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Abstract

Horizontal gene transfer is widespread in insects bearing intracellular symbionts. Horizon-

tally transferred genes (HTGs) are presumably involved in amino acid synthesis in sternor-

rhynchan insects. However, their role in insect-symbiont interactions remains largely

unknown. We found symbionts Portiera, Hamiltonella and Rickettsia possess most genes

involved in lysine synthesis in the whitefly Bemisia tabaci MEAM1 although their genomes

are reduced. Hamiltonella maintains a nearly complete lysine synthesis pathway. In con-

trast, Portiera and Rickettsia require the complementation of whitefly HTGs for lysine syn-

thesis and have lysE, encoding a lysine exporter. Furthermore, each horizontally transferred

lysine gene of ten B. tabaci cryptic species shares an evolutionary origin. We demonstrated

that Hamiltonella did not alter the titers of Portiera and Rickettsia or lysine gene expression

of Portiera, Rickettsia and whiteflies. Hamiltonella also did not impact on lysine levels or pro-

tein localization in bacteriocytes harboring Portiera and ovaries infected with Rickettsia.

Complementation with whitefly lysine synthesis HTGs rescued E. coli lysine gene knockout

mutants. Silencing whitefly lysA in whiteflies harboring Hamiltonella reduced lysine levels,

adult fecundity and titers of Portiera and Rickettsia without influencing the expression of

Hamiltonella lysA. Furthermore, silencing whitefly lysA in whiteflies lacking Hamiltonella

reduced lysine levels, adult fecundity and titers of Portiera and Rickettsia in ovarioles.

Therefore, we, for the first time, demonstrated an essential amino acid lysine synthesized

through HTGs is important for whitefly reproduction and fitness of both obligate and faculta-

tive symbionts, and it illustrates the mutual dependence between whitefly and its two symbi-

onts. Collectively, this study reveals that acquisition of horizontally transferred lysine genes

contributes to coadaptation and coevolution between B. tabaci and its symbionts.
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Author summary

Revealing which molecules are exchanged between host and symbionts will illuminate

how host and bacterial symbiont establish beneficial relationships. Horizontally trans-

ferred genes (HTGs) presumably complement the missing genes involved in synthesis of

essential amino acids (EAAs) in symbionts of sternorrhynchan insects. We demonstrate

that whitefly HTGs can cooperate with Portiera and Rickettsia for lysine synthesis. The

lysine synthesized through HTGs impacts both whitefly reproduction and symbiont fit-

ness. Taken together, we reveal that horizontally acquired lysine genes underlie the basis

for the mutual dependence between whitefly and two intracellular symbionts. Therefore,

our study demonstrates the critical role of HTGs in the synthesis of EAAs and their func-

tion in insect-symbiont interactions and coevolution.

Introduction

Microbial symbionts in insects can help them utilize food with unbalanced nutritional content

by providing specific nutrients that hosts cannot synthesize [1–5]. These symbionts are consid-

ered to be obligate symbionts. The role of obligate symbionts in providing essential amino

acids (EAAs) has been convincingly demonstrated in Hemiptera species such as aphids feeding

on plant phloem deficient in essential nutrients [6]. Other symbionts associated with insects,

which may affect insect fitness under certain conditions, are called facultative symbionts [6].

Many insect symbionts are specifically localized in the gut and hemocoel or within specialized

host cells (bacteriocytes) [6]. Genome reduction is typical in intracellular symbionts, particu-

larly of those required by hosts and that are restricted to bacteriocytes [7]. To maintain the

benefits of symbiosis, host insects must adapt to support and control symbionts. For example,

some host genes are enriched in bacteriocytes and they can complement the missing genes

involved in synthesis of essential metabolites by the symbiont in the aphid, mealybug, psyllid

and whitefly [1, 7–9]. The sophisticated metabolic integration between host and symbiont is a

characteristic signature of host-symbiont coevolution [7, 10]. Additionally, the symbiont Soda-
lis pierantonius housed in bacteriocytes provides tyrosine and phenylalanine for the cereal

weevil to build its exoskeleton. Once the cuticle is achieved, the symbiont is eliminated by host

apoptosis and autophagy activation [11]. However, our understanding of insect-symbiont

coadaptation is limited [7].

Horizontal gene transfer is the asexual transmission of genetic information between repro-

ductively isolated species and has great impacts on genomic evolution [12]. Horizontally trans-

ferred genes (HTGs) that have originated from bacteria are known to be prevalent among

prokaryotes. HTGs are also being increasingly reported in arthropod herbivores, and are wide-

spread in insect symbiosis [1, 8–10]. In aphids, horizontally transferred RlpA4 encodes a pro-

tein that is transported to the symbiont Buchnera [13]. Silencing horizontally transferred

amiD and ldcA1 decreases the abundance of Buchnera [14]. Some HTGs appear to be involved

in synthesis of important metabolites in the insect-symbiosis system [7]. For example, HTGs

in the mealybug genome cooperate with the symbiont Moranella for peptidoglycan synthesis

[15]. Horizontally transferred whitefly biotin genes of bacterial origin can synthesize biotin

[16]. Mealybug, psyllid and whitefly studies suggest that HTGs can complement the missing

genes involved in synthesis of multiple EAAs in symbionts [1, 8, 9]. However, the role of

HTGs in the synthesis of EAAs and their function in insect-symbiont interactions and coevo-

lution remain largely unknown.
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The whitefly Bemisia tabaci is a complex of more than 40 cryptic species as revealed by phy-

logenetic analyses and mating experiments [17, 18]. B. tabaci MEAM1 is one of the most

important and invasive pests of agriculture [19, 20]. The whitefly B. tabaci-bacteria symbiosis

is a valuable model system. All B. tabaci species harbor the obligate symbiont ‘Candidatus Por-

tiera aleyrodidarum’ (hereafter Portiera) in bacteriocytes. B. tabaci also harbor up to four fac-

ultative symbiont lineages out of seven bacterial genera [21, 22]. The whitefly B. tabaci
MEAM1 harbors Portiera and ‘Candidatus Hamiltonella defensa’ (hereafter Hamiltonella) in

the same bacteriocyte and Rickettsia spp. (hereafter Rickettsia) in the whole body cavity [16].

These three symbionts are vertically transmitted via the egg [23, 24]. Portiera and Hamiltonella
are fixed and Rickettsia has high infection frequencies (up to 100% depending on the geo-

graphical location) in the population of B. tabaci MEAM1 in China [23–26]. The genome of

Portiera is highly reduced but it maintains genes involved in synthesis of ten EAAs [27, 28]. In

contrast, the genomes of Hamiltonella and Rickettsia are moderately degenerated and only

have some genes involved in synthesis of a few EAAs [29]. Hamiltonella can affect the B. tabaci
sex ratio by facilitating fertilization and provisioning of five B vitamins [25]. In the USA, the

increase of Rickettsia infection in B. tabaci MEAM1 populations from 2000 to 2011 conferred

whitefly fitness benefits [30, 31] but the mechanism involved remains unknown. Horizontally

transferred dapB, dapF and lysA with the phylogenetic origin of Rickettsiales, Enterobacteriales

and Planctomycetes, respectively, are encoded in the genome of B. tabaci MEAM1 and highly

expressed in bacteriocytes [9, 29]. It is likely these genes are involved in lysine synthesis. How-

ever, how these horizontally transferred lysine genes contribute to interactions and the coevo-

lution of B. tabaci and symbionts is unclear. In this study, the function of horizontally

transferred lysine genes in the B. tabaci MEAM1-tripartite symbiosis system was investigated.

We reveal that lysine produced by B. tabaci HTGs affects the fecundity of whiteflies and the fit-

ness of Portiera and Rickettsia.

Results

The lysine synthesis pathway in the tripartite symbiosis in B. tabaci MEAM1

Although the genomes of Portiera, Hamiltonella, and Rickettsia are reduced to varying degrees,

these three symbionts possess most of the genes involved in lysine synthesis (S1 and S2 Data).

In particular, Rickettsia only retains the synthesis pathway for one essential amino acid lysine

(S1 Data). The Rickettsia genome lacks lysA, and the Portiera genome lacks dapF and lysA and

has the pseudogene dapB for lysine synthesis (Fig 1 and S1 and S2 Data). In contrast, the

Hamiltonella genome maintains an almost intact lysine synthesis pathway except that it lacks

argD, which may need complementation by Portiera (Fig 1 and S2 Data). The horizontally

transferred dapB, dapF, and lysA in B. tabaci MEAM1 seem to be able to compensate for the

missing genes in both Portiera and Rickettsia (Fig 1). The lysine exporter family protein LysE

is present in both Portiera (Por0095) and Rickettsia (Ric0176) but absent from Hamiltonella
(Fig 1) [29], indicating that both Portiera and Rickettsia are able to transport lysine for

whiteflies.

Evolutionary origin of horizontally transferred lysine genes in whiteflies

Our previous work has shown that horizontally transferred dapB, dapF and lysA were detected

in the transcriptomes of B. tabaci MEAM1, MED and Asia II 3, and that they could be assigned

to Rickettsiales, Enterobacteriales and Planctomycetes, respectively [9, 29]. To determine if

horizontally transferred lysine genes are ubiquitous in whitefly populations, the presence of

dapB, dapF and lysA was checked in multiple whitefly species and cultures. We found that

dapB and dapF have a single copy in the genome of B. tabaci MEAM1 that lacks an intron

PLOS PATHOGENS Role of horizontally transferred lysine genes in whitefly symbiosis

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1010120 November 29, 2021 3 / 23

http://www.whiteflygenomics.org/cgi-bin/bta/geneinfo.cgi?&gene=Por0095
http://www.whiteflygenomics.org/cgi-bin/bta/geneinfo.cgi?&gene=Ric0176
https://doi.org/10.1371/journal.ppat.1010120


[29]. By contrast, lysA was duplicated in the genome of B. tabaci MEAM1 [29]. These two lysA
genes (Bta03593 and Bta03589) were located in the positive strand and negative strand of the

whitefly genome, respectively [29]. Bta03593 has acquired introns while Bta03589 was largely

truncated and lacked the essential pyridoxal 5’-phosphate binding site, catalytic residues, and

substrate binding site (S1A–S1C Fig). Thus, the gene sequence of lysA Bta03593 was used in

the following analysis and experiments, if not otherwise specified. The horizontally transferred

lysine genes were present in 13 whitefly cultures of ten B. tabaci cryptic species, originating

from Asia, America, and Africa, but absent from a phylogenetically-distant whitefly species,

Trialeurodes vaporariorum (S1 Table). The data suggest that acquisition of horizontally trans-

ferred lysine genes may have occurred after whiteflies diverged into Bemisia and Trialeurodes.
In B. tabaci MEAM1, Hamiltonella has dapB, dapF, and lysA and Rickettsia has dapB and dapF
(S1 and S2 Data). To examine the divergence of protein sequences, amino acid sequences were

aligned among ten whitefly cryptic species, as well as Hamiltonella and Rickettsia of B. tabaci
MEAM1 for DapB, DapF and LysA. As only transcriptome data for B. tabaci Asia II-3 is avail-

able, and the sequencing depth and coverage for Asia II-3 is not high enough, the obtained

amino acid sequences for DapB, DapF and LysA in this species are shorter compared to the

Fig 1. Lysine synthesis pathway in B. tabaci MEAM1. This figure is adapted from previous work (9, 29). HTHD,

4-hydroxy-2,3,4,5-tetrahydrodipicolinate; THD, 2,3,4,5-tetrahydrodipicolinate; SDAP, N-succinyl-L-

2,6-diaminoheptanedioate; SAOP, N-succinyl-L-2-amino-6-oxoheptanedioate; 2,6-DAP, 2,6-diaminopimelate; meso-

DAP, meso-2,6-diaminopimelate. Pseudogene is in grey and enriched host genes of bacterial origin are in green. The

exchanges of intermediates among Portiera, Hamiltonella and Rickettsia are speculated.

https://doi.org/10.1371/journal.ppat.1010120.g001
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other nine B. tabaci species. Whereas, the amino acid sequence identity was high among all ten

whitefly B. tabaci cryptic species (91.9% for DapB, 82.1% for DapF and 97.1% for LysA), and it

was low between B. tabaci MEAM1 and Hamiltonella (31.5% for DapB, 45.4% for DapF and

22.07% for LysA) and B. tabaci MEAM1 and Rickettsia (46.1% for DapB and 26.8% for DapF)

(S2–S4 Figs). These data suggest that these whitefly lysine genes are not likely to have been hor-

izontally transferred from Hamiltonella and Rickettsia. Moreover, catalytic sites are conserved

in all ten B. tabaci cryptic species. To gain insight into the evolution of these HTGs, a phyloge-

netic tree was constructed. Interestingly, the DapB, DapF and LysA of all whitefly B. tabaci
cryptic species clustered within the same clade (S5–S7 Figs), suggesting that horizontally trans-

ferred lysine genes share a common evolutionary origin in all whitefly B. tabaci cryptic species.

Whitefly DapB fell within the clade of Rickettsia and clustered with the Rickettsia symbiont of

Culicoides newsteadi, DapF clustered with Pantoea and bacterial symbiont of Plautia stali, and

LysA clustered with Planctomycetes (S5–S7 Figs).

Effect of Hamiltonella deficiency on lysine gene expression, lysine level and

protein localization in bacteriocytes and ovaries of whiteflies

Whitefly lifestages consist of egg, nymphs and adult. Adult females were used for all trials in

this study as this was not only more convenient experimentally but also made sense from a bio-

logical perspective. Female adult whiteflies can lay hundreds of eggs in their lifespan [32] and

the level of hemolymph vitellogenin (vg) accumulates in the developing oocytes providing

nutrition for ovary development during oogenesis [33–35]. High levels of EAAs including

lysine and others are required for vg synthesis in female adult whiteflies.

Portiera and Hamiltonella are housed in bacteriocytes and ovaries and Rickettsia in ovaries,

guts and other body tissues except for bacteriocytes of B. tabaci MEAM1 (Fig 2A) [24]. After

antibiotic cocktail treatment, Hamiltonella was reduced by 72.7–82.2% and the abundance of

Portiera and Rickettsia remained unchanged in whiteflies at 5, 10 and 15 d after emergence at

the F1 adult stage (Fig 2B; P< 0.05 for Hamiltonella; P> 0.05 for Portiera and Rickettsia).

After the titer of Hamiltonella was reduced, expression of whitefly dapB, dapF and lysA
remained unchanged at 5, 10 and 15 d after emergence at the F1 adult stage after antibiotic

treatment except for dapF at 15 d after emergence (Fig 2C; P> 0.05 for dapB and lysA at 5 d,

10 d, and 15 d and dapF at 5 d and 10 d; P = 0.0098 for dapF at 15 d). After Hamiltonella titer

was reduced, expression of dapE of Portiera, as well as dapB, dapE and dapF of Rickettsia
remained unchanged at 5, 10 and 15 d after emergence at the F1 adult stage after antibiotic

treatment except for dapF at 15 d after emergence (Fig 2D and 2E; P> 0.05 for dapE of Por-
tiera, dapB and dapE of Rickettsia at 5, 10 and 15 d and dapF of Rickettsia at 5 and 10 d;

P< 0.05 for Rickettsia dapF at 15 d).

Our previous UPLC analyses showed that elimination of Hamiltonella did not influence the

lysine level in the whole body of adult B. tabaci [25]. To determine if Hamiltonella is involved

in lysine provisioning, Hamiltonella were specifically cured by antibiotic treatments and lysine

levels were measured over time. Hamiltonella deficiency did not significantly change the lysine

level in the whole body of adult B. tabaci feeding on cotton plants at 5 d, 10 d, and 15 d after

emergence at the F1 adult stage after antibiotic treatment (Fig 2F; P = 0.17–0.94).

To examine the subcellular location of the proteins encoded by whitefly dapB, dapF and

lysA, recombinant proteins were successfully generated (S8A–S8C Fig). Then, polyclonal anti-

bodies against DapB, DapF and LysA proteins were produced using the purified recombinant

protein. The polyclonal antibodies had good specificity, which was verified by western blot

(S8D–S8F Fig). Immunofluorescence microscopy showed that DapB, DapF, and LysA were

mainly located in the peripheral regions of bacteriocytes (Fig 3A–3C) as well as in the follicle
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cells and bacteriocytes of ovaries (Fig 3D–3F). After Hamiltonella was cured, the protein

expression levels and patterns were maintained in whitefly bacteriocytes as well as ovaries (Fig

3A–3F), confirming that DapB, DapF, and LysA were not encoded by Hamiltonella. There was

no signal of DapB, DapF, and LysA in whitefly bacteriocytes and ovaries of negative controls

(S9 Fig). Because the Rickettsia genome lacks lysA, the presence of LysA in the follicle cells of

ovaries is not due to Rickettsia, which infects whitefly ovaries (Fig 2A). Likewise, after Portiera,

Rickettsia and Hamiltonella were reduced by 98%, 88%, and 98%, respectively (S10A Fig;

P< 0.01), the LysA protein expression levels and patterns were maintained in whitefly guts

(S10B and S10C Fig), further confirming that LysA was not encoded by Rickettsia, which

infects whitefly guts [24].

Fig 2. Effects of Hamiltonella deficiency on lysine gene expression and lysine levels in B. tabaci. (A) Localization of

symbiotic bacteria Portiera (red) and Hamiltonella (green) in the whitefly bacteriocyte, as well as Portiera (red) and

Rickettsia (green) in the whitefly ovary. n = 3. (B) Effects of antibiotic treatments on the abundance of symbionts in B.

tabaci at 5 d, 10 d, and 15 d after emergence. H, P and R represent Hamiltonella, Portiera and Rickettsia, respectively.

n = 12, 10 and 11 for 5 d, 10 d, and 15 d, respectively. (C) Effects of Hamiltonella deficiency on expression of whitefly

lysine genes in B. tabaci at 5 d, 10 d, and 15 d after emergence. n = 4. (D) Effects of Hamiltonella deficiency on

expression of Portiera lysine gene in B. tabaci at 5 d, 10 d, and 15 d after emergence. n = 4. (E) Effects of Hamiltonella
deficiency on expression of Rickettsia lysine genes in B. tabaci at 5 d, 10 d, and 15 d after emergence. n = 4. (F) Effects

of Hamiltonella deficiency on lysine levels in B. tabaci at 5 d, 10 d, and 15 d after emergence. n = 6. +HBt and -HBt

represent Hamiltonella-infected and Hamiltonella-cured whiteflies, respectively. Data are means ± SEM. The

significant differences between treatments are indicated by asterisks (�P< 0.05; ��P< 0.01; ���P< 0.001).

https://doi.org/10.1371/journal.ppat.1010120.g002
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Functional complementation of E. coli lysine auxotrophs with whitefly

lysine genes

To test the hypothesis that whitefly dapB, dapF, and lysA function in lysine synthesis, the E.

coli K-12 dapB, dapF, and lysA knockout mutant (-ΔdapB, -ΔdapF, or -ΔlysA) were generated

using the Lambda Red protocol and functionally complemented E. coli K-12 mutant with

whitefly dapB, dapF, and lysA, respectively. Compared to wild type E. coli, E. coli K-12 knock-

out mutants (-ΔdapB, -ΔdapF, and -ΔlysA) did not grow on M9 minimal medium lacking

lysine (Fig 4). Although whitefly dapB, dapF, and lysA shared low amino acid sequence identi-

ties with E. coli homolog genes (33.33%, 59.55%, and 27.48%, respectively), complementation

with whitefly dapB, dapF, and lysA rescued E. coli K-12 knockout mutants on M9 minimal

medium (Fig 4). In contrast, cells transformed with the empty vector of pMD19-T did not

grow on M9 minimal medium without lysine supplementation (Fig 4). Significant differences

in OD values among treatments were detected (Fig 4; P< 0.001 for dapB, dapF, and lysA).

Silencing horizontally transferred lysA in whiteflies infected with

Hamiltonella reduces lysine level, whitefly fecundity and the titers of

Portiera and Rickettsia
To confirm the metabolic function of horizontally transferred lysine genes, a gene silencing

approach was applied in whiteflies infected with Hamiltonella. As the horizontally transferred

Fig 3. Effects of Hamiltonella deficiency on protein localization in B. tabaci. Localization of DapB, DapF and LysA

proteins (green) in bacteriocytes (A-C) and ovaries (D-F) of female adult whiteflies. DNA was stained with DAPI.

+HBt and -HBt represent Hamiltonella-infected and Hamiltonella-cured whiteflies, respectively. n = 3.

https://doi.org/10.1371/journal.ppat.1010120.g003
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lysA gene complements for the missing gene in both Portiera and Rickettsia, whitefly lysA was

selected for silencing. The lysA nucleotide sequence identity was very low between B. tabaci
MEAM1 and Hamiltonella (35.27%). A pair of primers was designed to specifically target lysA
of the whitefly rather than Hamiltonella (S2 Table). Expression of whitefly lysA was reduced by

71% at day 3 after microinjection with dsRNAs (S11A Fig; P = 0.0089). After lysA gene silenc-

ing, the lysine level was significantly reduced by 35.6% in whiteflies (Fig 5A; P = 0.049). The

fecundity of female adult whiteflies was significantly reduced at day 3 after microinjection with

dslysA, compared to that of whiteflies microinjected with dsGFP (Fig 5B; P = 0.0035). To eval-

uate the effect of lysA silencing on symbiont titer, the abundance of symbionts was quantified

in lysA RNAi whiteflies. The abundance of Portiera and Rickettsia was reduced significantly at

day 3 after whiteflies were microinjected with dsRNAs while the abundance of Hamiltonella
did not change significantly (Fig 5C; P = 0.047 for Portiera and P = 0.024 for Rickettsia;

P = 0.83 for Hamiltonella). Additionally, expression of Hamiltonella lysA remained unchanged

at day 3 after microinjection with dsRNAs (Fig 5D; P = 0.9).

Silencing horizontally transferred lysA in whiteflies lacking Hamiltonella
reduces lysine level, whitefly fecundity and the titer of Portiera and

Rickettsia
To further determine the role that Hamiltonella played in the reduced whitefly fecundity and

symbiont titer after whitefly lysA silencing, the gene silencing was conducted in whiteflies lack-

ing Hamiltonella. Hamiltonella was eliminated by 94% without influencing the abundance of

Portiera and Rickettsia (Fig 6A; P< 0.0001 for Hamiltonella; P = 0.8 for Portiera and P = 0.97

for Rickettsia). Expression of whitefly lysA was significantly decreased by 77% at day 3 after

microinjection with dsRNAs (S11B Fig; P = 0.00076). The lysine level was significantly reduced

Fig 4. Functional complementation of E. coli lysine auxotrophs. E. coli K-12 knockout mutant cells were

transformed with expression plasmids containing whitefly dapB, dapF, and lysA or the negative control pMD19-T

empty vector. The E. coli wild-type K-12, mutant K-12 (-Δ) and mutant K-12 transformants (+Δ) were grown

overnight in amino acid-deficient M9 liquid medium at 37˚C. All E. coli cells were washed and re-suspended to

measure cell density at OD600. Data are means ± SEM. n = 3. Different letters above the bars indicate significant

differences between treatments at P< 0.05.

https://doi.org/10.1371/journal.ppat.1010120.g004
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by 21.7% in Hamiltonella-cured whiteflies at day 3 after RNAi treatment (Fig 6B; P = 0.032).

The fecundity of female adult whiteflies was significantly reduced at day 3 after microinjection

with dsRNAs (Fig 6C; P = 0.0092). Portiera and Rickettsia are vertically transmitted in white-

flies via ovarioles. The changes of abundance of Portiera and Rickettsia in the whole body will

influence the titer of Portiera and Rickettsia in ovarioles, thereby impacting the transmission

of symbiont. Thus, whitefly ovarioles were collected for symbiont quantification after gene

silencing. The abundance of Portiera and Rickettsia in ovarioles was reduced significantly at

day 3 after whiteflies were microinjected with dsRNAs (Fig 6D; P = 0.044 for Portiera and

P = 0.043 for Rickettsia). These data suggest that Hamiltonella did not contribute to the

reduced lysine level, whitefly fecundity and symbiont titer in whiteflies after RNAi treatment.

Discussion

This study reveals that lysine HTGs underlie the mutual dependence between whitefly and two

of its symbionts in a tripartite symbiosis (Fig 7). Portiera as an obligate symbiont is known to

be required for survival of B. tabaci [36, 37]. Similarly increases in infection frequencies with

the facultative symbiont Rickettsia have for MEAM1 B. tabaci populations in USA from 2000–

2011 been linked to improved fitness [30, 31]. The high Rickettsia infection frequencies in the

populations of B. tabaci MEAM1 in China from 2011–2014 [24], may be offering similar bene-

fits. It is the first to demonstrate the key role of these lysine HTGs in B. tabaci reproduction as

well as fitness of both its obligate symbiont Portiera and facultative symbiont Rickettsia. As an

EAA, lysine plays critical roles in protein synthesis in all living organisms [6, 38]. There are,

however, generally only low levels of EAAs including lysine in the phloem of various plant

Fig 5. Effects of silencing horizontally transferred lysA on lysine levels, whitefly fecundity, symbiont titer and

Hamiltonella lysA expression in whiteflies infected with Hamiltonella. (A) Lysine levels in whiteflies at day 3 after

whiteflies were microinjected with dslysA. n = 3. (B) Fecundity of female adult whiteflies at day 3 after microinjection

with dslysA. n = 22. (C) Effects of silencing horizontally transferred lysA on symbiont titer. n = 11. (D) Expression of

Hamiltonella lysA at day 3 after whiteflies were microinjected with dslysA. n = 4. dsGFP and dslysA represent dsGFP-

injected and dslysA-injected female adult whiteflies, respectively. Data are means ± SEM. The significant differences

between treatments are indicated by asterisks (�P< 0.05; ��P< 0.01).

https://doi.org/10.1371/journal.ppat.1010120.g005
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species [6] posing a nutritional challenge for phloem-feeding insects. The localization of white-

fly DapB, DapF and LysA in bacteriocytes/ovaries facilitates the cooperation of the whitefly

and Portiera/Rickettsia (respectively) for lysine synthesis. This study shows that whiteflies have

acquired lysine HTGs of bacterial origin which synthesize lysine through the cooperation with

two symbionts, which thus benefits whitefly fitness.

Almost complete elimination of the facultative symbiont Hamiltonella was found in this

study to not influence lysine levels in whiteflies over time. This indicates that Hamiltonella
may not synthesize lysine or may synthesize only a low amount of lysine for its own benefits. If

Hamiltonella can synthesize lysine, reduced lysine in Hamiltonella-cured whiteflies might not

have had an effect due to being complemented for by lysine synthesized by the cooperation

between whitefly and Portiera/Rickettsia. As such, lysine levels could have appeared unchanged

in Hamiltonella-eliminated whiteflies over time. There was however no influence of Hamilto-
nella deficiency on the abundance of Portiera and Rickettsia, and no associated effect on the

expression of lysine genes of whiteflies, Portiera and Rickettsia, nor localization of horizontally

transferred lysine protein. Hamiltonella deficiency also did not impact whitefly lysA silencing

on lysine level, whitefly performance and symbiont abundance. Moreover, expression of

Hamiltonella lysA remained unchanged after whitefly lysA RNAi, which excludes the potential

dsRNA non-target effects for Hamiltonella lysA. Thus, the reduced lysine levels, whitefly

fecundity and titers of Portiera and Rickettsia by silencing lysA cannot be attributed to any role

of Hamiltonella in lysine production for whiteflies.

Fig 6. Effects of silencing horizontally transferred lysA on lysine levels, whitefly fecundity, and symbiont titer in

whiteflies lacking Hamiltonella. (A) Effects of antibiotic treatments on the abundance of symbionts in B. tabaci.
n = 10. (B) Lysine levels in Hamiltonella-cured whiteflies at day 3 after whiteflies were microinjected with dslysA. n = 4.

(C) Fecundity of Hamiltonella-cured female adult whiteflies at day 3 after microinjection with dslysA. n = 14. (D)

Effects of silencing horizontally transferred lysA on symbiont titer in ovarioles of Hamiltonella-cured whiteflies at day

3 after microinjection with dslysA. n = 11. +HBt and -HBt represent Hamiltonella-infected and Hamiltonella-cured

whiteflies, respectively. dsGFP and dslysA represent dsGFP-injected and dslysA-injected female adult whiteflies,

respectively. Data are means ± SEM. The significant differences between treatments are indicated by asterisks

(�P< 0.05; ��P< 0.01; ���P< 0.001).

https://doi.org/10.1371/journal.ppat.1010120.g006
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All 13 cultures or colonies from ten B. tabaci cryptic species were shown to possess lysine

HTGs. Phylogenetic analyses revealed that whitefly DapB clusters with Rickettsia, DapF clus-

ters with Pantoea and bacterial symbionts of P. stali, and LysA clusters with Planctomycetes.

Fig 7. Schematic overview of how lysine provisioning by horizontally acquired bacteria genes promotes mutual

dependence between whitefly and two intracellular symbionts. The whitefly lifestages consist of egg, nymphs and

adult. Whiteflies can synthesize lysine through the cooperation of horizontally transferred genes (HTGs) and two

symbionts (one obligate symbiont Portiera and one facultative symbiont Rickettsia). The lysine synthesized through

HTGs impacts the fecundity of adult whiteflies and titers of two symbionts.

https://doi.org/10.1371/journal.ppat.1010120.g007
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The lysine HTGs in different B. tabaci species from diverse geographical regions thus appear

to share a common evolutionary origin. Rickettsia is present in B. tabaci MEAM1, Asia II 3,

and MED [16, 22, 39, 40]. So, dapB is likely to have been transferred to a common ancestor of

B. tabaci from Rickettsia. It may be that Pantoea and bacterial symbionts of P. stali as well as

Planctomycetes were historical symbionts or pathogens of B. tabaci, providing the sources of

horizontally transferred DapF and LysA, respectively, for whiteflies. In contrast with B. tabaci,
lysine HTGs are not found in T. vaporariorum. The retention of an intact lysine synthesis path-

way for Portiera in T. vaporariorum [28] supports the absence of lysine HTGs. It appears prob-

able therefore that bacterial genes were transferred to the common ancestor of the B. tabaci
species studied, which in turn facilitated the loss of genes in Portiera [27, 28].

Previously, we have identified redundancy in the arginine synthetic pathway by HTGs that

was not needed by their symbionts, possibly “promoting” dependence on the host in B. tabaci
MEAM1 and MED. It is the horizontally transferred argH involved in arginine synthesis in

whiteflies, while argH is a pseudogene in Portiera [9]. Both dapF and argH clustered with Pan-
toea and bacterial symbionts of P. stali [9]. Thus, dapF and argH could have been acquired

from Pantoea or close relatives of gut symbionts of the stinkbug P. stali. In contrast, dapB and

lysA from different bacteria may have been independently acquired in parallel. After being

horizontally transferred to the whitefly genome, these lysine genes evolved to become func-

tional. The best example is lysA which has duplicated genes in the genome of B. tabaci
MEAM1 [29]. One lysA has acquired an intron whereas the other is largely truncated. This

lysA case provides evidence that intron gain and duplication of HTGs are critical steps for

attaining functionality in a eukaryotic genome [41]. By contrast, dapB and dapF have no

introns suggesting they may have been horizontally acquired relatively recently compared to

lysA in whiteflies.

In newly emerged young adult whiteflies, oogenesis happens very frequently [33, 35], and a

high level of lysine is required for oogenesis, as in other animals [42–44]. As lysine is one of

the top limiting EAAs [45], reduction of even small levels of lysine impacts animal phenotype,

particularly during oogenesis that requires lots of nutrients [42–44]; lysA is the terminal gene

in the lysine synthesis pathway. Thus, it is reasonable that silencing lysA in female adult white-

flies inhibits lysine production, whitefly fecundity and symbiont fitness. Further investigation

on the kinetics of lysine catabolism and anabolism in whiteflies will facilitate the study on

insect nutritional physiology. It will also help us to understand better the role of lysine in insect

symbiosis.

There is redundancy in lysine synthesis in B. tabaci, Portiera, Hamiltonella and Rickettsia.

However, the lysine synthesis pathway in the three symbionts has degenerated at different lev-

els. It seems likely that the main function of Portiera in lysine synthesis can be streamlined

into a few genes among lysC-dapA and argD-dapE. In the lysine synthesis pathway of Portiera,

dapB and dapD have significantly lower expression levels compared to dapA and dapE [9].

The differentiated abundance of transcripts can lead to the further loss of genes such as dapD
in Portiera, which may depend on facultative symbionts, or promote novel functionalization

of HTGs that could be more beneficial than harboring a whole Rickettsia symbiont.

Lysine HTGs in B. tabaci species may facilitate the loss of lysine synthesis capability of its

symbionts Hamiltonella and Rickettsia. Likewise, the lysine synthesis pathways of Moranella
and Tremblaya are degenerated in the mealybug Planococcus citri, which possesses lysine

HTGs (dapF and lysA) with Rickettsiales origin [1]. These findings suggest the parallel evolu-

tion of horizontal gene transfer has occurred facilitating reduction of lysine synthesis capability

of symbionts in phloem-feeding insects.

The titer of Portiera and Rickettsia but not Hamiltonella was reduced in whiteflies over a 3

day period after silencing lysA. There are two reasons. First, a lower titer of Hamiltonella in

PLOS PATHOGENS Role of horizontally transferred lysine genes in whitefly symbiosis

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1010120 November 29, 2021 12 / 23

http://www.whiteflygenomics.org/cgi-bin/bta/geneinfo.cgi?&gene=Bta03593
https://doi.org/10.1371/journal.ppat.1010120


whiteflies as compared to Portiera and Rickettsia has been reported [16, 24, 25]. After silencing

lysA, sufficient lysine levels may be still present in the whitefly to not have a large effect on the

titer of Hamiltonella over short time periods. Second, although it is speculated that Hamilto-
nella lacks ArgD for lysine synthesis and may require an intermediate from Portiera, some pro-

teins may be promiscuous in the reduced Hamiltonella genome as reported earlier for

Buchnera [46] and functionally replace ArgD. As such, Hamiltonella may encode the full lysine

synthesis pathway. The loss of ArgD in the symbionts of both mealybug and psyllid also sug-

gests such a possibility [1, 8].

Determining what molecules are exchanged between host and symbionts increases our

understanding of how hosts support symbionts [7]. The genomes of Portiera, Hamiltonella
and Rickettsia contain the lysine synthesis pathway [9, 27, 29, 47], suggesting the critical role of

lysine in the biology of three symbionts and their interactions with whiteflies. Portiera, Hamil-
tonella and Rickettsia are vertically transmitted in whiteflies [23, 24, 48, 49]. Silencing horizon-

tally transferred lysA decreased whitefly fecundity, which would reduce the transmission of the

three symbionts. Additionally, silencing horizontally transferred lysA decreased the titer of

Portiera and Rickettsia in either whole body or ovarioles. Thus, regulation on lysine HTGs in

whiteflies controls the fitness and transmission of its intracellular symbionts. Further study on

(i) the flux of lysine via labeled amino acid experiments, (ii) lysine stability and kinetics in the

whitefly body and tissues, (iii) the transport of lysine between whitefly cells and symbiont cells

and (iv) lysine regulation of symbiont proliferation should provide interesting insights of how

whiteflies ensure symbionts remain at beneficial levels. Improved knowledge on these path-

ways will also assist selection of which genes would make the best targets to silence for the con-

trol of B. tabaci species, many of which are important and invasive pests affecting food

security.

Previously, we revealed the function of HTGs in the synthesis of B vitamins in whiteflies

[16, 50]. Here, we, for the first time, demonstrated that an EAA lysine synthesis, by the cooper-

ation of lysine HTGs and Portiera/Rickettsia, promotes mutual dependence between whitefly

and two intracellular symbionts (both obligate and facultative symbionts) (Fig 7). The function

of each horizontally acquired gene differs, depending on its encoded enzyme type, metabolite

function, metabolite synthesis pathway, and the species involved in the actual insect-symbiont

system [7, 13–16]. Moreover, the functional significance of HTGs in the field is still quite

scarce and developing. Therefore, it will be valuable to investigate the function of every HTG

in diverse insect-symbiont systems to gain more insight into the evolutionary and functional

significance of HTGs in insect-symbiont interactions in general.

Materials and methods

Insect rearing and plants

The B. tabaci MEAM1 colony (mtCOI GenBank accession no. GQ332577) was maintained on

cotton plants (Gossypium hirsutum cv. Shiyuan 321) as described previously [16, 25, 50]. The

B. tabaci colony harbors Portiera, Hamiltonella, and Rickettsia [16, 25]. The genotype of the

whitefly colonies was monitored every three to five generations by Sanger sequencing of PCR-

generated amplicons for the mtCOI gene. Cotton plants were grown in potting mix

(Pindstrup, Denmark) supplemented with Miracle-Gro Water Soluble All Purpose Plant Food

every 2–3 days. The cotton plants were grown singly in 1.5-L pots to the six-to-seven true-leaf

stage for the experiments unless otherwise specified. The whitefly colony and plants were

maintained in separate climate-controlled chambers, at 26 ± 2˚C, 14:10 h (L:D) photoperiod

and 60%-80% relative humidity (RH). LED fluorescent lights were used and light intensity in

the walk-in chamber was approximately 400 μmol/m2sec.
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Fluorescence in situ hybridization (FISH)

Localization of Portiera and Hamiltonella in bacteriocytes and Portiera and Rickettsia in the

ovaries of female adult whiteflies was studied by FISH using a previously described protocol

[16, 25, 50, 51].

Amino acid sequence alignment and phylogenetic tree analysis

To determine the homologous genes in other whitefly species and cultures, verified sequences

of dapB, dapF, and lysA in B. tabaci MEAM1 were subjected to TBLASTX against the genome

of B. tabaci MED [52], SSA-ECA (GenBank accession No.: GCA_004919745.1), MED-ASL,

Asia I, Asia II-1, Asia II-5, Asia II-6, SSA-ECA and New World (provided by Paul Visendi and

Susan Seal) and transcriptome of B. tabaci MEAM1 [9], MED [53] and Asia II 3 [54] and Tria-
leurodes vaporariorum (the National Center for Biotechnology Information (NCBI) Transcrip-

tome Shotgun Assembly (TSA) database under the accession No.: GHMB00000000). The top

TBLASTX hits were obtained. Amino acid sequence alignments for each of the three genes

were conducted using BioEdit v7.1.3.0 among the ten whitefly cryptic species including B.

tabaci MEAM1, MED, MED-ASL, Asia I, Asia II-1, Asia II-3, Asia II-5, Asia II-6, SSA-ECA

and New World (S1 Table), Halmiltonella and Rickettsia. To construct the molecular phyloge-

netic tree for each of whitefly DapB, DapF, and LysA, a Bayesian inference (BI) analysis was

conducted as described previously [9, 50]. Protein sequences were aligned by MAFFT 7,

trimmed by trimAL v1.3 with the -automated1 flag set for likelihood-based phylogenetic meth-

ods, and manually corrected in BioEdit v7.1.3.0. Alignment lengths for dapB, dapF and LysA

are 233aa, 270aa and 412 aa, respectively. The best-fit model was identified by ProtTest v2.4.

The LG+I+G+F, WAG+G and LG+I+G+F model corresponding to DapB, DapF, and LysA,

respectively, was used for BI analysis in MrBayes 3.2. A posterior probability of each node was

used for the support value of the node. The phylogenetic trees were rooted by outgroups and

graphically visualized in FigTree v1.4.0 (http://tree.bio.ed.ac.uk/software/figtree/).

Quantitative PCR (qPCR) and qRT-PCR analysis

DNA was extracted following the Nonidet-P40-based protocol as described previously [48].

Symbionts were quantified by qPCR using the CFX96 Real-Time PCR Detection System (Bio-

Rad, Hercules, USA) with 2×SYBR Green master Mix (Bio-Rad) as described previously [16,

25, 50]. Portiera, Hamiltonella and Rickettsia were quantified using the copy number of 16S
rRNA, 16S rRNA and gltA genes, respectively, with the B. tabaci β-actin gene as the internal

standard for normalization. Three technical replicates were performed for each biological rep-

licate for symbiont elimination experiments and for gene silencing experiments. Total RNA

was extracted from whitefly samples using TRI-reagents (Sigma-Aldrich, St. Louis, MO, USA)

following manufacturer’s instructions. The qRT-PCR was performed as described previously

[9, 16]. Relative expression was calculated using the β-actin gene for transcript normalization

in the symbiont elimination and gene silencing experiments. Three technical replicates were

performed for each biological replicate. All of the primers used in this study are shown in S2

Table. Relative symbiont density and gene expression were calculated using the 2-ΔCt method

[55].

Amino acid measurement

The whole body adult whiteflies were homogenized for amino acid analysis by UPLC using the

protocol described previously [25, 56]. Briefly, samples were injected into an Agilent UPLC

with a PDA detector and AccQ-Tag Ultra 2.1 x 100 mm column. Amino acids are determined
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by comparing their retention time with standards, protein-amino acids μl-1 (Waters amino acid

hydrolysate standard #088122, supplemented with asparagine, tryptophan, and glutamine) and

quantified with standard curves. Proteins were quantified using a Lowry Protein Assay Kit (San-

gon, Biotech) following manufacturer’s instructions using bovine serum albumin as a standard.

Amounts of individual amino acids were normalized to the total protein content.

Effects of Hamiltonella elimination by antibiotic treatment on lysine gene

expression and lysine levels

To specifically eliminate Hamiltonella, hundreds of adult whiteflies of B. tabaci (F0, 0–7 days

after emergence) were released into each feeding chamber and fed on 25% sucrose solution

(w/v) supplemented with the antibiotics ampicillin, gentamycin and cefotaxime (BBI Life Sci-

ences, Shanghai, China), each at 500 μg/mL, for four days. The artificial diets with antibiotics

were renewed every two days as described previously [16, 25, 26]. Control insects were admin-

istered sucrose solution not supplemented with antibiotics. Following the antibiotic treatment,

B. tabaci were transferred to cotton plants. F1 female adults at 5 d, 10 d, and 15 d after emer-

gence were collected. The DNA was extracted from 12, 10 and 11 female adult whiteflies at 5 d,

10 d, and 15 d after emergence, respectively, and used for symbiont quantification by qPCR.

The F1 B. tabaci with reduced Hamiltonella titers (-HBt), which were obtained by antibiotic

treatment, and control F1 B. tabaci (+HBt), which were obtained by feeding sucrose solution

not supplemented with antibiotics, were identified. Total RNA was extracted from 40 female

adult whiteflies at day 5, 10 and 15 after emergence at the F1 stage collected from each of the

four replicates and qRT-PCR was performed as described above. Relative expression of white-

fly dapB, dapF and lysA, Portiera dapE, as well as Rickettsia dapB, dapE and dapF was calcu-

lated for whiteflies at day 5, 10 and 15 after emergence. The 25 male and 25 female adult

whiteflies feeding on cotton plants at day 5, day 10 and day 15 after emergence at the F1 stage

were collected for each of the six biological replicates and amino acids were extracted and

quantified in the whole body of Hamiltonella-cured and Hamiltonella-infected adult whiteflies

by UPLC as described above.

Elimination of Portiera, Hamiltonella and Rickettsia by antibiotic

treatment

To eliminate Portiera, Hamiltonella and Rickettsia, hundreds of adult whiteflies of B. tabaci
(F0, 0–7 days after emergence) were released into each feeding chamber and fed on 25%

sucrose solution (w/v) supplemented with the antibiotic rifampicin (BBI Life Sciences, Shang-

hai, China) dissolved in 5 mM phosphate buffer (pH 7.0), at 30 μg/mL for two days as

described previously [36, 37, 50]. Control insects were administered sucrose solution not sup-

plemented with antibiotics. Following the antibiotic treatment, B. tabaci were transferred to

cotton plants. Recently emerged F1 female adults (within 1 week after emergence) were col-

lected. DNA was extracted from eight female adult whiteflies and used for symbiont quantifi-

cation by qPCR. The F1 B. tabaci with reduced titers of Portiera, Hamiltonella and Rickettsia
(-PHRBt), which were obtained by antibiotic treatment, and control F1 B. tabaci (+PHRBt),

which were obtained by feeding sucrose solution not supplemented with antibiotics, were

identified.

Recombinant enzyme generation and antibody preparation

Based on genome sequences of B. tabaci MEAM1 [29], a pair of primers including restriction

enzyme sites (S2 Table) were designed to clone the open reading frame of the target gene using

PLOS PATHOGENS Role of horizontally transferred lysine genes in whitefly symbiosis

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1010120 November 29, 2021 15 / 23

https://doi.org/10.1371/journal.ppat.1010120


whitefly cDNA as the template. PCR amplified products were analyzed on 1% agarose gel, the

target band was purified using a PCR purification kit (Promega, Madison, WI, USA) and the

products were cloned into the pMD19-T vector (Takara, Tokyo, Japan) for verification by

sequencing. Finally, the whole CDS regions of dapB, dapF, and lysA (Genbank accession Nos.:

MT215586, MT215587, and MT215585, respectively) in our whitefly culture were obtained.

The recombinant enzyme for whitefly dapB, dapF, and lysA was generated as described previ-

ously [16, 50]. Custom-made polyclonal antibodies against DapB (predicted size, 28 kDa),

DapF (predicted size, 35 kDa) and LysA (predicted size, 48 kDa) proteins were produced by

ProbeGene Life Sciences Co. Ltd. following previously described methods [13, 16, 50, 57].

Immunofluorescence microscopy

Bacteriocytes and ovaries from female adults of +HBt and -HBt whiteflies at 7 days after emer-

gence, bacteriocytes and ovaries from female adults of dsGFP, and dslysA-injected whiteflies as

well as guts from female adults of +PHRBt and -PHRBt whiteflies at 7 days after emergence

were dissected, fixed in 4% paraformaldehyde, permeabilized with 0.2% Triton X-100 in PBS

and incubated with one of the polyclonal antibodies to DapB, DapF and LysA for bacteriocytes

and ovaries and LysA for guts as previously described [16, 50]. The samples were incubated

with no antibodies against DapB, DapF and LysA as the negative control. Three biological rep-

licates were conducted. Images were collected and analyzed on a FV3000 confocal microscope

(Olympus, Japan).

Functional complementation of E. coli lysine auxotrophs with whitefly

HTGs

To examine the metabolic function of horizontally transferred dapB, dapF, and lysA, E. coli
lysine gene knockout mutants were generated and functional complementation with whitefly

HTGs were carried out as described previously [16, 50]. The E. coli K-12 BW25113 dapB, dapF
and lysA knockout mutants (i.e., -ΔdapB, -ΔdapF, and -ΔlysA) were generated following the

Lambda Red protocol as described previously [58–60]. Then E. coli wild-type K-12, mutant K-

12, and mutant K-12 transformants with whitefly dapB, dapF or lysA were grown overnight in

amino acid-deficient M9 minimal medium (Coolaber, Beijing, China) at 37˚C. The cell density

of all the E. coli cells were measured at OD600 using a microplate reader (Versa Max Molecular

Devices, Silicon Valley, USA) as described previously [16, 50]. Three biological replicates were

conducted.

dsRNA preparation

The dsRNAs specific to whitefly lysA (dslysA) and GFP (dsGFP) were synthesized using a T7

RiboMAX Express RNAi System kit (Promega, USA), following manufacturer’s instructions

and purified as described previously [16, 50].

Effects of silencing horizontally transferred lysA in whiteflies infected with

Hamiltonella on lysine level, whitefly fecundity, symbiont abundance and

Hamiltonella lysA expression

To investigate whether silencing of horizontally transferred lysA influences lysine levels,

approximately 570 female adult whiteflies infected with Portiera, Hamiltonella and Rickettsia
at day 4 after emergence were injected with 1.5 μg/μL dslysA in injection buffer using a Eppen-

dorf microinjection System (Hamburg, Germany) as described previously [50]. Control white-

flies were injected with dsGFP. The average injection volume used was 10 nl. The survival rate
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of injected whiteflies was 80–100% 24 h after injection. To investigate whether silencing lysA
influences lysine level, after injection, 330 female adult whiteflies were transferred onto cotton

leaf disks kept on 1.5% agar plates in the incubator at 26 ± 2˚C, with 14:10 h (L:D) photoperiod

and 60%-80% RH. Three biological replicates were conducted. After three days, RNA was

extracted from five female adult whiteflies for each of three biological replicates to examine the

expression of lysA. In parallel, 50 female adults of dsGFP, and dslysA-injected whiteflies in

each of three biological replicate were collected for lysine analysis as described above. The ages

of whiteflies at day 3 after RNAi treatment correspond to those of other experiments in this

study, and this time point was used throughout in RNAi experiments.

To investigate whether silencing lysA influences whitefly fecundity, approximately 70

female adult whiteflies infected with Portiera, Hamiltonella and Rickettsia at day 4 after emer-

gence were injected using the microinjection procedures described above. After injection,

individuals were transferred onto a leaf disk kept on the 1.5% agar plate as described above.

Egg numbers were recorded for the surviving whiteflies with 22 biological replicates of individ-

uals at day 3 post injection.

To test whether gene silencing impacts the abundance of Portiera, Hamiltonella and Rickett-
sia and Hamiltonella lysA expression, approximately 120 female adult whiteflies infected with

Portiera, Hamiltonella and Rickettsia at day 4 after emergence were injected with 1.5 μg/μL

dslysA as described above. After injection, whiteflies were transferred onto the leaf disks kept

on 1.5% agar plates as described above. After three days, DNA was extracted from individuals

of dsGFP-treated and lysA RNAi whiteflies for each of 11 biological replicates and qPCR was

performed as described above. RNA was extracted from 40 female adult whiteflies for each of

four biological replicates to examine the expression of Hamiltonella lysA in RNAi whiteflies.

Effects of silencing horizontally transferred lysA in whiteflies lacking

Hamiltonella on lysine levels, whitefly fecundity and symbiont abundance

To detect effects of silencing horizontally transferred lysA in whiteflies lacking Hamiltonella
on lysine levels, whitefly fecundity and symbiont abundance, Hamiltonella was specifically

eliminated as described above. The DNA was extracted from ten female adult whiteflies, and

used for symbiont quantification by qPCR. To investigate whether silencing of horizontally

transferred lysA influences lysine level, after whiteflies lacking Hamiltonella within 6 days after

emergence were injected with 1.5 μg/μL dslysA, individuals were transferred onto a cotton leaf

disk kept on the 1.5% agar plate as described above. After three days, RNA was extracted from

five female adult whiteflies for each of three biological replicates to examine the expression of

lysA. 50 female adults of dsGFP and dslysA-injected -HBt whiteflies in each of four biological

replicate were collected for lysine analysis as described above. To investigate whether silencing

lysA in whiteflies lacking Hamiltonella influences whitefly fecundity, approximately 150 female

adult whiteflies lacking Hamiltonella within 6 days after emergence were injected using the

microinjection procedures described above. After injection, individuals were transferred onto

a leaf disk kept on the 1.5% agar plate as described above, and allowed to lay eggs for three

days. Egg numbers were recorded with 14 biological replicates of individuals.

To test whether gene silencing impacts the abundance of Portiera and Rickettsia in whitefly

ovarioles, approximately 100 female adult whiteflies lacking Hamiltonella within 6 days after

emergence were injected with 1.5 μg/μL dslysA as described above. After injection, whiteflies

were transferred onto the cotton leaf disks kept on 1.5% agar plates as described above. After

three days, whiteflies were collected and ovarioles were dissected. DNA was extracted from

individual ovarioles of dsGFP-treated and lysA RNAi whiteflies for each of 11 biological repli-

cates and qPCR was performed as described above.
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Statistical analyses

The OD values of the E. coli wild-type K-12, mutant K-12 and mutant K-12 transformants

were compared using one-way ANOVA at a significance threshold of 0.05 followed by LSD

post-hoc tests. For symbiont titer, gene expression level, lysine amount as well as the egg num-

bers of dsGFP, and dslysA-injected female whiteflies, statistical differences were evaluated

using one-way ANOVA at a significance threshold of 0.05. Percentage data were arcsine

square root transformed before analysis. All of the data analyses were conducted using the

STATISTICA v6.1 software (StatSoft, Inc., Tulsa, OK, USA).

Supporting information

S1 Fig. Amino acid sequence alignment between long and short LysA protein in B. tabaci
MEAM1 and conserved domains of two proteins. (A) Amino acid sequence alignment

between long (Bta03593) and short (Bta03589) LysA protein in B. tabaci MEAM1. (B,C) Con-

served domains of long (B) and short (C) LysA protein. The conserved domain was presented

based on the result of BLASTP.

(TIF)

S2 Fig. Amino acid sequence alignment of DapB acquired horizontally in B. tabaci
MEAM1, MED, MED-ASL, Asia I, Asia II-1, Asia II-3, Asia II-5, Asia II-6, New World and

SSA-ECA.

(TIF)

S3 Fig. Amino acid sequence alignment of DapF acquired horizontally in B. tabaci MEAM1,

MED, MED-ASL, Asia I, Asia II-1, Asia II-3, Asia II-5, Asia II-6, New World and SSA-ECA.

(TIF)

S4 Fig. Amino acid sequence alignment of LysA acquired horizontally in B. tabaci
MEAM1, MED, MED-ASL, Asia I, Asia II-1, Asia II-3, Asia II-5, Asia II-6, New World and

SSA-ECA.

(TIF)

S5 Fig. Phylogenetic tree analysis of horizontally transferred DapB in whiteflies. Posterior

probabilities estimated using Bayesian inference methods are shown at each node. Collapsed

branches are shown as triangular wedges with the number of sequences shown inside the

wedge. The scale bar reflects evolutionary distance, measured in units of substitution per

amino acid site.

(TIF)

S6 Fig. Phylogenetic tree analysis of horizontally transferred DapF in whiteflies. Posterior

probabilities estimated using Bayesian inference methods are shown at each node. Collapsed

branches are shown as triangular wedges with the number of sequences shown inside the

wedge. The scale bar reflects evolutionary distance, measured in units of substitution per

amino acid site.

(TIF)

S7 Fig. Phylogenetic tree analysis of horizontally transferred LysA in whiteflies. Posterior

probabilities estimated using Bayesian inference methods are shown at each node. Collapsed

branches are shown as triangular wedges with the number of sequences shown inside the

wedge. The scale bar reflects evolutionary distance, measured in units of substitution per

amino acid site.

(TIF)
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S8 Fig. SDS–PAGE and western blot analysis. (A-C) SDS-PAGE electrophoretic separation

of fractions after affinity chromatography for purified recombinant protein of whitefly DapB

(A), DapF (B), and LysA (C). M represents molecular mass standards. Lane 0–5 represents cell

pellet, supernatant of lysis buffer, flow-through, wash-unbound, eluted protein and residue,

respectively. (D-F) The specificity of polyclonal antibodies verified by western blot using anti-

DapB antibody (D), anti-DapF antibody (E), and anti-LysA antibody (F). Lane 1–3 represents

1 ng, 2 ng and 5 ng of purified recombinant protein loaded in SDS-PAGE, respectively.

(TIF)

S9 Fig. Localization of DapB, DapF, and LysA (green) in bacteriocytes (A-C) and ovaries

(D-F) of female adult whiteflies. +HBt and -HBt represent Hamiltonella-infected and

Hamiltonella-cured whiteflies, respectively. n = 3. The samples were incubated with no

antibodies against DapB, DapF, and LysA as the negative control. DNA was stained with DAPI.

(TIF)

S10 Fig. Effects of Portiera, Hamiltonella and Rickettsia elimination on LysA localization

in guts of B. tabaci. (A) Effects of antibiotic treatments on the abundance of symbionts in

B. tabaci. n = 8. The significant differences between treatments are indicated by asterisks

(��P< 0.01; ���P< 0.001). (B,C) Localization of LysA proteins in guts of female adult white-

flies of +PHRBt and -PHRBt. n = 3. DNA was stained with DAPI. +PHRBt and -PHRBt repre-

sent Portiera, Hamiltonella and Rickettsia-infected and Portiera, Hamiltonella and Rickettsia-

cured whiteflies, respectively.

(TIF)

S11 Fig. Expression of whitefly lysA at day 3 after Hamiltonella-infected (A) (+HBt)

and Hamiltonella-cured (B) (-HBt) whiteflies were microinjected with dslysA. n = 3.

The significant differences between treatments are indicated by asterisks (��P< 0.01;
���P< 0.001).

(TIF)

S1 Table. Horizontally transferred lysine genes in the whitefly B. tabaci and

T. vaporarium.

(DOCX)

S2 Table. Primers used in this study.

(DOCX)

S1 Data. Genes involved in essential amino acid synthesis in Rickettsia of the whitefly

B. tabaci MEAM1.

(XLSX)

S2 Data. Genes involved in lysine synthesis in Portiera and Hamiltonella of the whitefly

B. tabaci MEAM1.

(XLSX)
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