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Abstract: We present the estimation of a likelihood map for the location of the source of a chemical
plume dispersed under atmospheric turbulence under uniform wind conditions. The main
contribution of this work is to extend previous proposals based on Bayesian inference with binary
detections to the use of concentration information while at the same time being robust against the
presence of background chemical noise. For that, the algorithm builds a background model with
robust statistics measurements to assess the posterior probability that a given chemical concentration
reading comes from the background or from a source emitting at a distance with a specific release rate.
In addition, our algorithm allows multiple mobile gas sensors to be used. Ten realistic simulations
and ten real data experiments are used for evaluation purposes. For the simulations, we have
supposed that sensors are mounted on cars which do not have among its main tasks navigating
toward the source. To collect the real dataset, a special arena with induced wind is built, and an
autonomous vehicle equipped with several sensors, including a photo ionization detector (PID) for
sensing chemical concentration, is used. Simulation results show that our algorithm, provides a better
estimation of the source location even for a low background level that benefits the performance of
binary version. The improvement is clear for the synthetic data while for real data the estimation
is only slightly better, probably because our exploration arena is not able to provide uniform wind
conditions. Finally, an estimation of the computational cost of the algorithmic proposal is presented.

Keywords: machine olfaction; odor robots; chemical sensors; Bayesian inference

1. Introduction

Localization of chemical sources in urban scenarios (large cities) is a major challenge for
intelligence and police authorities. In the clandestine production phase of illicit substances like
explosives, but also drugs, significant levels of precursors are spread in the atmosphere. Such
suspicious compounds could be reported by a system of mobile sensors and could be located using

Sensors 2017, 17, 904; doi:10.3390/s17040904 www.mdpi.com/journal/sensors


http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://www.mdpi.com/journal/sensors

Sensors 2017, 17, 904 2 of 23

localization algorithms, providing complementary information to the authorities for intervening at
an early stage.

Several strategies for source localization have been proposed in the literature [1]. These strategies
have been integrated into robot systems with tracking abilities. Many of these tracking strategies
have been inspired by bacteria or animal behavior using olfaction for foraging or mating: lobster, blue
crabs, ants and moths provide behavioral models for odor tracking [2,3]. One of the simplest strategies
consists in seeking changes in local concentration within an odor plume assuming a smooth chemical
gradient in a diffusion dominated flow. However, this approach, called chemotaxis [4], is not useful in
a realistic environment where fluid flow is dominated by turbulence, which can be caused by forced
ventilation, temperature gradients or the presence of obstacles. Under these conditions, on the order of
ten min are required to determine the time-averaged concentration with sufficient accuracy to perceive
the gradient concentration [5]. In consequence, the exploration of the area of interest becomes too slow.
Some other strategies additionally exploit both fluid velocity information and chemical concentration
(anemotaxis [6,7]). More recent proposals based on information theory, like infotaxis [8] are based
in binary detections and, information plays a role similar to that of concentration in chemotaxis.
Odor patches are expected to be found only intermittently in the medium, and then information is
sparse. In some cases, methods aim to estimate the gas distribution through analytical Gaussian
models [9-11], others are focused on to create a plume mapping via hidden Markov methods [12],
whereas in Farrell et al. [13] a strategy for chemical plume tracing and source location declaration
is presented.

Navigation experiments aiming to find chemical sources are strongly limited by the limit of
detection and selectivity of the low cost chemical sensors and even medium-priced detectors (e.g.,
ion mobility spectrometers). Thus, the rapid decay in the chemical concentration with increasing
distance from the source can be a critical issue. Poor limits of detection result in a reduced area where
the plume can effectively be detected. This is especially important in applications where the search
zone has an area of several square kilometers. In such situations, it becomes very important to set
the detection thresholds very close to the noise level, but this would results in a high number of false
alarms and most localization algorithms would fail catastrophically. To the best of our knowledge,
none of the published methods have addressed this problem.

Additionally, in any real scenario, there could be background levels of a multitude of chemicals
caused by environmental pollution. Because of limited selectivity, there will be substances which
will produce interference in the detector reading, hindering the detection and localization tasks.
The presence of combination of detector electronic noise and mainly interfering chemical agents result
in variable background readings that may change with time and with the position of the detector. These
shifts in background levels hamper the selection of an optimum threshold that is usually considered
to be constant all along the area under exploration. As far as we know, this problem has not been
previously tackled in the literature.

To address these two issues (threshold close to the limit of detection and presence of background
levels) probabilistic approaches like plume mapping Bayesian methods appear to be a good choice.
Pang and Farrell published a source-likelihood mapping approach based on Bayesian inference
in 2006 [14]. The main idea behind the algorithm consists in implementing a stochastic approach
for plume modeling and in estimating the most likely source position considering the sequence
of detection/non-detection events and fluid flow measurements along the robot’s trajectory. Pang’s
algorithm has been tested successfully with data previously collected using an autonomous underwater
vehicle [13].

However, this algorithm uses binary detection events, and no chemical concentration information
is used to build the probability map, since it only considers the concentrations above a certain threshold
as detection or non-detection events. Moreover, after setting the threshold level, the approach assumes
that the rate of false alarms is very low. In a real scenario where background signals are present, this is
only achieved when the threshold is set at a high level. However, this option seriously reduces the
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maximum plume detection distance. Therefore, there is a trade-off; on the one hand, the threshold
needs to be set low enough (close to the sensor detection limit) if chemicals from the source are to be
detected at large distances; on the other hand, the threshold needs to be high enough to prevent false
alarms. So, how to set the threshold level becomes a critical issue in real environments using existing
approaches, especially when the background intensity is non-uniform in the explored area.

Finally, in order to speed up the area exploration it is important that the algorithm can be
extended to work with multiple robots. Recently, Kang and Li [15] have presented a novel plume
tracking algorithm via multiple autonomous robots by using a leader-follower strategy, demonstrating
its superiority versus a single robot algorithm, in terms of both the computational cost and the
accuracy in source location. Meng et al. [3] have also studied the multi-robot problem for plume
tracking in fluctuating airflow environments, showing the efficiency and robustness of the adapted
ant colony optimization (ACO) algorithm over the traditional ACO algorithm. Meng remarks the
importance of a proper number of robots and a well-defined cooperation mechanism, although it is
not strictly necessary to track the plume to obtain a good estimation of the source location. The most
likely source position is estimated during the robot’s mission for arbitrary trajectories by recursively
building a probability map using Bayesian inference. The problem of background estimation over the
exploration area can be considered as the problem of scalar field mapping. Algorithmic approaches
using mobile sensor networks have been already proposed, however they assume that the agents have
communication capabilities so that their exploration paths are optimized after data fusion [16-18].
However, in our scenario we expect that the sensors can be mounted on vehicles that serve other
tasks beyond chemical source localization. In this sense, we consider cases where there is no feedback
between the chemical sensing and the agent’s trajectories.

Our main motivation for the present work is to extend the Bayesian plume source localization
algorithm, previously described by Pang and Farrell [14], using the chemical concentration (instead
of binary detections) and assessing its performance in simulated and real environments, where
background signals may arise. Thus, Pang’s algorithm is reformulated for use with continuous analog
concentration readings instead of binary detections. Moreover, the algorithm is extended to work with
multiple mobile sensors. This new approach requires a probabilistic model for the background and for
the plume which are described in the following sections.

The present algorithm was initially developed [19] for applications to Home Security (European
project LOTUS: Localization of Threat Substances in Urban Society FP7-SEC-217925). In the considered
scenario, police cars equipped with GPS and gas chemical sensors (eventually other fast analyzers
like ion mobility spectrometers can be used) carry out their routine patrols while sending the sensors’
readings to a central station. Instead of moving towards the chemical source, the patrol vehicles would
maintain their normal patrol routes while a centralized system is continuously analyzing the acquired
signals seeking suspicious activity.

The paper is organized as follows: Sections 2.1 and 2.2 and shows the basics of the algorithm and
the plume and background model. Sections 2.3 and 2.4 describes the synthetic and real scenarios for
the test and Section 3 reports the results and the analysis.

2. Materials and Methods

2.1. Stochastic Models for Plume and Background

Our proposal requires making some assumptions about the dispersion of the plume (the stochastic
model in Section 2.1.1) and a background model (Section 2.1.2). Given an instantaneously measured
concentration ¢, it is assumed that there are two additive contributions: one due to the background (c;)
and one due to the plume (cp), thus:

c=cp+cp 1)
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Since we consider all these concentrations as random variables, the probability density function
(PDF) of the measured concentration will be the convolution of the PDFs of the two additive terms.
In the next sections, we will describe how we model the probability density of both terms.

2.1.1. Stochastic Model for Chemical Concentration Measurements

The basis of our stochastic model [20] for the chemical plume is the analytical Gaussian plume
model (GPM) [21,22]. Time-averaged plume concentration follows a Gaussian distribution lengthways
to the flow direction if the time average is at least 10 min, as demonstrated in previous works [23-25].
This model has been widely used for its simplicity and is appropriate when dispersion is governed by
atmospheric turbulence under uniform wind conditions. Atmospheric turbulence is determined by
the stability of the atmosphere and the height above the surface layer [22]. The basic expression for the
GPM under a continuous release is:

2 2
_ - q ¥ (h—2)
exy,z) = 27,00, eXp( 205) P ( 202 ) @)

where € is the time averaged concentration (in g/m?) in a location with coordinates x (downwind),
y (crosswind) and z (vertical); g is the continuous source release rate or source strength (in g/s); U, is the
mean wind speed in the downwind direction (in m/s); & is the plume height (in m); and oy, 0 are the
dispersion coefficients (in m), in crosswind and vertical direction respectively, modeled as: ¢, = a-xb,
0, = c-x, where a, b, c and d are parameters obtained from a table [22] and their values depend on the
atmospheric conditions which can be organized in six levels (from A-very unstable to F-very stable)
according to the Pasquill’s stability classes [26]. In Equation (2), the resulting concentration distribution
is due to the transport of chemicals by advection (due to the mean wind speed), due to concentration
gradients within the plume width (lateral dispersion due to diffusion, but also turbulent mixing)
and due to plume meandering. The decay of mean concentration is exponential, thus concentration
levels below the sensor detection limit are very quickly achieved. This issue makes the setting of the
threshold level critical; especially, if the source should be detected far from the release point.

The GPM considers the time-averaged characteristics of a plume dispersed in a turbulent flow,
but the sensors will be responding to the instantaneous plume characteristics (here we assume that the
chemical sensor dynamics are much faster than 10 min, which is usually the case). For short time-scale
studies, the chemical puff movement can be modeled as a random walk (because of transversal
velocity fluctuation) overlapped on the downflow advection (because of mean velocity) [27]. However,
we propose an alternative approach, for which an additional component needs to be added to the GPM
to model the unpredictable and random fluctuations in concentration due to turbulent stirring and
plume meandering. Yee et al. [28-30] have carried out empirical studies on plume statistics in urban
areas using scale fluid models in a variety of plume conditions and urban geometries. Their results
prove that instantaneous concentration fluctuations fit very well the clipped-gamma PDF over a very
wide range of atmospheric conditions and at several receptor positions [30]. The clipped-gamma
distribution (CGD) is defined in terms of four parameters 7, k*, s and A as [28]:

+(1—7)d(¢) )

£(&) = (é—i— A)k*l exp(—(6+A)/s)
s sT(kx)
where ¢ is the instantaneous concentration, I'(¢) is the gamma function, 4(¢) is the Dirac delta function
and A, k* and s are the shift, shape and scale parameters, respectively. The total PDF is composed of
a mixed fluid part due to in-plume mixing of eddies containing the target substance (the first term
on right-hand side), and an unmixed ambient fluid part (the second term on right-hand side) caused
by plume meandering which produces intermittent periods of zero concentration for a fraction of
time (1 — 7), being 7 the intermittency factor. Although Equation (3) is specified in terms of four
parameters, it can be uniquely modeled by the mean (M) and the standard deviation (SD) of a series
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of readings [28]. There is a simple relation among M, SD, and the plume intermittency; thus, 7 is

determined as:
T'(k*;A/s)

_ 3
e~ (i) ‘4)
where I'(v; ¢) corresponds to the incomplete gamma function and Kjy,; is the ratio between the SD and
the mean of the series of readings at a fixed position. For a specified value of K;;;;, the parameters A,
k* and s can be obtained solving a set of transcendental equations, thus making Equation (3) totally
defined. The details for computing these parameters are given in [28].

While the mean concentration decreases rapidly in the downwind direction (see Equation (2)),
the magnitude of the fluctuations decreases even more rapidly. As described by Webster [5], Kjy;
is estimated to decrease as x? (where x is the distance from the source and 6 < 0), being roughly
Kp times the mean time-averaged concentration at a certain distance x( from the source. Therefore,
this parameter can be modeled as:

0
Kint = Ko- (;) ©)

0

v =v(k%,5,A) =

To model the instantaneous concentrations due to a chemical plume at a certain distance from
the source, the clipped-gamma distribution is used (Equation (3)). The mean value M of the series of
concentrations due to the plume is related to the GPM (Equation (2)) and the SD can be modeled as:

9
osp = Ko- <;0> M (6)

Since the PDF depends on the mean and the SD, and these parameters depend on the distance
from the source, the PDF of the instantaneous readings contains information about the relative position
between the sensor and the source. Since concentrations fluctuations (intermittencies) decrease faster
than the mean value with the downwind distance to the source, the plume becomes homogeneous
faster than the mean concentration dilutes [28,31].

Additionally, previous literature has characterized the power spectral density (PSD) of concentration
readings within a dispersing plume. We will follow the model described by Jones et al. [31].

2.1.2. Stochastic Background Model

In real scenarios such as residential areas or urban environments, pollution or interfering
substances are expected to be found. This problem becomes even more serious due to the common use
of partially selective sensors such as Metal Oxide Sensors (MOXs), or Photoionization detectors (PIDs).

Moreover, meteorological conditions (wind conditions and atmospheric stability) could change
within a timescale of several hours, or there might be changes in polluting emissions due to day-night
cycles of human activity (including motor vehicles or factories) [32-34]. Because of these reasons the
background can be considered to change slowly.

As it has been previously described [5], the dispersion of a chemical plume in a turbulent flow
shows a highly intermittent nature with background or zero concentration for long periods of time
separated by high peaks of concentration. This behavior will help us to estimate the background model
using robust measures that reject the plume peaks.

For the implementation of the proposed algorithm the exploration area is divided into a uniform
grid of rectangular cells. The algorithm estimates the background probability distribution at each cell
of the grid. The background is modelled as a Gamma PDF where the standard deviation is smaller
than the mean. In those conditions the Gamma function resembles a Gaussian PDF but defined only for
positive values of the random variable concentration. We will consider that the PSD of the background
is bandlimited white noise.



Sensors 2017, 17, 904 6 of 23

2.2. Estimation of the Models From the Concentration Readings

2.2.1. Bayesian Estimation of the Likelihood Map for Chemical Source Presence

A summary of the notation used for the description of the algorithm can be found in Table A1.
The search area contains N, rectangular cells of size Ly-L, each, where Ly and Ly, are the cell lengths in
the x and y directions of the grid map, respectively. The size of this cells is a trade-off between the
spatial resolution of the algorithm and the computational cost.

Let0 < oc; < 1 represent the probability that the chemical source is in cell i. It is assumed that the

Ne

search area contains exactly one source, hence ¥ a; = 1. Itis assumed that the prior information on the
i=1

potential existence of a chemical source is given by previous intelligence research. We do not consider

in this formalism the case where there is uncertainty on the presence or not of a chemical source.

Initially (at t = tp), if no information about the source location is available, all cells are initialized
to be equally likely to contain the chemical source: «; (to) = (N%) ;Vie[1,N].

Given that we measure a concentration at time f; in cell j, i.e., ¢j refers to a concentration reading
in cell j, we can calculate the source probability map based on this single reading. A Bayesian approach
is used to determine if the main contributor to the measurement is the background or the presence
of a plume patch. The posterior probability for the presence of a plume, given the measurement,
is calculated using Bayes’ theorem:

P(cj|A) - P(A)

where A corresponds to the event “the concentration reading was caused by an emitting source
upstream (plus a background level)”. To infer where the source is located, the posterior probability of
a source emitting (left-hand term in Equation (7)) can be further decomposed into the probability of
that source being located at each cell. Again, using the Bayes” Theorem:

P(cj|Ay)-P(A;)

P(A; L
P(c;|A;)-P(A;) + P(cj| Ap)-[1 = P(A7)]

®)

C]) =

where A means “the concentration reading was caused only by background levels and not by an
emitting source”, subindex i refers to a source located in cell i and subindex j refers to the current cell j
where the measurement was taken.

Since we consider that a background of interfering substances is always present, in the absence of
plume only the background component (c;) is present; in the presence of plume, both components
(cp and cp) are present and the concentrations are modeled by the convolution of the plume PDF
and the background PDF. However, even in the presence of the plume ¢, may be zero due to plume
intermittency. The PDF of the concentration component due to the source is modeled using the GPM
for the means, and SD from Equation (6) considering the relative position of cell i (potential source
location) and cell j (location of the sensor).

Taking these considerations into account, the previous probabilities have the following
interpretation: P(A;) is the prior probability of the presence of a source at the cell i, P(cj|Ai) is
the probability that the measurement at cell j is due to addition of the background at cell j and a plume
due to a source at cell i, and it is obtained by the convolution between the PDF of the plume and the
PDF of the background at cell j. P (cj |A;) is the probability that the measurement of chemicals at cell j
is due to the current background at cell j, and it is obtained from the PDF of the background at cell j.
We define S;;(tx) = P(A; |c]-) as the probability of having a source in cell 7 given that a certain amount
of chemical was measured at cell j at time .
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Nc
However, in this approach where we consider each cell independently, } S;;(t) = 1 is not
i=1
guaranteed. Therefore, the result is normalized to ensure the total probability is 1 when individual cell

probabilities are added up. The nomenclature is henceforth the same as that used in [14]:

Sij(t)
Bij(te) =
X [Sii(t)]

i=1

)

Ne
Now ) Bij(ty) = 1is guaranteed and B;;(t;) calculated over all cells (i = 1,..., N;) gives the
i=1

source probability map at time t; based on a single measured concentration at cell.

Using Bayesian theory [20] and following the same procedure described in [14], each new
measurement can be incorporated recursively to update the source probability map.

o'ii(ty) = P(A;|B(t)) is defined as the probability of cell i containing the source, given the
sequence of concentrations B(f;) along the trajectory of the mobile sensors up to time f;. Defining
P(A;|Dj(t)) = Bij(t), where D;(ty) is the measured concentration at time t;; P(A;|B(t;)) is computed
from B(t;_1) and D;(t), which are supposed to be independent events, finally obtaining:

«' ij(tr) = Ne-aj;(te—1)-Bij(te) (10)

where, if a;;(t;) is computed over all cells (i = 1,.., N;), an updated source probability map is
obtained recursively.

Independently of the number of mobile sensors, the only information required by the algorithm is:
the position where the measurement was obtained, the chemical concentration reading and the fluid flow
measurement. The extension to multiple mobile sensors is as follows. We just build an integrated sequence
of readings by addressing in a circular manner the set of mobile sensors. Then we send this sequence
of measurements to the original algorithm. In other words, we do not fuse a posteriori maps built from
individual sensors. We fuse the sequence of measurements at the input of the estimation algorithm.

2.2.2. Background Estimation

Background stochastic model is built from the robust estimation of the means and the dispersion
to reject the effect of the intermittencies. We use the median and the median absolute deviation (MAD)
to build the background probability density model [35]. These parameters are estimated over a buffer
of the last 50 measurements. These measurements can be spread out in several cells depending on
the speed of the robot (typically less than 10). This is not a problem if the spatial variation of the
background is sufficiently smooth.

To allow for the model to adapt to a slowly changing background the parameters of the model
(mean and standard deviation) are filtered with an exponential moving average. This filter weights the
current estimation of the background with the old one depending on the time distance. In this way,
the system is able to forget the old values and adapt to new ones.

2.3. Description of the Synthetic Test Cases

2.3.1. Synthetic Scenario Description and Simulation

For realistic simulations, the scenario envisioned considers atmospheric plumes in an urban
area encompassing hundreds of thousands of square meters containing only one chemical source.
The sensors located in vehicles can transmit their current position in the grid (e.g., using a GPS
sensor) together with the chemical sensor readings, and they will explore the search area by moving
across the cells performing random exploration. It is assumed that each vehicle mounts a single
sensor. It is considered that the main task of the vehicles is not that of tracking the plume; but
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patrolling a certain area and simultaneously updating a probability map for the source location using
the available information.

The exploration arena in the synthetic case is as follows. In order to test both algorithms,
a synthetic scenario (grid size of 1 km x 1 km) is generated. The area is divided into cells of size 100 m
x 100 m. A square sub-grid of lanes (100 m separation between lanes) is interlaced over the main grid
(Figure 1). The sensors will randomly explore the area over this last sub-grid of lanes which simulate
streets within an urban environment (Manhattan style). Using this configuration, the movement of the
sensors is constrained to certain lanes over the main grid. A clandestine laboratory for home-made
explosive production emits explosive precursors. In this scenario, we consider that a chemical source
emitting with a source strength g = 2.90 g/s, is placed in the grid with the source at the position
(440 m, 440 m), which corresponds to coordinates (5, 5) on the rectangular grid. We consider that the
main dispersed substance is acetone (molecular weight: 58.08 g/mol) at one atmosphere pressure and
25 °C. This Gaussian plume distribution has been generated from Equation (2) with the plume being
dispersed in a 2D plane at the same height as the sensors (z = h = 2 m). It is assumed that there is no
deposition of the substance on surfaces. In the simulations, the wind field is constant with the wind
speed at U, = 2.5 m/s and the wind direction at 45°. The dispersion coefficients ¢, and 0, depend on
wind conditions and atmospheric stability which has been set to neutral (‘D’ on the Pasquill-Gifford
scale [26]). Moreover, a mean background distribution is deployed over the area with a different mean
level in each cell and with SD equal to 60% of the mean value in all cells (based on our own recorded
data using a PID sensor measuring in Barcelona outdoors over a period of several hours).

Five mobile sensors with a constant velocity of 15 km/h sense the area continuously. The sampling
period of the sensors is set to 3 s, the detection limit to 0.1 ppm and the sensor resolution to 0.01 ppm,
which are realistic values for PID technologies. We assume that the response time of the sensor is much
faster than the typical 10 min time-average considered in the Gaussian Plume Model (Equation (2)).
The total simulation time was set to 300 min.

The mean background level is different in each cell, but is stationary over time. Series of
concentration fluctuations are generated in each cell considering the wind field created, the atmospheric
conditions and the background. The stochastic model of the plume concentrations has been already
described in Section 2.1.1. However, here we give some additional technical details concerning the
practical implementation.

Since we have defined the PDF and the PSD which will be used to model concentration
fluctuations, we use the percentile transformation method (PTM) described by Papoulis [36] to generate
a series of concentration fluctuations with the desired PDF and PSD.

Specifically, the procedure to generate realistic plume readings consists of the following steps:
(i) generate a time series of Gaussian white noise, (ii) filter the previous time series with the
designed FIR filter to achieve the desired PSD, (iii) and apply the PTM. This method is based on

the following expression: .
¢ = F (E(zi)) (11)

where z; is a random sequence of Gaussian white noise having the desired PSD with cumulative
distribution function (CDF) F,(z); c; is the sequence of realistic readings in the cell with CDF F;(c).
This CDF corresponds to the clipped-Gamma CDF (Equation (3)):

F(c)=Pr(C<¢) = /f(c’)dc’ =1- W (12)
o

and F-! is the inverse clipped-Gamma CDF. The clipped-Gamma PDF (and its CDF) depends on
the distance to the source. Its two parameters, the mean and the SD, are obtained from Equation (2)
and Equation (6), respectively. Subsequently, these parameters are used to compute v, k*, s and A,
as explained in detail in [28].
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Background concentrations are simulated as white noise with Gamma PDF. The background
concentrations in each cell are added to the time-series of plume readings to obtain the final
concentration readings at each cell.

An example of the concentration signals delivered by the sensors in this simulation scenario is
shown in Figure 2. It can be observed that the SD of the fluctuations decreases faster than the mean
concentration, making it difficult to differentiate between plume and background far from the source.

Randomly explored area

1000

Y (m)

800

Figure 1. Randomly explored area (1 km x 1 km) using five sensors (colored dots). The continuous
white lines (-) define the cell boundaries. The sensors move in horizontal or vertical direction from the
center of one cell to the center of a neighbor cell. The source is located at (440, 440) meters at cell (5, 5).
Mean wind speed is set to 2.5 m/s and wind direction to 45°. Colored background refers to probability
map at a particular time step.

Simulated concentration fluctuations

Concentration (ppm)
S

3720 3740 3760 3780 3800 3820 3840 3860 3880 3900
Measurement Time (s)

Figure 2. Simulated concentration fluctuations (under the specified conditions) at different fixed
positions downwind from the source over a certain background level.

In the binary-based approach, it is assumed that the ratio of false alarms is very low, but the
ratio of missed detection can potentially be very high, thus we define u = 0.3 (70% missed detections).
However, the value of this parameter was not defined in the original work [14].
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In the concentration-based approach, the source strength (q) should be initially guessed (this
is typically done using previous information about the type of chemical source under investigation:
clandestine lab, industrial toxic emissions, pollution, etc.). However, since it is almost impossible to
guess this parameter with accuracy, we have studied the sensitivity of the algorithm to errors in this
parameter. We scanned the guessed source strength two orders of magnitude around the central exact
value. For the simulation studies presented in this work, the parameters used in Equation (6) are:
Ko =2.5,x9p =50 m and 6 = — 0.75, taking into account previous studies [5].

2.3.2. Synthetic Test Case 1: Behavior of the Binary Detector Algorithm Depending on the Background
Level and Detector Threshold

The first simulation aimed to characterize binary-based approach when changing the
concentration threshold that fires the detector signal. In order to investigate the robustness of the
method against chemical noise, two spatially uniform background levels were considered (mean
values: 0.05 ppm and 0.45 ppm). In both cases the standard deviation was 1/5 of the mean value.

A background level is low or high depending on the source strength; therefore, studying the case
where the background is low is equivalent to saying that the source is potent, and studying the case
where the background is high is equivalent to saying that the source is weak.

Ten random sensor trajectories were simulated for each threshold level in the binary detector
(30 values in the linear range between 0.05 ppm and 3 ppm). For each trajectory, the probability at the
real source location is assigned by the algorithm after 300 min of exploration time. We took as a figure
of merit the mean probability averaging over all trajectories. This figure of merit will be plotted against
the concentration threshold. For the binary case, this simulation will determine the optimum threshold
for the detector given a certain chemical power source.

2.3.3. Synthetic Test Case 2: Accuracy in the Estimation of the Background Level and the Expected
Position of the Chemical Source

Here, both algorithms (binary and analog) are compared and share the same 10 random trajectories.
In this second case, a non-uniform background is used. Results will show the probability evolution at
real source location as the exploration time increases. Moreover, the probability maps provided by
both approaches after 300 min of exploration time can be compared as well.

To assess the accuracy of a given probability map we compute the expected value of distance to
the true source position:

N
E[r—n] = ;p(ﬂ’)'(ff —10) (13)

where r is the estimated position of the source, 7y is the real source position and p(r;) represents the
probability of the source being located in cell i.

Based on this metric we calculate the root mean squared error (RMSE)) of the distance from the
expected source position to the real source location:

RMSE, = (E[||r—r0||2D = \Jerr} +err} (14)

Alternatively, for a richer description we can decompose the total error in both coordinates: err,
and erry. Alternative, though less informative, figures of merit are the Euclidean distance (D) between
the maximum of the likelihood map and the real source position, and the probability at the real position.

The mean background map recovered for the concentration-based algorithm is quantitatively
compared to the designed background distribution by using the root mean squared error (RMSE;) as
a figure of merit:

(15)
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where B; is the designed mean background level at cell i; and B; is the estimated mean background
level. Results are obtained for two background distributions (maximum mean values: 0.05 ppm
and 0.45 ppm). Both background concentration maps were the same except for a scale factor.
The binary-based approach was tested using the optimum threshold level determined from case 1 and
the concentration-based approach, using the exact source strength.

2.3.4. Synthetic Case 3: Influence of the Source Strength on the Concentration Based Algorithm

Finally, the third simulation shows the influence of the source strength in the overall performance
of the concentration-based approach. Since it is difficult to know the source strength in advance,
the performance of the algorithm has been assessed assuming different source strengths across more
than two orders of magnitude in the range between 0.1 g/s and 30 g/s (the real value in the scenario
simulator being 2.90 g/s). Results are shown for the same background distributions as in case 2 and
for 10 random trajectories.

2.4. Scenario, Chemical Source Emission and Autonomous Vehicle Description for Real Experiments

For real experiments, all measurements were performed within an exploration arena built with
polystyrene panels. Dimensions of the tunnel were 5m x 3.5m x 1.8 m (length x width X height).
One fan was introducing air into the room and, on the opposite wall, three fans extracted air from the
room. All of them were installed at a height of 0.9 m above the floor and generated a highly a turbulent
airflow. Fans used were helical-wall type with a diameter of 30 cm and a maximum speed of 1300 rpm.

The supply of volatile acetone was carried out employing two 10-mL syringes. These syringes
were filled with liquid acetone and assembled on a syringe pump KDS-200 (KD Scientific, Holliston,
MA, USA) which was programmed to deliver a controlled liquid flow of 150 uL/min during 60 min.
Thus, the liquid acetone was falling at a constant rate over a plate heated to a temperature sufficient
for the acetone to be evaporated immediately. The source emission of volatile acetone was placed at
one side of the exploration arena just in front of the fan that introduced air in the tunnel. Algorithms
for the generation of the probability maps operated over a grid of N. = 70 cells with dimensions
0.5m x 0.5 m each one.

Input data for the algorithms were registered by an autonomous vehicle which was constructed
on a metal structure where different components were assembled, such as: two DC motors that
allow mobility of the vehicle, an UTM-30LX USB laser range finder sensor (HOKUYO, Osaka, Japan)
for vehicle auto-location and navigation; and a Windsonic RS232 anemometer (Gill Instruments,
Lymington, England) to register the wind speed and direction. The autonomous vehicle was also
equipped with a photo ionization detector (PID, ppbRAE 3000, RAE Systems, San Jose, CA, USA)
for measurement of the concentration of volatile compounds. All these components were controlled
by an onboard computer. The vehicle could operate autonomously sampling its relative position,
the wind speed and direction, and the volatile compound concentration at one measurement every
second approximately. The vehicle was programmed to move in a straight line until a wall is found,
then the vehicle rotates a random angle, and a new straight trajectory is described until a new wall
is found. The vehicle speed was set to 0.2 m/s. Images of the robot, the exploration room and the
chemical source can be found in the supplementary materials.

3. Results and Discussion

In this section, we will introduce the results for the three cases already described, as well as
the results for the real experiments. Finally, we will discuss the computational cost of the presented
algorithm. Data are presented as 50th [5th-95th] percentiles unless otherwise specified.
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3.1. Results of Algorithms Evaluation for Synthetic Experiments

3.1.1. Synthetic Case 1

The overall performance of the binary-based approach as the concentration threshold is changed
is studied in synthetic case 1. The results for two different background levels: the former with a mean
value of 0.05 ppm (Figure 3a) and the latter with a mean value of 0.45 ppm (Figure 3b) are shown.
The mean probability assigned by the algorithm at the real source location is depicted as a function of
the concentration threshold. It can be seen in the figure that there is a different optimal concentration
threshold depending on the background level. As expected, the optimum value is shifted to higher
thresholds as the background level is increased. These optimal values have been found to be 0.15 ppm
and 1.48 ppm, respectively. Relative to the background level, setting the threshold too low produces
a high ratio of false alarms leading the algorithm to failure; on the other hand, setting the threshold
too high could lead to an increase in false negatives with abnormal concentrations considered as
non-detection events and a consequent worsening of the overall performance. This can be critical
if the source to be detected is weak —this being equivalent to the case with a high background level.
In Figure 3b, it is observed that setting the threshold either too low or too high causes the algorithm to
fail, since the probability assigned to the real source location is below the equiprobable value of 1/ N,
assigned initially to every cell.
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Figure 3. Dependency of the assigned mean probability (averaged over 10 different random trajectories)
with the concentration threshold at source location by the binary-based approach. (a) Low background

level (mean = 0.05 ppm and SD = 0.03 ppm). (b) High background level (mean = 0.45 ppm and
SD = 0.27 ppm). The orange line shows the initial equiprobable value (1/N;) assigned to every cell.

The main problem using the binary-based approach is that the threshold needs to be set arbitrarily
if no information about the background is available and this background can be different in various
areas within the exploration zone. A priori, we do not know whether the threshold is too high or too
low, but even if we knew this, the background could evolve over space and time and the threshold
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would need to be adjusted continuously. The concentration-based algorithm removes the necessity of
any threshold because, instead of adjusting the threshold level, our approach builds a background
model for each cell. This background model allows us to distinguish between the background and the
plume without using any threshold and is updated recursively.

3.1.2. Synthetic Case 2

We will first analyze the results for the case of a weak interfering background having a maximum
mean value of 0.05 ppm. Figure 4 shows the performance of the binary-based and concentration-based
algorithms in source localization by considering the evolution of the figures of merit. Mean
probability (averaged over all trajectories) increases throughout the exploration time (Figure 4a)
in both approaches.

Mean probability in source location
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Figure 4. Performance of binary-based and concentration-based algorithms in source localization with
a maximum mean background level of 0.05 ppm. (a) Mean probability averaged over the ten random
trajectories (thick solid line) and confidence intervals within two standard deviations (thin dashed
lines). (b) Mean Euclidean distance D between the cell with the highest probability value and the
real source location (thick solid line) and both the maximum and the minimum values (thin dashed
lines). (c) error in source localization in both X and Y directions at the end of exploration time; p-values
between both approaches by using the Wilcoxon rank test have been indicated.

The Wilcoxon nonparametric rank test (not shown) was applied at each time step to test the
null hypothesis of no difference between the median of both populations (i.e., those formed by the
10 probabilities values in each of the two algorithms). Approximately 15 min after the starting time,
the increase in probabilities for the concentration-based approach become statistically significant
(p < 0.05) in comparison with the probabilities for the binary-based approach which did not change
until the end of exploration time. Figure 4b shows the mean Euclidean distance D between the cell
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with the highest probability value and the real source location. For both approaches, mean distance
decreases as the exploration time increases. In average, the binary-based approach converges to
the real source location slower (125 min. approximately) than the concentration-based one (80 min
approximately), and with lower probability value as it can be observed in Figure 4-top. Moreover,
the errors in source localization algorithms in both X and Y directions of the grid (Figure 4-bottom) show
that the concentration-based algorithm performs significantly better (p < 0.001), err = 213 [199 — 222] m
and err = 225 [202 — 248] m for X and Y directions respectively, in comparison with the binary approach
(281 [274 — 294] and 279 [271 — 294]), even though the binary-based algorithm has been tested with
the optimum concentration threshold (0.15 ppm).

Figure 5 shows the comparison between the mean probability maps (averaged over all trajectories)
provided by both algorithms after 300 min of random exploration. The probability assigned to the
real source location is higher using the concentration-based approach (P = 0.215 [0.156 — 0.261] in
Figure 5b) as compared to the binary-based approach (P = 0.124 [0.102 — 0.131] in Figure 5a). Moreover,
the probability is spread among a lower number of cells in the wind direction.

Binary-based. Probability map.

N° cell Y

Ne cell X
Concentration-based. Probability map.

N° cell Y

N° cell X

Figure 5. Mean probability maps (averaged over all trajectories) after 300 min of random exploration
with a maximum mean background level of 0.05 ppm. Source location at (5, 5) is indicated with
an asterisk (*). (a) Binary-based approach. (b) Concentration-based approach.

The estimated background distribution (not shown) by the concentration-based approach is
similar to the designed one after 300 min of random exploration, RMSE; = 0.010 [0.009 — 0.012] m.
Moreover, it was observed that after 50 min of exploration time the RMSE; values remained
approximately constant.

With a high background level (0.45 ppm), which is the same as saying that the source strength is
small compared to the background, Figure 6 shows similar results to those shown in Figure 4. However,
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now the differences between the performances of both approaches are higher. Mean probability at
real source location (Figure 6a) for the concentration-based approach increases as exploration time
increases, but more slowly compared to Figure 4a. In contrast to that observed in Figure 4a for the
binary-based approach, the mean probability is lower and remains approximately constant throughout
the exploration time. Here, the Wilcoxon test is also used to assess the statistical difference between
both approaches. Differences observed become statistically significant (p < 0.05) after 15 min of
exploration approximately. Moreover, it is observed in Figure 6b that the mean distance for the
binary-based algorithm does not converge to the real source location. The errors accounted (Figure 6c)
in both the X (err = 246 [239 — 265] m) and the Y (err = 260 [254 — 277] m) directions are higher than
the case of a low background and confirm that the performance of the concentration-based approach
is significantly more robust than the binary-based (337 [331 — 338] m and 331 [326 — 341] m for X
and Y directions respectively) in the presence of a high background level, although the latter has been
tested with its optimum concentration threshold.
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Figure 6. Performance of binary-based and concentration-based algorithms in source localization with
a maximum mean background level of 0.45 ppm. (a) Mean probability averaged over the ten random
trajectories (thick solid line) and confidence intervals within two standard deviations (thin dashed
lines). (b) Mean Euclidean distance D between the cell with the highest probability value and the
real source location (thick solid line) and both the maximum and the minimum values (thin dashed
lines). (c) error in source localization in both X and Y directions at the end of exploration time; p-values
between both approaches by using the Wilcoxon rank test have been indicated.

The binary-based approach performs well under the assumption that no false alarms arise. This is
shown in Figure 4 where, due to a low background level, the number of missed detections and false
alarms arising from the background are small, and the binary-based algorithm performs slightly
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worse compared to the concentration-based approach if the optimum threshold can be identified.
Nevertheless, such an assumption is far from the truth in a real scenario where pollution and interfering
substances are expected to be found. Additionally, this can also be the case when the source to be
detected is weak. This is shown in Figure 6 where, due to a high background level (or weak source),
the number of false alarms is higher, thus forcing setting the threshold higher, which leads in turn
to an increase in the number of missed detections and worsens dramatically the performance of the
binary-based approach.

Figure 7 shows the probability maps obtained with a high background level. It is seen that the
threshold is very high, which minimizes the number of false alarms but increases the number of
missed detections, thus the binary-based estimation is very uncertain at the source location (Figure 7a).
Therefore, the probability is spread over the cells in the grid, decreasing the probability at real source
location (P = 0.013 [0.010 — 0.014]). Figure 7b shows the robustness of our algorithm which minimizes
false alarms and missed detections. The concentration-based algorithm tends to increase the probability
at the real source location while the vehicles are performing random exploration. After 300 min of
random exploration, the probability assigned to real source location was P = 0.083 [0.047 — 0.101].
In this approach, false alarms arising from the background can correctly be assigned lower weights
in the probability calculations because the algorithm has created a background model per each cell
and a dispersion model for the plume. Additionally, these models allow minimizing the number of
missed detections.

Binary-based. Probability map.
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Figure 7. Mean probability maps (averaged over all trajectories) after 300 min of random exploration
with a maximum mean background level of 0.45 ppm. Source location at (5, 5) is indicated with
an asterisk. (a) Binary-based approach. (b) Concentration-based approach.
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Concerning the estimation of the background distribution, the concentration-based approach was
also able to recover it properly, RMSE; = 0.089 [0.080 — 0.100] m. Like in the case of a low background,
the RMSE, remained approximately constant after 50 min, albeit, it was slightly higher.

3.1.3. Synthetic Case 3

The results concerning the sensitivity to the correct estimation of the chemical source strength
are displayed in Figure 8. Results show a decrease in the overall performance as the assumed source
strength deviates from the real value (2.90 g/s). It is observed (Figure 8a) that the selection of the source
strength becomes more critical when the background level is low (or the source is potent compared to
this background), but, if the source strength could be estimated with errors (to within at most a factor
of 4), the concentration-based approach performs much better. When the source to be detected is weak
(or the background is comparatively high, Figure 8b), the selection of the source strength is not so
critical in the range studied. It can be observed that the concentration-based approach is more robust
against false alarms and missed detections (even for source strength estimated with errors larger than
two orders of magnitude), as compared to the binary-based approach which performs badly even
setting its optimum threshold.
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Figure 8. Mean probability (averaged over 10 trajectories) at real source location after 300 min of
random exploration as a function of the source strength assumed by the concentration-based approach.
Error bars show confidence levels within two standard deviations. (a) Results with a maximum mean
background level of 0.05 ppm. (b) Results with a maximum mean background level of 0.45 ppm.

It is important to say that, although the binary-based algorithm works without assuming
explicitly any source strength, setting an optimum threshold is only possible when collecting real
measurements which implicitly contain information about the source strength and the background.
However, this optimum threshold might be different depending on the explored cell. In the case of the
concentration-based approach, the background is estimated by the algorithm and, if this background
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is low, the source strength needs to be known to within one order of magnitude. If the background is
high, the algorithm behaves more robustly in the range studied as compared to the binary case except
in the first case (the assumed source strength is very small).

3.2. Results for the Real Experiments

First we will give some details concerning the wind distribution within the exploration arena.
Figure 9 (top) shows a characterization of the behavior of the wind within the designed scenario
for one of the experiments that was carried out. The median wind speed was 0.28 [0.08 — 1.12] m/s.
Also, there was a predominant wind direction although with a scatter on the direction angle of
approximately 60 degrees. Similar behavior of the wind was observed in all the experiments. The map
of concentrations showed in Figure 9 (bottom) is consequence in part of such airflow generated.

Wind behaviour
90 25
: 3 6

270

Wind speed(m/s)

Map of recorded concentrations ppb
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- 14099
3074
2050
1025

Figure 9. (Top) a representative wind distribution recorded within the designed scenario during
a random exploration maneuver. Both, the direction (degrees) and the speed (m/s) of the wind are
indicated. (Bottom) map of concentrations recorded with the PID. Source location at (10, 4) is indicated
by a black circle.

The averaged probability maps (over the 10 experiments) are shown in Figure 10. The
mean probability assigned by each algorithm to the real source location is practically identical,
P =0.045[0.030 — 0.076] and P = 0.050 [0.028 — 0.084] for the concentration-based and for the
binary-based respectively. However, the probability map for the binary-based algorithm (Figure 10a)
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exhibits more variance in the localization of the real source position, as it is observed in Figure 10a. For the
concentration-based algorithm (Figure 10b), relatively stable higher values of probability around the real
source location are obtained. The Wilcoxon rank test is also used to compare the errors obtained for each
algorithm. In the X direction, the error for the concentration-based algorithm (2.14 [2.09 — 2.35]) m. is
lower than for the binary-based one (2.30 [2.03 — 2.55]) m., but without statistical significance. In the
Y direction, the error for the concentration-based (0.91 [0.85 — 0.95]) m. is also lower than for the
binary-based (0.97 [0.86 — 1.03]) m. and in this case is statistically significant (see Figure 11).
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Figure 10. Mean probability maps at the end of the exploration time for the set of real
experiments. Source location at (10, 4) is marked with an asterisk. (a) Binary-based approach.

(b) Concentration-based approach.
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Figure 11. Errors in source localization in both the X and the Y directions for both algorithms.

Statistically significant difference is indicated.
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Results obtained here are in the same line as those obtained for the simulation experiments but
the results are not as clear. In the designed scenario, it is likely that some of the assumptions of our
algorithm (see Table A2) are not fully satisfied. The wind was not completely uniform in the room: it
was much stronger near the source than at the opposite wall and there were some recirculation at the
lateral walls. As a consequence the real distribution of the time-averaged concentration deviated from
Gaussianity. We think it might be a reason to explain the slight differences observed when comparing
both algorithms, in contrast to the strong differences observed in the performance of both algorithms
for the simulation experiments.

3.3. Computatitonal Cost

Finally, we have studied the computational cost of the algorithm. It is true that the computational
cost is higher than the binary approach, mainly due to need of computing the convolution between the
PDF of the background and the PDF of the plume for every cell. The cost is about three times the cost of
the binary approach in our current implementation (without optimization). However, our studies have
confirmed that the computational cost of each iteration in the algorithm increases very slowly with the
number of cells. Moreover, the time to locate the source increases in a linear way approximately with
the number of cells.

4. Conclusions

In the present paper, modifications of a previously described (binary-based) algorithm have been
introduced. The original algorithm can be easily extended to work with multiple mobile sensors.
All the information from the mobile sensors can be integrated in the algorithm, whatever their positions
are. The algorithm only needs to know in which cell the concentration readings were obtained, then a
probability map will be recursively updated. Moreover, the mobile sensors do not need to solely
perform plume tracking and might be used for other tasks.

Additionally, in a real scenario, pollution and some interfering substances may appear in the
background, increasing the number of false alarms. Unlike the binary-based algorithm, which uses
a threshold to assess whether a concentration is considered as a detection or non-detection event;
our algorithm, based on continuous concentrations, builds a background model to assess whether
a concentration comes from the background or from a source located further away. Simulation results
show that our algorithm behaves much more robustly in the presence of false alarms and better
estimates the real source location.

All concentration readings are considered in our algorithm, incorporating them in a continuous
manner instead of just using them as binary detections above a certain threshold. This fact removes
the need for a threshold level, thereby reducing the number of false alarms (a background model is
estimated) and the number of missed detections thus improving the performance of the algorithm
proposed by Pang and Farrell. A sensitivity study regarding robustness of the algorithm against
deviations from the true value has been presented. It has been shown, the results improve significantly
using the concentration-based algorithm if the source strength can be estimated.

Finally, experiments with real data have shown that the concentration-based algorithm seems to
perform slightly better than the binary-based one, confirming our results obtained for the simulation
experiments. A critical point in our proposal is that the algorithm assumes that the source strength
is known. Thus, estimating the source strength would be a promising direction for future research.
Results from real experiments show that when the plume dispersion model hypothesis do not hold,
both algorithm are still able to perform the estimation tasks although the differences diminish.

The described algorithm is available in MATLAB code from the authors under request.

Supplementary Materials: The supplementary materials are available online at http://www.mdpi.com/1424-
8220/17/4/904/s1. Images of the robot, the exploration arena with the fans and the used chemical source are
available as supplementary materials.
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Appendix A. Supplementary Tables

Table Al. Summary of the notation used for the concentration-based approach.

Nc Number of Cells in the Grid Area

Lx Length of each cell along the x-axis

Ly Length of each cell along the y-axis

c Instantaneously measured concentration

cb Concentration contribution due to the background

cp Concentration contribution due to the chemical plume

Mean concentration at a fixed location

ol

q Source strength or release rate

U, Mean wind speed in the downwind direction
oy Diffusion coefficient in the crosswind direction
o Diffusion coefficient in the vertical direction

o

Array of all possible instantaneous concentrations ¢

Y Intermittency factor related to the chemical plume

M Mean concentration of a series of readings at a fixed location

osp Standard deviation of a series of readings at a fixed location

Ny Number of readings stored in the concentration buffer per each sensor

¢ Measured concentration within cell j

A; Event “there is a chemical source within cell i

B(t) Sequence of measured concentrations along the trajectory of the robots until time #;

P(A;)) Prior probability of the presence of a chemical source within cell i

P(c; ‘ A) Probability that the measurement within cell j is due to the addition of the background at cell

e and a chemical plume due to a source within cell i
— Probability that the measurement of chemical at cell j is not due to a source emitting at cell 7,

thus ¢; is due to the current background at cell
Probability of having a source in cell i given that a certain amount of chemical was measured

Sij(tx) = P(Aj|c)) ot
at cell j at time ¢

Normalized probability (over all cells) of having a chemical source within cell i based on
a single measured concentration within cell j at time t;

Normalized probability (over all cells) of having a chemical source within cell i based on the
sequence of measured concentrations along the trajectory of the robots (index j) until time f;
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Table A2. Main assumptions of the concentration-based algorithm.

For the Plume

Gaussian distribution for the time-averaged concentration
concentration fluctuations governed by turbulences
continuous release, source strength known g =2.90 g/s
one uniquely source at the position (400 m, 400 m)
height,z=2m

For the Background

background is always present

background relatively constant for the exploration time
mean background level can change from one cell to another
no intermittency

Other Assumptions

uniform wind field over the exploration time, speed U, = 2.5 m/s, and 45° direction
neutral atmospheric stability

no deposition of the substance on surfaces

cells are equally likely to contain the source at time #;

height of sensors is 2 m

response-time of sensors faster than the typical 10min time-average of GPM
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