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Abstract: Neuroscience has traditionally relied on manually observing laboratory animals in
controlled environments. Researchers usually record animals behaving freely or in a restrained
manner and then annotate the data manually. The manual annotation is not desirable for three
reasons; (i) it is time-consuming, (ii) it is prone to human errors, and (iii) no two human annotators
will 100% agree on annotation, therefore, it is not reproducible. Consequently, automated annotation
for such data has gained traction because it is efficient and replicable. Usually, the automatic
annotation of neuroscience data relies on computer vision and machine learning techniques. In this
article, we have covered most of the approaches taken by researchers for locomotion and gesture
tracking of specific laboratory animals, i.e. rodents. We have divided these papers into categories
based upon the hardware they use and the software approach they take. We have also summarized
their strengths and weaknesses.

Keywords: locomotion tracking; gesture tracking; behavioral phenotyping; automated annotation;
neuroscience; machine learning

1. Introduction

Neuroscience has found an unusual ally in the form of computer science which has strengthened
and widened its scope. The wide availability and easy-to-use nature of video equipment have enabled
neuroscientists to record large volumes of behavioral data of animals and analyze them from the
neuroscience perspective. Traditionally, neuroscientists would record videos of animals they wanted
to study and then annotate the video data manually. Normally, this approach is reasonable if the video
being annotated is not large, but the bigger the volume of recorded data gets, the more inconvenient,
tiresome, erroneous and slow the manual annotation becomes. Moreover, the annotations made
by human annotators are not perfectly reproducible. Two annotations of the same sample done
by two different persons will likely differ from each other. Even the annotation done for the same
sample at different times by the same person might not be the same. All of these factors have
contributed to the demand for a general-purpose automated annotation approach for video data.
For behavioral phenotyping and neuroscience applications, researchers are usually interested in
gesture and locomotion tracking. Fortunately, computer science has an answer to this problem in the
form of machine learning and computer vision-based tracking methods. The research in this area is
still not mature, but it is receiving a lot of attention lately. The primary motivation for automated
annotation is the reproducibility and ability to annotate large volumes of data in a practical amount
of time.

Some researchers approach this problem by treating a video as a sequence of still images
and then applying computer vision algorithms to every frame without considering their temporal
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relationships [1,2]. Some of the researchers include temporal information to some extent while
others use the assistance of additional hardware [3–5]. The general framework is similar. Animals
(mice/rats/insects) are kept in a controlled environment, either restrained or free where the lighting
and illumination can be manipulated. To acquire the video data, single or multiple video cameras
are installed. These might be simple video cameras or depth/IR cameras. There might be some
additional accessories installed such as physical markers or body-mounted sensors [6–9]. In this article,
we review the state of the approaches for rodents’ gesture and locomotion tracking. Nevertheless,
we do not restrict the review only to previous works which focus only on rodents, but we include
similar approaches that could be easily ported to this particular case (typically other small mammals
and insect monitoring applications).

2. Problem Statement

Behavioral phenotyping depends upon the annotated activity of rodents/small animals. We can
identify the activity when we see how the rodents/small animals move, behave and act over an
extended periods of time. One of the many proposed approaches is to track the limb movements of the
rodents and convert them into quantifiable patterns. Limb tracking can be either achieved by recording
the limbs from the frontal, lateral, top or bottom view. Cases shown in Figures 1 and 2 are typical
examples of activity tracking in rodents and small animals. They present the following challenges:

Figure 1. Frontal view of a mouse with its moving limbs marked.

Figure 2. Lateral view of a mouse with its moving limbs marked.

1. Spatial resolution in most consumer-grade video cameras is not sufficient for effective tracking
when the temporal resolution increases. Usually, cameras increase the frames per second ratio by
decreasing the image resolution.
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2. Limbs might move faster at one point in time while they might be stationary at another point in
time, rendering the development of uniform motion model impossible.

3. The limbs might overlap with each other or other body parts, therefore, presenting occlusions.
4. Some settings require specific lighting conditions, which may make automated gesture

recognition more difficult.

3. Motion Tracking Principles in Videos

Videos are sequences of images/frames. When displayed with sufficient frequency, they will
appear as continuous content to the human eye. Therefore, all the image processing techniques
can be applied to the individual video frames [10,11]. Moreover, the contents of two consecutive
frames are often closely related, thus, making object and motion tracking possible in videos. Motion
detection/object tracking in videos is done by detecting objects in individual frames. It involves
monitoring an object’s shape and motion trajectory in every frame. This is achieved by solving the
temporal correspondence problem, to match a region in successive frames of a video sequence [12–14].

Motion detection provides additional information for detection and tracking. Most of the
state-of-the-art methods involve single or multiple techniques for motion detection. For the sake
of clarity in this survey, we divide these approaches in background subtraction/temporal differencing
and statistical/learning-based approaches.

3.1. Background Subtraction-Based Approaches

Commonly used for motion segmentation in static scenes, background subtraction attempts to
detect and track motion by subtracting the current image pixel-by-pixel from a reference/background
image. The pixels which yield a difference above a threshold are considered as foreground. The creation
of the background image is known as background modeling. Once the foreground pixels are classified,
some morphological post-processing is done to enhance the detected motion regions. Different
techniques for background modeling, subtraction and post-processing result in different approaches
for the background subtraction method [15–19].

In temporal differencing, motion is detected by taking pixel-by-pixel difference of consecutive
frames (two or three). It is different from background subtraction in the sense that the background or
reference image is not stationary. It is mainly used in scenarios involving a moving camera [20–24].

3.2. Statistical and Learning-Based Approaches

Some methods distinguish between foreground and background keeping and updating statistics
of the foreground and background pixels. Foreground and background pixels are differentiated by
comparing pixel statistics with that of the background model. So, in essence, motion tracking is
achieved by tracking the statistical models of foreground (object) and the background in each video
frame. This approach is stable in the presence of noise, illumination changes and shadows [25–33].
Some approaches employ optical flow to track the apparent motion and then use it to predict the
position/pose in the next frames. Optical flow is the distribution of apparent velocities/ movement of
brightness patterns in an image [34–40]. In some cases, the optical flow-based prediction is further
reinforced by introducing a learning element, algorithms are trained either to predict the position of
the object in successive frames or pose of a person/animal or detect a specific object in each frame.
Some of these learning-based approaches do not rely on the explicit estimation of optical flow at all,
instead, they try to solve this problem by learning how the object looks and then tracking similar
objects in every frame or by learning how the object moves [41–43].

4. Major Trends

Motion tracking for neuroscience applications is not formally different from general motion
tracking; therefore, all the motion tracking techniques can be applied to it in one way or the other.
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Although the general idea is the same, the environment for such type of motion tracking can be
different from general-purpose tracking. A typical setup for neuroscience applications includes a
closed environment (either a room or a box), video cameras, the animal and control systems. The animal
can either be restrained or freely behaving. There might multiple cameras recording the motion from
different angles. For this survey, we will go through all those cases which involve motion tracking
(especially limbs tracking, head tracking and gesture tracking) of laboratory animals for behavioral
phenotyping or medical assessment purposes. It is to be noted that research on gesture tracking/pose
estimation for humans has seen significant improvements in recent years, those techniques cannot be
applied as they are to gesture tracking in rodents and small animals for the following reasons:

1. Human gait parameters and motion patterns are inherently different than those of four-legged
animals/rodents/lab animals.Human gait can be solely represented by an inverted pendulum
model while in rats/four-legged animals, the inverted pendulum model represents only a
percentage of the gait (up to 70% according to some researchers). Moreover, the degree of
freedom for human gait is different than that of four-legged animals. [44–47].

2. Gesture tracking techniques developed for humans are mostly optimized for the environments in
which humans dwell, therefore, they can’t be directly imported for lab environments.

3. Human subjects do not need to be trained to perform a supervised task. For example, let’s say a
neuroscientist wants to investigate the effect of a certain neurophysiological regime on physical
activity, he/she can simply ask the test subject to either walk or exercise. The same cannot be
said for small animals/rodents. They need to be trained on a treadmill, therefore, the tracking
methods developed for humans might not have the same efficiency for rodents.

4. For reliable behavioral phenotyping, the gesture tracking/pose estimation should be highly
accurate, therefore, they often need more fine-tuning.

Although techniques developed for human gesture tracking/pose estimation cannot be applied
as they are to gesture tracking in rodents and small animals, many of the studies mentioned in this
survey either take inspiration from those techniques or built their solutions based upon them.

Based on their intended use and nature, we have divided the approaches according to the
hierarchy outlined in Figure 3.

Gesture tracking approaches

Hardware based approaches
Software based approaches

aided by specialized
hardware

Software based approaches

Semi-automated Fully automated Semi-automated Fully automated

Figure 3. Categories and their hierarchy of the approaches covered in this survey paper.

5. Hardware Based Methods

LocoWhisk is a commercial solution that proposes to quantify and track locomotion by tracking the
whiskers’ movements using a specialized hardware setup [48]. The setup is comprised of high-speed
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cameras, a pedobarograph, and infrared lighting. Open-source image processing techniques are
then used to track the infra-red illuminated whiskers. The inventors behind this solution haven’t
provided any objective evaluation of how effective is their solution in tracking whisking movements.
The solution is not compatible with any existing equipment, therefore, it has to be bought and
installed from scratch. Also, since they haven’t provided the details into the image processing pipeline,
we cannot compare and validate its effectiveness.

Kain et al. [49] proposed an explicit hardware-based leg tracking method for automated behavior
classification in Drosophila flies. The fly is made to walk on a spherical treadmill. Dyes which
are sensitive to specific wavelengths of light are applied to its legs and then the leg movement is
recorded by two mounted cameras. This way, 15 gait features are recorded and tracked in real-time.
This approach has the appeal for real-time deployment but it cannot be generalized to any limb
tracking application because it needs a specific hardware setup. Moreover, being heavily dependent
on photo-sensitive dyes decreases its robustness. Also, the flies have to walk on a spherical treadmill
for this method to be effective which is not always easy since it is very hard to train the flies.

Snigdha et al. [50] proposed 3D tracking of mice whiskers using optical motion capture hardware.
The 3D tracking system (Hawk Digital real-time System, Motion Analysis Corp., Santa Rosa, CA,
USA) is composed of two joint cameras and the Cortex analysis software (Motion Analysis, CA, USA).
The whiskers are marked with retro-reflective markers and their X, Y, and Z coordinates are digitized
and stored along with video recordings of the marker movements. The markers are made from a
retro-reflective tape backed with adhesive (Motion Analysis Corp., Santa Rosa, CA, USA) and fastened
onto the whiskers using the tape’s adhesive. Markers were affixed to the whisker at a distance of
about 1 cm from the base. Reliable 3D tracking requires a marker to be visible at all times by both
cameras. This condition can be satisfied in head-fixed mice where the orientation of the mouse to
the cameras remains fixed. The system was connected to a dual processor Windows-based computer
for data collection. The proposed tracking framework is easy to install and computationally cheap.
The hardware components are not also high end and expensive, therefore, this system can be set up
relatively cheaply. But like other hardware-assisted frameworks, it also needs specialized hardware
and thus, it isn’t very scalable and portable. Moreover, for reliable tracking, the retro-reflective markers
should be visible to the cameras at all times, therefore, it cannot handle occlusions and thus, it is not
robust. Also, since the method is invasive, it might affect the mice behavior, therefore, rendering the
behavioral analysis results skewed.

Scott Tashman et al. [51] proposed a bi-plane radiography assisted by static CT scan-based
method for 3D tracking of skeletons of small animals. The high-speed biplane radiography system
consists of two 150 kV X-ray generators optically coupled to synchronized high-speed video cameras.
For static radiostereometric analysis, they implanted a minimum of three radio-opaque bone markers
per bone to enable accurate registration between the two views. The acquired radiographs are first
corrected for geometric distortion. They calculated ray-scale weighted centroids for each marker
with sub-pixel resolution. They tested this system on dogs and reported an error of 0.02 mm when
inter-marker distance calculated by their system was compared to the true inter-marker distance of
30 mm. For dynamic gait tracking, this system is reported to be very accurate but the accuracy comes
at a cost, the system is expensive and need dedicated hardware. Also, since the system includes
specialized hardware, it is not easy to operate. Moreover, since the marker implantation is invasive,
it can alter the behavior of animals being studied.

Harvey et al. [52] proposed an optoelectronic based whisker tracking method for head-fixed
rats. In the proposed method, the rat’s head is fixed to a metal bar protruding from the top of the
restraining device. Its paw rests on a micro switch that records lever presses. A turntable driven
by a stepper motor rotates a single sphere/cube into the rat’s “whisking space”. The whiskers are
marked to increase the chances of detection. The movements of a single whisker are detected by a
laser emitter and an array of CCD detectors. Once the data is recorded, a single whisker is identified
manually which serves as a reference point. As the article is more focused on whisking responses
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of rodents to external stimuli, they have not reported the whiskers’ detection and tracking accuracy.
R. Bermejo et al. [53] reported a similar approach for tracking individual whiskers. They restrained the
rats and then used a combination of CCDs and laser emitters. The rats were placed in such a way that
their whiskers blocked the path of the laser, casting a shadow over CCDs, thus, registering the presence
of a whisker which can be tracked by tracking the voltage shifts on CCD array. They also have not
reported tracking accuracy. Both of these methods need the whiskers to be visible at all time, therefore,
these approaches cannot perform well in the case of occlusions. Moreover, the head of the rats need to
be fixed, so they cannot be studied while behaving freely. Also, apart from the need for specialized
hardware, the system needs the user to initialize tracking, so it is not completely automated.

Kyme et al. [54] proposed a marker-assisted hardware-based method for head motion tracking of
freely behaving and tube-bounded rats. They glued a marker with a specific black and white pattern
to the rat’s head. Motion tracking was performed using the Micron-Tracker S × 60 (ClaronTech. Inc.,
Toronto, ON, Canada), a binocular-tracking system that computes a best-fit pose of printed markers in
the field of measurement [55]. The authors have reported accurate tracking for more than 95% of the
time in the case of tube-bounded rats and similar performance for freely behaving rats if the tracking
algorithm is assisted 10% of the time. The system is simple and effective for tube-bound rats and can
be operated easily. But the approach has one major drawback; it can only be used in a very specific
setting. It requires a specialized setup and it needs to glue external markers to the test subject’s head,
which might affect its behavior. Moreover, the same authors have used the Micron-Tracker based
approach for synchronizing head movements of a rat with positron emission tomography scans of
their brains and have reported that the marker-assisted tracking method was able to synchronize the
head movements with scan intervals with an error of less than 10 ms [56].

Pasquet et al. [57] proposed a wireless inertial sensors-based approach for tracking and quantifying
head movements in rats. The inertial measurement unit (IMU) contains a digital 9-axis inertial sensor
(MPU-9150, Invensense, San Jose, CA, USA) that samples linear acceleration, angular velocity and
magnetic field strength in three dimensions, a low-power programmable microcontroller (PIC16,
Microchip, Chandler, AZ, USA) running a custom firmware and a Bluetooth radio, whose signal
is transmitted through a tuned chip antenna. This system was configured with Labview for data
acquisition and the analysis was done in R. The sensors record any head movements by registering the
relative change in acceleration. Since the sensors record data in nine axes,the method is used to detect
events in rat’s behavior based on head movements. The authors have reported a detection accuracy of
96.3% and a mean correlation coefficient of 0.78 ± 0.14 when the recorded data is compared for different
rats (n = 19 rats).Since the proposed system records a head’s acceleration, angular velocity and magnetic
field strength in all three dimensions, this opens up the possibility of using this dataset for high-end
learning algorithms for behavioral classification. Moreover, since the dataset is based on well-studied
physical phenomena (acceleration and velocity), it can also be used to develop deterministic models of
the head’s movements. The reported performance figures are very good in terms of event detection
and consistency but the system can only be used to track head movements. Also, the system requires
specialized hardware which limits its portability. Since the method needs an inertial sensor to be
attached to the head of the rats, it is invasive and therefore, can alter the rat’s behavior.

Hamers et al. proposed a specific setup based on inner-reflecting plexiglass walkway [58].
The animals traverse a walkway (plexiglass walls, spaced 8 cm apart) with a glass floor (109, 3, 15, 3,
0.6 cm) located in a darkened room. The walkway is illuminated by a fluorescent tube from the long
edge of the glass floor. For most of the way, the light travels internally in the glass walkway, but when
some pressure is applied, for example by motion of a mouse, the light escapes and is visible from
outside. The escaped light, which is scattered from the paws of the mouse, is recorded by a video
camera aimed at a 45◦ mirror beneath the glass walkway. The video frames are then thresholded to
detect bright paw prints. The paws are labeled (left, right, front, hind). The system can extrapolate
a tag (label of the footprint) to the bright areas in the next frame which minimizes the need for user
intervention but in some cases, user intervention becomes necessary. The authors haven’t reported
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paw detection/tracking performance. The system is reliable for paw-tracking but the required setup
makes its wide-scale application less likely, therefore, it can only be used for one specific purpose.

6. Video Tracking Aided by Hardware

6.1. Semi-Automated

Dorman et al. [59] conducted a comparative study of two commercially available
hardware-assisted gait analysis systems; DigiGait and TreadScan. The DigiGaitTM imaging system
uses a high-speed, 147 frames-per-second video camera mounted inside a stainless steel treadmill
chassis below a transparent treadmill belt to capture ventral images of the subject. The treadmill
is lit from the inside of the chassis by two fluorescent lights and overhead by one fluorescent light.
The TreadScanTM imaging system uses a high-speed, 100 frames-per-second video camera adjacent to
a translucent treadmill belt to capture video reflected from a mirror mounted under the belt at 45◦.
Images are automatically digitized by DigiGaitTM and TreadScanTM systems. DigiGaitTM videos are
manually cropped and imported, and then automatically analyzed. The software identifies the portions
of the paw that are in contact with the treadmill belt in the stance phase of stride as well as tracks the
foot through the swing phase of the stride. Measures are calculated for 41 postural and kinematic
metrics of gait. The authors found that DigiGaitTM system consistently measured significantly longer
stride measures than TreadScanTM. Both systems’ measures of variability were equal. Reproducibility
was inconsistent in both systems. Only the TreadScanTM detected normalization of gait measures and
the time spent on analysis was dependent on operator experience. DigiGaitTM and TreadScanTM have
been particularly well received in neurophysiological research [60–70].

Cleversys Inc. (http://cleversysinc.com/CleverSysInc/) introduced a commercial solution for
gait analysis in rodents, called GaitScan [71]. GaitScan system records videos of the rodent running
either on a transparent belt treadmill or on a clear free-walk runway. The video of the ventral
(underside) view of the animal is obtained using a high-speed digital camera. The video essentially
captures the footprints of the animal as they walk/run. GaitScan software can work with videos taken
from any treadmill or runway device that allows the capture of its footprints on any video capturing
hardware system with a high-speed camera. The accompanying software lets the user track multiple
gait parameters which can be later used for behavioral phenotyping. This solution has also been used
in multiple studies [72–76].

TrackSys ltd. (http://www.tracksys.co.uk/) introduced two commercial systems for rodents’
motor analysis. One system is called ’ErasmusLadder’. The mouse traverses a horizontal ladder
between two goal boxes. Each rung of the ladder contains a touch-sensitive sensor. These sensors
allow the system to measure numerous parameters relative to motor performance and learning
such as step time and length, missteps, back steps and jumps [77]. It has been used in multiple
studies [78–82]. Its tracking performance hasn’t been reported by its manufacturer. The other system
is called ’CatWalk’ [83]. It is comprised of a plexiglass walkway that can reflect light internally. When
the animals’ paws touch the glass, the light escapes as their paw print and is captured by a high-speed
camera mounted beneath the walkway. It can be used to quantify several gait parameters such as
pressure, stride length, swing and stance duration. Multiple researchers have used ’CatWalk’ in gait
analysis [84–88].

Knutsen et al. [89] proposed the use of overhead IR LEDs along with video cameras for head
and whisker tracking of unrestrained behaving mice. The overhead IR LEDs are used to flash IR
light onto the mouse head which is reflected from its eyes. The reflected flash is recorded by an IR
camera. In the first few frames of every movie, a user identifies a region-of-interest (ROI) for the eyes
which encircles a luminous spot (reflection from the eye). This luminous spot is tracked in subsequent
frames by looking for pixels with high luminosity in the shifted ROI. Once eyes are located in every
frame, they are used to track head and whiskers in intensity videos. First, a mask averaged over the
frames containing no mice is subtracted from the frame. Then user-initiated points are used to form

http://cleversysinc.com/CleverSysInc/
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whisker shaft by spline interpolation. For the next frame, sets of candidate points are initiated and
shaft from current frames is convolved with candidate shafts from the next frame to locate the set of
points most likely being a whisker. Although the pipeline has no temporal context involved, yet it is
quite effective in whisker tracking with a high Pearson correlation between ground truth and tracked
whisker shafts. The downside of this approach is the need for high-speed videos and additional IR
hardware. Moreover, since the whisker tracking is dependent upon the accurate detection of eyes in
every frame for finding the region of interest which contains the head, any flashes onto the IR camera
or any occlusions of the eyes can result in a considerable deviation in whisker tracking.

Gravel et al. [90] proposed a tracking method assisted by an X-Ray area scan camera for gait
parameters of rats walking on a treadmill. The system consists of a Coroskop C arm X-ray system
from Siemens, equipped with an image intensifier OPTILUX 27HD. The X-Ray system is used to
detect fluoroscopic markers placed on hind limbs of the rat. A high-speed area scan camera from
Dalsa (DS-41-300K0262), equipped with a C-mount zoom lens (FUJINON-TV, H6X12.R, 1:1.2/12.5–75)
mounted on the image intensifier is used for video acquisition and a computer is used to overlay the
detected markers on the video. The treadmill with the overlaying box is placed on a free moving
table and positioned near the X-ray image intensifier. The X-ray side view videos of locomotion are
captured while the animal walks freely at different speeds imposed by the treadmill. The acquired
video and marker data are processed in four steps; correction for image distortion, image denoising and
contrast enhancement, frame-to-frame morphological marker identification and statistical gait analysis.
The data analysis process can be run in automated mode for image correction and enhancement
however the morphological marker identification is user-assisted. The kinematic gait patterns are
computed using a Bootstrap method [91]. After multiple Monte Carlo runs, the authors have reported
consistent gait prediction and tracking with confidence of 95%. They have compared the performance
of the proposed system with manual marker annotation by a user by first manually processing 1 h
30 min of data and then processing only 12 min data by the system assisted by the same user. They have
reported only 8% deviation in gait cycle duration, therefore, claiming a 7-fold decrease in processing
time with acceptable loss in accuracy. The system is robust for gait pattern analysis, it can track
multiple gait parameters, therefore, making complex behavioral classification possible. However,
the system is still not scalable and portable because it relies on dedicated hardware. The system is
not fully automated as well as it relies upon continuous user assistance. Moreover, the system needs
physical markers painted on the limbs, therefore, it cannot work reliably in a situation where painting
markers is not an option.

John et al. [92] proposed a semi-automated approach for simultaneously extracting
three-dimensional kinematics of multiple points on each of an insect’s six legs. White dots are
first painted on insect’s leg joints. Two synchronized video cameras placed under the glass floor of
the platform are used to record video data at 500 frames per second. The synchronized video data is
then used to generate 3D point clouds for the regions of interest by triangulation. The captured video
frames are first subtracted from a background frame modeled by a Gaussian mean of 100 frames with
no insects. After image enhancement, a user defines the initial tracking positions of leg joints in a 3D
point cloud which are then tracked both in forward and backward direction automatically. The user
can correct any mismatched prediction in any frame. The authors have reported a tracking accuracy of
90% when the user was allowed to make corrections in 3–5% of the frames. The proposed approach
is simple in terms of implementation, accurate in terms of spatial and temporal resolution and easy
to operate. Also, the proposed method produced a rich dataset of insects’ legs kinematics, therefore,
making complex behavioral analysis possible. However, it needs constant user assistance and does not
have any self-correction capability.
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6.2. Completely Automated

6.2.1. Background Subtraction-Based Approaches

Akihiro Nakamura et al. [93] proposed a depth sensor-based approach for paw tracking of mice
on a transparent floor. The system is composed of an open-field apparatus, a Kinect sensor, and a
personal computer. It captures the subject’s shape from below using a low-cost infrared depth sensor
(Microsoft Kinect) and an opaque infrared-pass filter. The open field is a square of 400 mm × 400 mm
and the height of the surrounding wall is 320 mm. The Kinect device is fixed 430 mm below the
floor so that the entire open-field area can be captured by the device. For the experiment in the
opaque conditions, the floor of the open field was covered with tiled infrared-pass filters (FUJIFILM
IR-80 (Fuji Film, Tokyo, Japan)), which are commonly used in commercial cameras. The depth
maps, consisting of 320 × 240 depth pixels, are captured at 30 frames per second. The tracking
algorithm has four steps; pre-processing, feature-point extraction, footprint detection, and labeling.
During pre-processing, the subject’s depth information is extracted from the raw depth map by
applying background subtraction to the raw depth map. The noise produced by pre-processing steps
is removed by morphological operations. AGEX algorithm [94] is used for feature extraction after
pre-processing. Center of mass of AGEX point clouds is used for paw detection and labeling. All those
pixels whose Euclidean distance is lower than a threshold from the center of mass are considered
to be member pixels of the paws. This framework offers the benefits of low computational cost and
easy-to-install system. The proposed system can also be used in real-time. However, it is not robust.
It can be used only for paw tracking in a specific setting. Moreover, it cannot be used for other gesture
tracking measures, such as head or whiskers tracking.

César S. Mendes et al. [95] proposed an integrated hardware and software system called
’MouseWalker’ that provides a comprehensive and quantitative description of kinematic features
in freely walking rodents. The MouseWalker apparatus is comprised of four components: the fTIR
floor and walkway wall, the supporting posts, the 45◦ mirror, and the background light. A white LED
light strip for black and white cameras or a colored LED light strip for color cameras is glued to a
3/8-inch U-channel aluminum base LED mount. This LED/aluminum bar is clamped to the long edges
of a 9.4-mm (3/8-inch) thick piece of acrylic glass measuring 8 by 80 cm. A strip of black cardboard is
glued and sewn over the LED/acrylic glass contact areas. To build the acrylic glass walkway, all four
sides were glued together with epoxy glue and cable ties and placed over the fTIR floor. Videos are
acquired using a Gazelle 2.2-MP camera (Point Grey, Richmond, VA, Canada) mounted on a tripod
and connected to a Makro-Planar T 2/50 lens (Carl Zeiss, Jena, Germany) at maximum aperture (f/2.0)
to increase light sensitivity and minimize depth of field. The ’MouseWalker’ program is developed
and compiled in MATLAB (The Mathworks, MA, USA) [96]. The body and footprints of the mouse are
distinguished from the background and each other based on their color or pixel intensity. The RGB
color of the mouse body and footprints are user-defined. The tail is identified as a consecutive part of
the body below a thickness threshold. Three equidistant points along the tail are used to characterize
tail curvature. The head is defined by the relative position of the nose. The center and direction of the
head are also recorded along with the center of the body without the tail and its orientation. A body
“back” point is defined as the point which is halfway between the body center and the start of the
tail. For the footprints of the animal, the number of pixels within a footprint, as well as the sum of
the brightness of these pixels, are stored by the software. The ’MouseWalker’ can be used to track
speed, steps frequency, swing period and length of steps, stance time, body linearity index footprint
clustering and leg combination indexes: no swing, single-leg swing, diagonal-leg swing, lateral-leg
swing, front or hind swing, three-leg swing, or all-legs swing (unitless). The system is quite robust;
it can track multiple gait parameters and can create a rich dataset which can be used to train advanced
learning-based algorithms for behavioral classification. However, the system is not very scalable and
portable. The enclosing setup of the mice and the hardware configuration is too specific for portability.
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Wang et al. [97] proposed a pipeline for tracking motion and identifying the micro-behavior of
small animals based on Microsoft Kinect sensors and IR cameras. This is achieved by employing
Microsoft Kinect cameras along with normal video cameras to record movement of freely behaving
rodents from three different perspectives. The IR depth images from Microsoft Kinect are used to
extract the shape of the rodents by background subtraction. After shape extraction, five pixel-based
features are extracted from the resultant blobs which are used for tracking and behavior classification
by Support Vector Machines. Although the pipeline is not exclusively used for motion tracking,
the idea of using depth cameras is potentially a good candidate for motion tracking as well.

Voigts et al. proposed an unsupervised whisker tracking pipeline aided by the use of IR sensors
for selective video capturing [98]. They capture high speed (1000 frames per second) video data by
selectively recording those frames which contain the mice. It is achieved by sensing the mice by an IR
sensor which then triggers the video camera to start recording. Once the mice leave the arena, the IR
sensors trigger the video camera to stop capturing. This selectively-acquired video data is used for
whisker tracking. First, a background mask is calculated by averaging over 100 frames containing
no mice. This mask is subtracted from every single frame. Then vector fields from each frame that
resulted in a convergence of flows on whisker-like structures are generated. These fields are then
integrated to generate spatially continuous traces of whiskers which are grouped into whisker splines.
This approach is completely unsupervised when it comes to whisker tracking with a rough temporal
context as well. Moreover, instead of high speed video acquisition, the on-demand recording when
the mice are in the arena cuts the memory requirements and this approach can be exported to other
motion/gesture tracking pipelines. However, it is very greedy in terms of computational resources so
it cannot be employed in real-time.

Nashaat et al. proposed an automated optical method for tracking animal behavior in both
head-fixed and freely moving animals, in real-time and offline [99]. They use a Pixy camera (Charmed
labs, Carnegie Mellon University, equipped with a 10–30 mm f1.6 IR lens, controlled by open-source
PixyMon software) based system for real-time tracking. The Pixy camera needs the whisker to be
painted with a UV sensitive dye. For more detailed tracking, they use the tracking from the Pixy camera
to guide the tracking from high definition cameras offline. They haven’t provided tracking results
in comparison to ground truth but they have validated their system in different lighting conditions
and environments. On one hand, their system does not need high performance and computationally
expensive tracking algorithms while on the other hand, their system is not robust because it requires
specialized hardware. Also, their approach is invasive because it requires physical markers (UV
sensitive dye on whiskers).

6.2.2. Statistical/Learning-Based Approaches

Monteiro et al. [100] took a similar approach to Wang et al. [97] by using Microsoft Kinect
depth cameras for video capturing [100]. Instead of using background subtraction, they introduced a
rough temporal context by tracking the morphological features of multiple frames. In their approach,
the morphological features are extracted frame by frame. Then features from multiple adjacent frames
are concatenated to introduce a rough temporal context. A decision tree is then trained from this
dataset for automatic behavior classification. The authors have reported a classification accuracy
of 66.9% when the classifier is trained to classify four behaviors on depth map videos of 25 min
duration. When only three behaviors are considered, the accuracy jumps to 76.3%. Although the
introduced temporal context is rough and the features are primitive, the classification performance
achieved firmly establishes the usefulness of machine learning in gesture tracking for behavioral
classification. Like [100], this approach is also not solely used for motion tracking, but they have
introduced a rough temporal context for tracking along with depth cameras which can be beneficial in
motion-tracking-only approaches.

Petrou et al. [101] proposed a marker-assisted pipeline for tracking legs of female crickets.
The crickets are filmed with three cameras, two mounted above and one mounted below the crickets
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which are made to walk on a transparent glass floor. Leg joints are marked with fluorescent dyes
for better visualization. The tracking procedure is initiated by a user by selecting a marker position
in initial frames. The initial tracking is carried out to the next frames by constrained optimization
and Euclidean distance between joints of the current frame and the next frame. This pipeline does
a decent job in terms of tracking performance as the average deviation between human-annotated
ground truth (500 digitized frames) and automatic tracking is 0.5 mm where the spatial depth of the
camera is 6 pixel/mm. This approach has the potential to be applied in real-time and the required
setup is not too difficult to make. However, since markers have to be painted on the legs of the cricket,
it is invasive and thus, it can alter the behavior of subject under study. Moreover, this approach has
only been tested on crickets, so we cannot assume that it will work with rodents/small animals.

Xu et al. [102] proposed another marker-assisted tracking pipeline for small animals. In the
proposed pipeline, the limbs and joints are first shaved, marked with dyes and then recorded with
consumer-grade cameras (200 frames per second). Tracking is then done in three steps which include
marker position estimation, position prediction, and mismatch occlusion. The marker position is
estimated by correlation in two methods. In one method, normalized cross-correlation between the
grayscale region of interest and user-generated sample markers is found. The pixels with the highest
correlation are considered as the marker pixels. In the second method, the normalized covariance
matrix of marker model and color ROI is used to estimate pixels with the highest normalized covariance
values which are considered as marker pixels. Once the marker positions are estimated in the current
frame, they are projected to the next frame by polynomial fitting and Kalman filters. For occlusion
handling, they assume that a marker position or image background cannot change abruptly, so if
there is a sudden change, it must be an occlusion. The approach is simple and scalable enough to be
exported to any environment. Moreover, this pipeline has included measures to solve the problem
of occlusions as well. However, due to its dependency on markers, it cannot be exported for general
purpose motion/gesture tracking. Also, the markers are placed in a very invasive way, therefore,
possibly altering the behavior of test subjects.

Hwang et al. [103] followed a similar approach to the one proposed by John et al. [92] but without
the use of markers. They used a combination of six-color charge-coupled device (CCD) cameras
(Sca640-70fc, BASLER Co., Schiller Park, IL, USA) for video recording of the insects. To capture the
diverse motions of the target animal, they used two downward cameras and four lateral cameras as well
as a transparent acrylic box. The initial skeleton of the insect was calculated manually, so the method
is not completely automated. After the initial skeleton, they estimated the roots and extremities of the
legs followed by middle joints estimation. Any errors in the estimation were corrected by Forward
And Backward Reaching Inverse Kinematics (FABRIK) [104]. The authors have not reported any
quantitative results which might help us to compare it with other similar approaches however they
have included graphics of their estimation results in the paper. This paper does not directly deal
with motion estimation in rodents, however, given the unique approach to using cameras and pose
estimation, it is a worthwhile addition to the research in the field. Since the pipeline tries to solve
gesture tracking from a pose estimation perspective, it opens the possibility of using state-of-the-art
pose estimation techniques for gesture tracking in rodents/small animals. However, because of its
reliance on initial skeleton, the system cannot be exported for general purpose use.

7. Video Tracking Methods Mostly Dependent on Software-Based Tracking

In this section, we will focus on those research works that try to solve the locomotion and gesture
tracking problem by processing raw and unaided video streams. In this scenario, there is neither
specialized hardware installed apart from one or multiple standard video cameras nor physical markers
on the mice/animals bodies that can help to track its motion. These works approach the problem from
a pure computer vision point of view.
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7.1. Semi-Automated

Background Subtraction-Based Approaches

Gyory et al. [105] proposed a semi-automated pipeline for tracking rat’s whiskers. In the
proposed pipeline, videos are acquired with high-speed cameras (500 frames per second) and are first
pre-processed to adjust the brightness. The brightness adjusted images are eroded to get rid of small
camera artifacts. Then a static background subtraction is applied which leaves only the rat body in
the field of view. As whiskers are represented by arcs with varying curvature, a polar-rectangular
transform is applied and then a horizontal circular shift is introduced so that whiskers are aligned
as straight lines on a horizontal plane. Once the curved whiskers are represented by straight lines,
the Hough transform is used to locate them. This approach can be used a starting point by a researcher
who wants to experiment with different automated background subtraction methods for gesture
tracking/pose estimation but the approach is too weak itself and not robust enough to be considered
for any future improvements. The reported computational cost is high (processing speed of 2 fps).
Also, it works on high-speed videos (>500 fps). It is highly sensitive to artifacts and it cannot take care
of occlusion, dynamic noise, and broken whisker representation.

7.2. Completely Automated

7.2.1. Background Subtraction-Based Approaches

Da Silva et al. [106] conducted a study on the reproducibility of automated tracking of behaving
rodents in controlled environments. Rats in a circular box of 1 m diameter with 30 cm walls.
The monitoring camera was mounted in such a way that it captured the rodents from top view
while they were behaving. They used a simple thresholding algorithm to determine pixels belonging
to the rodent. Although the method is rudimentary as compared to state-of-the-art, the authors have
reported a Pearson correlation of r = 0.873 when they repeated the same experiment at different ages
of the animals, thus, validating its reproducibility. However, this setup can only be used to track the
whole body of rodents, it cannot identify micro-movements such as limbs motion.

Leroy et al. [107] proposed the combination of transparent Plexiglas floor and background
modeling-based motion tracking. The rodents are made to walk on a transparent plexiglass floor
illuminated by fluorescent light and is recorded from below. A background image is taken when
there is no mouse on the floor. This background image is then subtracted from every video frame
to produce a continuously updating mouse silhouette. The tail of the mouse is excluded by an
erosion followed by dilation of the mouse silhouette. Then the center of mass of the mouse is
calculated which was tracked through time to determine if the mouse is running or walking. Since
the paws are colored, color segmentation is used to isolate paws from the body. The authors have
reported a maximum tracking error of 4 mm ± 1.9 and a minimum tracking error of 2 mm ± 1.6
when 203 manually annotated footprints are compared to their automatic counterparts. This approach
has the advantages of easy-installation and simplicity, yet it can track the mouse from only one side.
Moreover, being dependent on colored paws, this approach cannot be exported for general purpose
gesture tracking/pose estimation.

Nathan et al. [108] proposed a whisker tracking method for mice based on background subtraction,
whisker modeling, and statistical approaches. The heads of the mice are fixed, so they are not behaving
freely. They use a high-speed camera with a shutter speed of 500 frames per second. To track
whiskers, an average background image is modeled from all the video frames and then subtracted
from every single frame. Afterward, pixel-level segmentation is done to initiate candidate sites
by looking for line like artifacts. Once the candidate boxes are initiated, they are modeled by two
ellipsoids with perpendicular axes. The ellipsoid with higher eccentricity is the best possible candidate
site for whiskers. These whiskers are then traced in every single frame of the video sequence by
using expectation maximization. The approach has some strong points. It requires no manual
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initiation, it is highly accurate and because of superb spatial resolution and pixel-level tracking, even
micro-movements of whiskers can be tracked. But all the strengths come at a cost; the approach is
computationally very expensive which means it cannot be deployed in real-time. There is another
downside to pixel-level and frame-level processing, the temporal context is lost in the process.

Heidi et al. [109], proposed Automated Gait Analysis Through Hues and Areas (AGATHA).
AGATHA first isolates the sagittal view of the animal by subtracting a background image where the
animal is not present, transforming the frame into an HSV (Hues, Saturation, Value) image. The hue
values are used to convert the HSV image into a binomial silhouette. Next, AGATHA locates the row of
pixels representing the interface between the rat and the floor. AGATHA may not accurately locate the
rat-floor interface if the animal moves with a gait pattern containing a completely aerial phase. Second,
AGATHA excludes the majority of nose and tail contacts with the floor by comparing the contact point
to the animal’s center of the area in the sagittal view. Foot contact with the ground is visualized over
time by stacking the rat/floor interface across multiple frames. The paw contact stacked over multiple
frames is then used for gait analysis. Multiple gait parameters such as limbs velocity, stride frequency
can be calculated. When results from AGATHA were compared to manual annotation on a 1000 fps
video, they deviated by a small amount. For example, limbs velocity calculated b AGATHA was 1.5%
off from the velocity calculated manually. Similarly, AGATHA registered a difference of 0.2 cm in
stride length from the manual annotation. This approach is simple and scalable and can be easily
exported to track gait parameters from other angles of view. However, the gait parameters calculations
rely on the subject contact with the floor, therefore, it might not be able to calculate the gait parameters
in an aerial pose, therefore, this approach is limited in scope.

7.2.2. Statistical/Learning-Based Approaches

Dankert et al. [110] proposed a machine vision-based automated behavioral classification
approach for Drosophila. The approach does not cover locomotion in rodents, it covers
micro-movements in flies. Videos of a pair of male and female flies are recorded for 30 min in a
controlled environment. Wingbeat and legs motion data is manually annotated for lunging, chasing,
courtship and aggression. The data analysis consists of four stages. In the first stage, the Foreground
image FI is computed by dividing the original image I by (µI + 3σI) (FI values in false-colors). In the
second stage, The fly body is localized by fitting a Gaussian mixture model [111] (GMM) with three
Gaussians; background, other parts, and body to the histogram of FI values (gray curve) using
the Expectation-Maximization (EM) algorithm [111]. First (top) and final (bottom) iterations of the
GMM-EM optimization. All pixels with brightness values greater than a threshold are assigned to
the body and are fitted with an ellipse. In the third stage, the full fly is detected by segmenting the
complete fly from the background, with body parts and wings [112]. In the fourth stage, head and
abdomen are resolved by dividing the fly along the minor axis of the body ellipsoid and comparing
the brightness-value distribution of both halves. In the fifth stage, 25 measurements are computed,
characterizing body size, wing pose, and position and velocity of the fly pair. A k-nearest neighbor
classifier is trained for action detection. The authors have reported a false positive rate for lunging
at 0.01 when 20 min worth of data was used for training the classifier. Although this article does
not directly deal with rodents, the detection and tracking algorithms used for legs and wings can be
used for legs motion detection in rodents too. The approach is built upon proven statistical models.
It can handle instrument noise. Since it has a learning element, the more data it sees, the better it gets.
However, since the learning is not end to end, and the data processing pipeline is complex and need in
depth understanding of statistical theory, therefore, it is hard to work with for a neuroscientist. Since it
has a background modeling component, therefore, it also suffers from the inherent weaknesses of
background subtraction models i.e., sensitivity to sudden changes in environment.

Kim et al. [113] proposed a method similar to the one proposed by Clack et al. [108] to track
whisker movements in freely behaving mice. They use Otsu’s algorithm to separate foreground
and background and then find the head of the mouse by locating a triangular-shaped object in the
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foreground. Once the head and snout are detected, the Hough transform is used to find line-like
shapes (whiskers) on each side of the snout. Midpoints of the detected lines are used to form ellipsoidal
regions which help track whiskers in every single frame. This pipeline was proposed to track whisking
in mice after a surgical procedure. There is no ground truth available, so the approach cannot be
evaluated for tracking quantitatively. The pipeline is simple and easy to follow. It can be used to track
heads and whiskers in freely behaving mice. However, it is not feasible for real-time deployment due
to high computational costs

Palmer et al. [114] proposed a paw-tracking algorithm for mice when they grab food and can be
used for gesture tracking as well. They developed the algorithm by treating it as a pose estimation
problem. They model each digit as a combination of three phalanges (bones). Each bone is modeled
by an ellipsoid. For 4 digits, there is a total of 12 ellipsoids. The palm is modeled by an additional
ellipse. The forearm is also modeled as an ellipsoid while the nose is modeled as an elliptic paraboloid.
The paw is modeled using 16 parameters for the digits (four degrees of freedom per digit), four constant
vectors representing the metacarpal bones and 6 parameters for position and rotation of the palm of the
paw. Furthermore, the forearm is assumed to be fixated at the wrist and can rotate along all three axes
in space. This amounts to a total of 22 parameters. In each frame, these ellipsoids are projected in such
a way that they best represent the edges. The best projection of ellipsoids is found by optimization and
is considered a paw. They haven’t reported any quantitative results. This approach is very useful if the
gesture tracking problem is treated as pose estimation with a temporal context. Since the approach
treats gesture tracking as a pose-estimation problem, it opens the possibility of using state-of-the-art
pose-estimation methods in gesture tracking. However, the computational cost is high for real-time
deployment without graphical accelerators.

In [115], Palmer et al. extended their work from [114]. The basic idea is the same. It models the
paw made of different parts. Four digits (fingers), each digit having 3 phalanges (bones). Each phalange
is modeled by an ellipsoid, so there is a total of 12 ellipsoids for the phalanges plus an additional one
for the palm. In this paper, the movement of the 13 ellipsoids is modeled by vectors with 19 degrees of
freedom, unlike 22 from [114]. The solution hypothesis is searched not simultaneously, but in stages to
reduce the number of calculations. This is done by creating a different number of hypotheses for every
joint of every digit and then finding the optimum hypotheses.

A Giovannucci et al. [116] proposed an optical flow and cascade learners-based approach for
tracking of head and limb movements in head-fixed mice walking/running on a spherical/cylindrical
treadmill. Unlike other approaches, only one camera installed from a lateral field of view was
used for limb tracking and one camera installed in front of the mouse was used for whisker
tracking. They calculated dense optical flow fields in a frame-to-frame method for whisker tracking.
The estimated optical flow fields were used to train dictionary learning algorithms for motion detection
in whiskers. They annotated 4217 frames for limb detection and 1053 frames for tails detection and then
used them to train Haar-Cascades classifiers for both the cases. They have reported a high correlation
of 0.78 ± 0.15 for whiskers and 0.85 ± 0.01 for hind limb. The proposed hardware solution in the paper
is low cost and easy to implement. The tracking approach is also computationally not demanding
and can be run in real-time. They, however, did not deal with the micro-patterns in motion dynamics
which can be best captured with the inclusion of temporal context to the tracking approach. Moreover,
accurate estimation of flow fields either takes too much time or requires graphical processing units.

Mathis et al. [117] introduced a user-defined body-parts tracking method based on deep learning
called DeepLabCut. The body-part (which can be either limbs or tail or head) is built on top of the
human pose estimation method based on deep learning called DeeperCut [118]. The DeepLabCut
employs the feature detectors of DeeperCut to build user-defined body part detectors in laboratory
animals. The training procedure is standard, a user manually annotates limbs/tail/body parts in
some of the video frames which are used to fine-tune the DepperCut feature detectors. Then another
prediction layer predicts the pose of the animal by labeling the body parts in question. The authors
have reported accuracy of 4.17 ± 0.32 pixels on test data. The reported architecture is remarkable since
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it is a general-purpose architecture and can be modified to track another body part relatively easily.
Also, since the architecture is built upon existing state-of-the-art deep networks for pose estimation,
it is easy to train and inherits all the strengths of parent deep networks. However, the reported pipeline
can have a problem in case of occlusions.

In DeepBehavior, the authors have proposed an open-source behavioral analysis toolbox built
on top of existing validated approaches [119]. The toolbox contains routines for gesture tracking,
3D kinematics analysis for humans and rodents and behavioral analysis for rodents. The toolbox
is built on top of three existing and validated convolutional neural networks architecture named
Tensorbox [120], YOLOv3 [121], and Openpose [122]. For 3D kinematics tracking, the toolbox needs
a stereo system with a properly calibrated camera. They recommend to use Tensorbox if only one
test subject needs to be tracked, YOLOv3 if multiple test subjects need to be tracked and Openpose if
human subjects need to be tracked. They have initialized the networks by using models trained on
ImageNet and fine tuned them with custom datasets. The authors have not provided paw tracking
results for rodents. This toolbox is a good example of using gesture and pose tracking approaches
developed and tested for humans to be used for rodents and small animals. Since the system is built
upon existing state-of-the-art pose estimation architectures, it inherits their strengths and weaknesses.
For instance, Openpose can have a hard time identifying a pose it has not seen. It also does not
know how to tell two subjects apart, therefore, it can try to impose one pose upon two test animals
in a situation in which one animal is partially occluded by the other. Also, it can face difficulties in
estimating pose of animals at an angle.

8. Applications

Gesture tracking is finding applications not only in behavioral research but in other fields of
research as well. For instance, researchers working in neurophysiology can benefit greatly from a
dataset in which they can link brain patterns to a certain physical activity. They can see how the
body responds to certain brain injuries or gene mutations. If reliable gesture tracking methods are
available, the researchers can analyze the response of test animals to external stimuli, treatment
regimes, and brain injuries. Moreover, researchers working on physiotherapies can benefit from
gesture tracking. To sum it up, researchers working in one of the following fields may find some of the
methods described in this survey useful for their purpose:

1. Research on behavioral phenotyping needs huge volumes of annotated data to understand and
classify rodents’ and animals’ behaviors. By looking at the current state-of-the-art of gesture
tracking/pose estimation methods, a researcher working on behavioral phenotyping can choose
the gesture tracking/pose estimation method most suitable to their needs [6].

2. Research on depression analysis in normal and transgenic mice/animals can also benefit from this
survey because for reliable quantification of depression, the researcher needs to understand the
mice/animals behavior and once they have an appropriate quantification of behavior in terms of
pose, locomotion, and gait patterns, they can understand how this behavior changes in response
to genetic mutations. Scientists can now breed genetically-altered mice called "transgenic mice"
that carry genes that are similar to those that cause human diseases. Likewise, select genes can be
turned off or made inactive, creating "knockout mice," which can be used to evaluate the effects
of cancer-causing chemicals (carcinogens) and assess drug safety, according to the FBR [123–129].

3. Researchers working on anxiety in rats/small animals can also benefit from the methods described
this survey because with a suitable gesture tracking/pose estimation method, they can quantify
rats/animals behavior efficiently and understand how it alters with anxiety [130–133].

4. Research on the effects of drugs and cancer on locomotion can also benefit from the methods
described in this survey as gesture tracking/pose estimation can be used to understand the
changes in locomotion patterns of rats/animals in response to tumors and drugs [134–142].
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5. Another field which can benefit from automated gesture analysis is the research on understanding
how neural activity controls physical activity or how the brain responds to external
stimuli [143–147].

6. Research on neurophysiological and physical therapies can also benefit from the methods
described in this survey. If a researcher can quantify the changes in gait patterns and pose
over an extended time, he/she can track the success of therapy on recovery [148–152].

7. Researchers working on systems biology can also benefit from the methods described in this
survey as with a proper gesture/gait analysis method. They can provide useful numerical
evidence to understand the behavior of biological systems under different physical and
pathological conditions [153].

9. Conclusions

In this paper, we provide a comprehensive survey of the main approaches for gesture tracking on
small rodents, although we did not restrict the review to papers dealing with rodents but included
related works that could be ported to the field. We included in Appendix A a complete summary of
the approaches selected in this survey, with a special focus on the main characteristics of each paper
(code availability, performance measures, setup, and invasiveness).

Gesture detection and tracking approaches are still in the developing phase. There is no single
approach strong enough which can track micro-movements of limbs, whiskers or snouts of the
rodents which are necessary for gesture identification and behavioral phenotyping. In general,
those approaches which use specialized hardware are more successful than those approaches which
solely depend on standard video cameras. For example, the use of X-Ray imaging to detect surgically
implanted markers has been proven very successful in tracking limb and joint movements with high
precision. Moreover, the use of specific markers attached to either limbs or whiskers of the rodents also
increases the overall tracking accuracy of an approach. However, there is a downside to this approach;
the rodents might not behave naturally. Therefore, more and more research is being conducted on
scalable, portable and noninvasive tracking methods that only need standard video cameras.

Future Research

Based on the literature survey we conducted, we have the following recommendations for
future research:

1. Methods would benefit from the effective use of different camera configurations to get spatial
data at high resolution in 3D space. Until now, only low-resolution time-of-flight sensors [93,97].
Acquiring spatial data from high-resolution cameras will help understand the gait of rodents
in 3D.

2. One of the most relevant shortcomings of the field is the lack of public databases to validate new
algorithms. Different approaches are tested on the (usually private) data from the lab developing
the solution. Building a standardized gesture tracking dataset which can be used as a benchmark
would similarly benefit the community as large object recognition databases (PASCAL, ImageNet
or MS COCO) allowed significant progress in the Computer Vision literature.

3. Currently, large amounts of non-labeled data samples are in existence (thousands of video
hours). The use of unsupervised learning algorithms that could benefit the parameter learning
of supervised methods is one of the most challenging future research lines. Since unsupervised
and weakly supervised gesture tracking/pose estimation is being researched for other species,
extending it to rodents/small animals will make the large volumes of unlabeled data
useful [154–159].

4. Data augmentation using synthetic samples. Now, methods based on GANs are obtaining
extraordinary results in Computer Vision. Using GAN networks can help generate large amounts
of annotated training data. The annotated data can then be used to validate gesture tracking/pose
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estimation techniques for rodents/small animals and those techniques can be further fine-tuned
by a small set of human-annotated data.

5. Combine hardware-based methods with markers to create large scale databases for further
automated learning just from the image. Up until, physical markers and specialized hardware
have been used only in specific settings. They can be used to generate large volumes of annotated
data by careful data acquisition as the markers can be reliably tracked by specialized hardware.

6. Besides, the use of semi-supervised and weakly-supervised learning algorithms could benefit the
community. The challenge in this particular case is to minimize the user intervention (supervision)
maximizing the improvements on the accuracy.

7. Very few of the surveyed approaches in the software-based method section consider temporal
coherence while developing a solution for gesture tracking/pose estimation of rodents and small
animals. Since locomotion is temporally coherent, machine learning methods such as Long Short
Term Memory networks can be efficiently trained to track the rodents’ pose by evaluating the
specific pose history.

8. Finally, deep learning methods have been shown to outperform many computer vision tasks.
For instance, deep learning-based methods for gesture tracking/pose estimation in humans.
Exploring these validated approaches can increase the reliability of gesture tracking/pose
estimation in rodents/small animals [160,161].
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Appendix A. Summary of Selected Approaches

We have summarized some important aspects of selected approaches in Table A1. We use the
following notation to properly interpret the table:

Code availability:

It means whether the code is available or not. If it is available, is it free or paid.

Performance:

If the performance is given in terms of standard deviation, it signifies the consistency of proposed
approach either against itself or an annotated dataset (which is pointed out). For example, if the table
says that the proposed system can make a 90% accurate estimation of limbs velocity with an SD of 3%,
it means that the system performance fluctuates somewhere between 87% to 93%. If absolute accuracy
is given, it means each and every detected instant is compared to manually annotated samples. If only
% SD is given or just SD is given, it means that the system can consistently reproduce the same result
with specified amount of standard deviation, regardless of its performance against the ground truth.

Need specialized setup & Invasiveness

This indicates whether the method needs any specialized hardware other than the housing setup
or video cameras. If the housing setup itself is arranged in a specific way but it does not contain any
specialized materials, we say that the hardware setup required is not specialized. By invasiveness, we
mean that a surgery has to be conducted to implant the markers. If no surgery is needed to implant
markers, we call it semi-invasive. If no markers are needed, we call it non-invasive.
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Table A1. Comparison of different approaches. Legend:: Invasive: Approaches which requires surgery
to put markers for tracking, semi-invasive: Approaches which do not need surgery for marker insertion,
non-invasive: no marker needed. Real time means that the system can process frames at the same rate
they are being acquired. If it needs specialized equipment apart from standard video cameras and
housing setup, it is pointed out in the last column.

Type
Code
Availability

Performance
Real Time
or Offline

Need
Specialized
Setup &
Invasiveness

[59] Commercial Paid

Comparison with ground
truth not provided.
One paper reports the
reproducibility: 2.65%
max SD

Yes Yes

[71] Commercial Paid

Comparison with ground
truth not provided.
One paper reports the
reproducibility: 1.57%
max SD

Yes Yes

[49] Research

data and
code for
demo
available at
http://bit.
do/eTTai

tracking performance not
reported, behavioral
classification of 12 traits
reported to be max at 71%

Tracking real
time,
classification
offline

yes

[51] Research not available

tracking: SD of only
0.034% when compared
with ground truth, Max
SD of 1.71 degrees in
estimating joint angle

real time
legs and
joints
tracking

yes, invasive

[52] Research not available
tracking performance not
reported explicitly

real time
whisker
tracking

yes,
semi-invasive

[53] Research
available on
request

whisker tracking
performance not
reported explicitly

real time
single
whisker
tracking

yes,
semi-invasive

[54] Research not available
head motion tracked
correctly with a max false
positive of 13%

real time
head and
snout
tracking

yes,
semi-invasive

[55] Research not available

head motion tracked
continuously with a
reported SD of only
0.5 mm

real time
head and
snout
tracking

yes,
semi-invasive

http://bit.do/eTTai
http://bit.do/eTTai
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Type
Code
Availability

Performance
Real Time
or Offline

Need
Specialized
Setup &
Invasiveness

[57] Research not available

head motion tracked with
an accuracy of 96.3% and
the tracking can be
reproduced over multiple
studies with a correlation
coefficient of 0.78

real time
head
tracking

yes,
semi-invasive

[89] Research

code and
demo data
available at
https://goo.
gl/vYaYPy

they reported a
correlation between
whisking amplitude and
velocity as a measure of
reliability, R = 0.89

Offline head
and whisker
tracking

no, invasive

[90] Research not available

Tracking and gait
prediction with
confidence of 95%,
deviation between human
annotator and computer
at 8%

Offline
yes,
semi-invasive

[93] Research not available

Paw tracked with an
accuracy of 88.5 on
transparent floor and
83.2% on opaque floor

Offline
yes,
semi-invasive

[95] Research

code
available at
https://goo.
gl/58DQij

tail and paws tracked
with an accuracy >90%

Real time
yes,
semi-invasive

[97] Research not available

5 class behavioral
classification problem,
accuracy in bright
condition is 95.34 and in
dark conditions is 89.4%

offline
yes,
non-invasive

[100] Research not available

6 behavioral class
accuracy: 66.9%, 4
behavioral class
accuracy: 76.3%

offline
yes,
non-invasive

[98] Research

code
available at
https://goo.
gl/eY2Yza

whisker detection rate:
76.9%, peak spatial error
in whisker detection:
10 pixels

offline
yes,
non-invasive

https://goo.gl/vYaYPy
https://goo.gl/vYaYPy
https://goo.gl/58DQij
https://goo.gl/58DQij
https://goo.gl/eY2Yza
https://goo.gl/eY2Yza
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Type
Code
Availability

Performance
Real Time
or Offline

Need
Specialized
Setup &
Invasiveness

[101] Research not available

Peak deviation between
human annotator and
automated annotation:
0.5 mm with a camera of
6 pixel/mm resolution

offline
yes,
non-invasive

[92] Research not available

Tracking accuracy >90%
after the algorithm was
assisted by human users
in 3–5% of the frames

offline
yes,
semi-invasive

[105] Research

code
available at
https://goo.
gl/Gny89o

A max deviation of 17.7%
between human and
automated whisker
annotation

offline
yes,
non-invasive

[107] Research not available
Maximum paw detection
error: 5.9%, minimum
error : 0.4%

offline
no,
non-invasive

[110] Research

Source code
at
https://goo.
gl/zesyez ,
demo data at
https://goo.
gl/dn2L3y

Behavioral classification:
1% false positive rate

offline
no,
semi-invasive

[108] Research

Source code
available at
https://goo.
gl/JCv3AV

Whisker tracing accuracy:
max error of 0.45 pixels

offline
no,
non-invasive

[116] Research not available

Correlation with
annotated data; for
whiskers r = 0.78,
for limbs r = 0.85

real time
no,
non-invasive

[109] Research

code
available at
https://goo.
gl/V54mpL

Velocity calculated by
AGATHA was off from
manually calculated
velocity by 1.5%

real time
no,
non-invasive

[117] Research

code
available at
http://bit.
ly/2vgJUbr

Detected pose matched
ground truth with an
accuracy of 4.17 ± 0.32
pixels

real time on
GPUs

no,
non-invasive

https://goo.gl/Gny89o
https://goo.gl/Gny89o
https://goo.gl/zesyez
https://goo.gl/zesyez
https://goo.gl/dn2L3y
https://goo.gl/dn2L3y
https://goo.gl/JCv3AV
https://goo.gl/JCv3AV
https://goo.gl/V54mpL
https://goo.gl/V54mpL
http://bit.ly/2vgJUbr
http://bit.ly/2vgJUbr
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Type
Code
Availability

Performance
Real Time
or Offline

Need
Specialized
Setup &
Invasiveness

[119] Research

code
available at
https://bit.
ly/2XuJmPv

No performance metric
reported

offline
no,
non-invasive
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