http://doi.org/10.3892/ijmm.2016.2809
http://doi.org/10.1007/s11064-018-2482-2
http://doi.org/10.1159/000078498
http://doi.org/10.1002/(SICI)1097-0010(20000515)80:7&lt;1073::AID-JSFA568&gt;3.0.CO;2-B
http://doi.org/10.1016/S0308-8146(96)00287-7
http://doi.org/10.1016/j.lfs.2007.09.001
http://doi.org/10.1016/j.cbi.2015.01.011
http://www.ncbi.nlm.nih.gov/pubmed/25617481
http://doi.org/10.1080/16546628.2017.1361779
http://www.ncbi.nlm.nih.gov/pubmed/28970777
http://doi.org/10.1021/jf9005627
http://www.ncbi.nlm.nih.gov/pubmed/19480388
http://doi.org/10.2174/157341108784587795
http://www.ncbi.nlm.nih.gov/pubmed/19946465
http://doi.org/10.1002/mnfr.201100344
http://www.ncbi.nlm.nih.gov/pubmed/21887820
http://doi.org/10.1016/j.numecd.2012.06.005
http://doi.org/10.1078/0944-7113-00053
http://doi.org/10.1002/biof.5520230404
http://doi.org/10.1016/j.foodchem.2006.06.021


Nutrients 2022, 14, 2496 22 of 27

70. Wada, L.; Ou, B. Antioxidant Activity and Phenolic Content of Oregon Caneberries. J. Agric. Food Chem. 2002, 50, 3495–3500.
[CrossRef]

71. Kähkönen, M.P.; Heinonen, M. Antioxidant Activity of Anthocyanins and Their Aglycons. J. Agric. Food Chem. 2003, 51, 628–633.
[CrossRef] [PubMed]

72. Munshi, A.; Ramesh, R. Mitogen-Activated Protein Kinases and Their Role in Radiation Response. Genes Cancer 2013, 4, 401–408.
[CrossRef] [PubMed]

73. Ho, M.-L.; Chen, P.-N.; Chu, S.-C.; Kuo, D.-Y.; Kuo, W.-H.; Chen, J.-Y.; Hsieh, Y.-S. Peonidin 3-Glucoside Inhibits Lung Cancer
Metastasis by Downregulation of Proteinases Activities and MAPK Pathway. Nutr. Cancer 2010, 62, 505–516. [CrossRef] [PubMed]

74. Afaq, F.; Malik, A.; Syed, D.; Maes, D.; Matsui, M.S.; Mukhtar, H. Pomegranate Fruit Extract Modulates UV-B-mediated
Phosphorylation of Mitogen-activated Protein Kinases and Activation of Nuclear Factor Kappa B in Normal Human Epidermal
Keratinocytes. Photochem. Photobiol. 2007, 81, 38–45. [CrossRef]

75. Huang, D.; Ou, B.; Prior, R.L. The Chemistry behind Antioxidant Capacity Assays. J. Agric. Food Chem. 2005, 53, 1841–1856.
[CrossRef] [PubMed]

76. Medda, R.; Lyros, O.; Schmidt, J.L.; Jovanovic, N.; Nie, L.; Link, B.J.; Otterson, M.F.; Stoner, G.D.; Shaker, R.; Rafiee, P. Anti
inflammatory and anti angiogenic effect of black raspberry extract on human esophageal and intestinal microvascular endothelial
cells. Microvasc. Res. 2014, 97, 167–180. [CrossRef] [PubMed]

77. Beaux, D.; Fleurentin, J.; Mortier, F. Effect of Extracts of Orthosiphon Stamineus Benth, Hieracium Pilosella L., Sambucus nigra L.
and Arctostaphylos uva-ursi (L.) Spreng. in Rats. Phytother. Res. PTR 1999, 13, 222–225. [CrossRef]
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