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Abstract

Background: Major depressive disorder (MDD) has been associated with abnormal structure and function of the brain’s
affective network, including the amygdala and orbitofrontal cortex (OFC). However, it is unclear if alterations of resting-state
function in this affective network are present at the initial onset of MDD.

Aims: To examine resting-state function of the brain’s affective network in first-episode, medication-naive patients with
MDD compared to healthy controls (HCs).

Methods: Resting-state functional magnetic resonance imaging (rs-fMRI) was performed on 32 first-episode, medication-
naive young adult patients with MDD and 35 matched HCs. The amplitude of low-frequency fluctuations (ALFF) of the blood
oxygen level-dependent (BOLD) signal and amygdala-seeded functional connectivity (FC) were investigated.

Results: Compared to HC, MDD patients showed reduced ALFF in the bilateral OFC and increased ALFF in the bilateral
temporal lobe extending to the insular and left fusiform cortices. Enhanced anti-correlation of activity between the left
amygdala seed and the left OFC was found in MDD patients but not in HCs.

Conclusions: Reduced ALFF in the OFC suggests hypo-functioning of emotion regulation in the affective network.
Enhanced anti-correlation of activity between the amygdala and OFC may reflect dysfunction of the amygdala-OFC network
and additionally represent a pathological process of MDD.
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Introduction

Major depressive disorder (MDD) is a common psychiatric

disorder, typically characterized by pervasive despondency and

failure to suppress negative thought, as well as specific cognitive

and behavioral alterations [1]. In China, MDD is highly prevalent

and constitutes a pressing public health problem, with yearly

increases in morbidity and a high risk of mortality [2]. The

underlying pathophysiology of this disorder remains unclear.

However, a growing body of evidence indicates involvement of

prefrontal cortex (PFC) and amygdala dysfunction in the

pathophysiology of MDD.

The orbitofrontal cortex (OFC), a sub-region of the PFC, plays

an essential role in executive control of information processing and

behavioral expression by inhibiting neural activity associated with

contextually irrelevant, unwanted, or uncomfortable (e.g. painful)

information, sensations, and actions [3]. The OFC and the

amygdala, being important parts of the affective network, are

involved in the emotional processing of mental states [4–6].

Previous neuroimaging studies have revealed abnormal structure

and function of the OFC and amygdala in patients with MDD.

For instance, evidence from positron emission tomography (PET)

showed decreased metabolism in the left OFC in MDD patients

[7–9], and other neuroimaging studies have shown reduced gray

matter volume in the OFC in MDD patients [10–12]. In addition,

activity in the OFC correlates inversely with the severity of

depression in patients with MDD [8,13]. Conversely, increased

amygdala activation has been observed in patients with MDD

[14–16]. It has been posited that the OFC has a top-down

inhibitory effect on the amygdala [17–19], and the amygdala-OFC

network has been associated with regulation of negative affect,

including anger [20–22]. Hyperactivity in the amygdala has been

PLOS ONE | www.plosone.org 1 January 2014 | Volume 9 | Issue 1 | e85241



inversely associated with OFC reactivity during the suppression of

negative emotions [23], and abnormal amygdala-OFC functional

connectivity has been observed in depressed patients [24,25].

There is a convergence of evidence pointing to dysfunction of the

OFC, amygdala, or their interaction in the pathophysiology of

depression.

Resting-state functional magnetic resonance imaging (rs-fMRI)

has been attracting increased attention since Biswal and colleagues

first reported the presence of spatially coherent activities in the

blood oxygen level-dependent (BOLD) signal [26]. Using rs-fMRI,

researchers can assess regional and neural circuitry function at rest

in the absence of external tasks; moreover, this approach can be

implemented relatively easily in clinical studies [27,28]. Two

parameters calculated from the BOLD signal have been widely

used in rs-fMRI study, namely the amplitude of low-frequency

(,0.08 Hz) fluctuations (ALFF) and functional connectivity (FC).

The ALFF during resting state are considered to be physiologically

meaningful and reflective of spontaneous neural activity [29–31].

These spontaneous low-frequency fluctuations bear numerous

similarities to fluctuations of neural metabolic, hemodynamic, and

neurophysiological parameters [32,33]. Functional connectivity

has been defined as ‘‘the temporal correlation of a neurophysi-

ological index measured in different brain areas’’ [34], and can

measure the signal synchronicity of low-frequency fluctuation

activity among different brain areas [26], which can provide

information about the intrinsic brain network organization as well

as network dysfunction. ALFF and FC characterize different

aspects of resting-state brain functions. ALFF reflect regional

amplitude of spontaneous fluctuations in specific regions, while FC

measures functional integration among different brain areas.

These complementary parameters can help to better characterize

brain pathophysiology of MDD patients. Previous studies have

used resting scans to investigate ALFF or FC in MDD patients;

however, to our knowledge, there is no single fMRI study

integrating ALFF and FC to investigate MDD patients’ resting

brain function. Several recent studies have used rs-fMRI to

investigate changes in resting brain function in MDD patients but

reported inconsistent findings [35–37]. For example, Jiao et al.

found increased frontal cortex activity, including right dorsolateral

prefrontal cortex, bilateral triangular inferior frontal gyrus and

orbital inferior gyrus in adolescents with MDD [35] compared

with healthy controls. In constrast, Wang et al. observed decreased

frontal cortex activity, including in the left dorsolateral prefrontal

cortex and bilateral medial orbitofrontal cortex in first-episode,

treatment-naive patients with MDD [36]. Aberrant resting-state

FC has also been observed in patients with MDD. For example,

using a region of interest (ROI) analysis, Tang et al. detected

decreased FC between the amygdala and left ventral PFC in

treatment-naive patients with MDD [38]. In a multivariate pattern

analysis study, Zeng et al. demonstrated that MDD patients

showed altered activity in several resting-state networks, including

the affective network, relative to healthy controls [39]. Using

independent component analysis, other researchers have found

decreased connectivity of the amygdala and left anterior insula

[40] and abnormal FC in the default mode network [41] in

treatment-naive patients with MDD. These inconsistent findings

may be due to the different methodologies and rs-fMRI

parameters used, as well as different characteristics of participants,

including age, gender, illness severity and treatment history.

In the present study, we applied rs-fMRI to a relatively large

sample of first-episode, medication-naive young adult patients

using both ALFF and FC analyses in order to better elucidate the

alterations of resting brain function in MDD patients. We tested

the following two hypotheses: compared with healthy controls,

MDD patients will show (1) reduced ALFF in the OFC and

amygdala, as well as (2) abnormal FC between the amygdala and

the OFC.

Methods

Participants
A total of 32 first-episode, medication-naive young adult

patients with MDD (age: 18–24 years, mean 20.53 years; 18

females) were recruited from the psychiatric clinic at Second

Xiangya Hospital of the Central South University in Changsha,

China. A group of 35 healthy controls (HCs) matched for sex, age,

and education (age: 18–24 years, mean 20.97 years; 17 females)

were recruited from two local two universities (Table 1). Two

expert psychiatrists confirmed the diagnoses based on the DSM-IV

criteria for MDD [42]. All patients were experiencing their first

episode of depression and had never received antipsychotic

medications or other medications before at the time of the MRI

recording. Both groups met the following criteria: (1) right-handed

undergraduate students; (2) no current or previous psychiatric

disorder (for the MDD group, no other major psychiatric illnesses,

including bipolar disorder); (3) no family history of psychotic

disorders or personality disorders; (4) no previous head trauma

with loss of consciousness; (5) no persistent headaches; (6) no

history of alcohol or substance abuse; (7) no current or previous

use of electroconvulsive therapy or psychotropic medications; (8)

no neurological illnesses, including stroke and dementia.

Depressive symptoms in participants of both groups were

assessed by applying the Center for Epidemiological Studies

Depression Scale (CES-D) [43], an instrument that has been

confirmed to have a high degree of reliability and validity in China

[44].

This study was approved by the Ethics Committee of the

Second Xiangya Hospital of Central South University, China, and

all participants gave written informed consent to participate.

Functional MRI resting state paradigm
The participants were directed to remain motionless and relax

with their eyes closed without falling asleep, and not to think of

anything particular during the MRI scanning. After the scanning

session, participants were asked whether they had fallen asleep

during the scan. Patients who responded positively or ambiguously

were excluded from the study.

Data acquisition
Magnetic resonance images were acquired using a 1.5 T

Siemens Magnetom Symphony scanner at the Magnetic Reso-

nance Center of the Third Xiangya Hospital of Central South

University in Changsha, China. Participants wore a standard head

coil fitted with foam padding to minimize head movement and

diminish scanner noise. Resting-state fMRI images were acquired

axially with an echo-planar imaging (EPI) sequence with the

following parameters: TR/TE = 2000/40 ms, 26 slices, 64664

matrix, 90u flip angle, 240-mm FOV, and 5-mm section thickness

without a gap. For each participant, the scan lasted 300 s and 150

volumes were obtained.

Data processing and analysis
Image preprocessing and statistical analyses were carried out

using statistical parametric mapping software (SPM8, http://

www.fil.ion.ucl.ac.uk/spm). The functional images underwent

slice-timing correction and realignment for head motion correc-

tion. Data from the participants whose head motion exceeded

1.5 mm in the x, y, or z plane or whose head rotated more than

MDD and Resting-State Brain Function
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1.5u during scanning were excluded. After slice-timing correction

and head-motion correction, the standard Montreal Neurological

Institute (MNI) EPI template in SPM8 was used for spatial

normalization with a resampling voxel size of 36363 mm3. Then,

the functional images were spatially smoothed using a Gaussian

kernel with a full width at half maximum (FWHM) of 8 mm.

Finally, linear trend subtraction and temporal filtering (0.01–

0.08 Hz) were performed on the time series of each voxel to

reduce the effects of low-frequency drifts and of physiological high

frequency respiratory and cardiac noise by REST software (V1.6,

http://resting-fmri.sourceforge.net) before subjecting the data to

ALFF analysis [45].

ALFF analysis
Analysis of ALFF was performed using REST software (http://

resting-fmri.sourceforge.net). The filtered time series for each

voxel were transformed to the frequency domain with a Fast

Fourier Transform function, yielding a power spectrum. The

square root of the power spectrum was calculated and then

averaged across 0.01–0.08 Hz range at each voxel. This averaged

square root was taken as the ALFF [31]. For standardization

purposes, the ALFF of each voxel was divided by the global mean

ALFF value to standardize data across participants, as done in

many PET studies [46] and a standardized ALFF map of the

whole brain was obtained.

FC analysis
FC was examined with REST software (http://resting-fmri.

sourceforge.net) by applying a seed-region approach [38]. In

addition to standard preprocessing, resting-state data were

corrected as described elsewhere [47]. Linear regression was used

to correct for changes in ventricular, white matter, and global

signals. In line with the prior hypothesis regarding the amygdala,

we employed a seed-based approach whereby the mean time series

for each participant was extracted from the bilateral amygdala

formation as defined by automated anatomic labeling (AAL)

implemented with wfu_PickAtlas software [48,49]. The time series

of raw functional magnetic resonance imaging (fMRI) data for

each voxel were temporally band pass filtered (0.01–0.08Hz).

Then, BOLD signal time courses were averaged for the left and

right amygdala, separately, and correlated voxel-wise with the

time course of each voxel in the entire brain. Finally, correlation

maps were converted to z-values using Fisher’s r-to-z transforma-

tion to enable group comparisons.

Analyses of clinical variables in relation to ALFF and FC
data

To investigate the relationship between ALFF, FC, and the

severity of depressive symptoms in the patients, we computed

Pearson’s correlation coefficients between the ALFF, FC, and

CES-D scores. In addition, some areas that showed altered FC to

the amygdala were defined as ROIs, and the ALFF values in these

ROIs were used to perform the correlation with the altered FC to

amygdala in the MDD patients group.

Statistical analysis
The primary analyses involved a comparison of patients and

HCs in terms of (1) regional cerebral ALFF values, and (2)

amygdala-seed resting FC by the seed voxel method. These

analyses were performed across the whole brain using two-sample

t-tests as implemented in SPM8 software, with age, gender, and

educational level as nuisance covariates. In addition, within-group

FC analysis was performed using one-sample t-tests as implement-

ed in SPM8 software for each group. The results were interpreted

with all statistical p map thresholds set to be cluster-corrected with

family wise error p,0.05 (derived from an uncorrected p,0.001

and 50 extended voxels).

Three correlation analyses were performed in the MDD

patients group using Pearson’s correlation coefficient tests: the

correlation of ‘‘altered ALFF values and the severity of depressive

symptoms’’, ‘‘altered FC to amygdala and the severity of

depressive symptoms’’ and ‘‘altered FC to amygdala and ALFF

values in regions where showed altered FC to amygdala’’. In

addition, demographic differences between the patient and control

groups were analyzed using two- sample t-tests or X2 tests in all

cases; p,0.05 was deemed statistically significant.

Results

Demographics
Demographic and clinical data of both HCs and MDD patients

are summarized in Table 1. There were no significant differences

between the MDD and HC groups in terms of gender, age, or

years of education. MDD patients scored higher than HCs on the

CES-D (t[65] = 13.35, p,0.001).

Altered ALFF in patients with MDD
In support of our hypothesis, patients with MDD showed

significantly decreased ALFF bilaterally in the OFC compared to

HCs (Figure 1 and Table 2). However, no ALFF changes were

found in the amygdala, which was inconsistent with our

hypothesis. In addition, significantly increased ALFF were found

in the bilateral superior/middle/inferior temporal gyrus, extend-

ing to the bilateral insula, left fusiform gyrus, and left middle

occipital gyrus (Figure 1 and Table 2).

Altered amygdala-OFC FC in patients with MDD
Both the HC and MDD groups showed positive amygdala

connectivity to the basal ganglia, insula, parahippocampal/

hippocampal gyrus, thalamus, anterior temporal cortex, subgenual

Table 1. Demographic information of study subjects.

Characteristic MDD patients (n = 32) Healthy controls (n = 35) p value

Gender: male/female 14/18 18/17 .656

Age, years: mean (s.d.) 20.53 (1.78) 20.97 (1.29) .255

Education, year: mean (s.d.) 13.88 (0.87) 13.97 (0.86) .650

CES-D score: mean (s.d.) 38.03 (6.68) 16.20 (6.69) ,.001

MDD = major depressive disorder; CES-D = Center for Epidemiological Studies Depression Scale; s.d. = standard deviation.
doi:10.1371/journal.pone.0085241.t001
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cingulate cortex, and negative amygdala connectivity to the

occipital and parietal cortices.

No differences were found between the HC and MDD groups

for the right amygdala seeded FC analyses. However, for the left

amygdala seed, negative FC between the amygdala and left OFC

was apparent in MDD patients (Figure 2B) but not in HCs

(Figure 2A). Relative to controls, the MDD participants showed

abnormally enhanced anti-correlation of activity between the left

amygdala and left OFC (Figure 2C, peak MNI coordinates

X = 230, Y = 51, Z = 29, cluster-corrected p,0.005).

The two brain regions in the left OFC, one showing decreased

ALFF and one showing enhanced anti-correlation to the amygdala

in MDD patients, did not spatially overlap. Only a few voxels were

observed in both regions, as seen in Figure 3.

Figure 1. ALFF values using two-sample t-tests during resting-state. Regions showing decreased (blue) and increased (red) ALFF values in
first-episode, drug-naive patients with MDD compared to HCs were at the threshold t .3.2, with correction for multiple comparisons applied at
p,0.05 (cluster-corrected with family wise error). Color bar indicates the T score. (L = left side; R = right side)
doi:10.1371/journal.pone.0085241.g001

Table 2. Regions that showed significant differences in ALFF values between the MDD and HC groups at rest.

Brani region side BA Peak MNI coordinates (mm) Cluster Size Z score p value*

X Y Z

MDD,HC

OFC L 11/47/10 248 39 26 195 4.37 ,.001

OFC R 11/47/10 36 45 215 250 4.46 ,.001

MDD.HC

Insula L 22/37/39 239 224 23 592 5.34 ,.001

Superior temporal gyrus

Middle temporal gyrus

Inferior temporal gyrus

Middle occipital gyrus

Fusiform gyrus

Insula R 13/39 36 224 3 317 4.81 ,.001

Superior temporal gyrus

Middle Temporal gyrus

Abbreviations: ALFF, amplitude of low-frequency fluctuations; BA, Brodman’s area; L, left; R, right; MDD, patients with major depressive disorder; HCs, healthy controls;
MNI, Montreal Neurological Institute;
*Cluster-corrected with family-wise errors.
doi:10.1371/journal.pone.0085241.t002
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Correlation analyses
There were no significant associations between CES-D scores

and alterations in regional cerebral ALFF or FC values in patients

with MDD. In addition, there was no significant correlation

between the altered amygdala-OFC FC and ALFF values in the

left OFC, where showing enhanced anti-correlation to the left

amygdala in MDD patient group.

Discussion

The current study investigated resting-state brain function by

measuring ALFF and investigated amygdala-seeded FC in first-

episode, medication-naive young adult patients with MDD. We

found that, relative to HCs, patients with MDD showed

significantly decreased ALFF values in the OFC bilaterally, and

increased ALFF in the bilateral temporal lobe extending to the

insular and left fusiform cortices. The decrease in ALFF values

may be an indication of a functional deficiency. In addition, we

found enhanced anti-correlation of activity between the left

amygdala and left OFC in MDD patients, suggesting an indirect

modulation of the affective network between the amygdala and the

OFC. These findings indicate that compared to HCs, there is a

concurrence of a hypoactive OFC and decreased OFC-amygdala

FC in first-episode, medication-naive young adult patients with

MDD at rest, supporting the notion that the OFC may play an

important role in the pathophysiological processes of MDD.

Changes in ALFF values
Prior resting-state neuroimaging studies have reported incon-

sistent results in relation to depression, including increased

[13,50,51] or decreased [7–9] metabolism or blood flow in the

OFC. The small sample size (,30) and variability in the cohorts’

illness severity, diagnostic characteristics, and medication may

have contributed to the inconsistency of these prior studies. To

overcome these limitations, our study enrolled a relatively large

cohort of patients who were all medication-naive and experiencing

Figure 2. Left amygdala connectivity in HCs and MDD patients during a resting state. Using left amygdala as seed, negative FC (blue) and
positive FC (red and yellow) were showed in HCs (A) and MDD patients (B). Compared with HCs, first-episode, drug-naive patients with MDD showed
abnormal increased anti-correlation of activity between the left amygdala and left OFC (C). Color bar indicates the T score, and maps were at the
threshold t .3.2, with correction for multiple comparisons applied at p,0.05 (cluster-corrected with family wise error). (L = left side; R = right side).
doi:10.1371/journal.pone.0085241.g002

Figure 3. The overlap in the left OFC derived from ALFF results and FC results. (Green = altered ALFF in the left OFC; Red = altered FC to
amygdala in the left OFC; Yellow = overlap; L = left side; R = right side).
doi:10.1371/journal.pone.0085241.g003
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their first depressive episode. Our findings corroborate previous

findings of decreased spontaneous activity in the OFC in patients

with MDD [7–9]. Interestingly, human patients with OFC lesions

show behaviors that in many ways resemble behaviors exhibited

by patients with MDD, including depressed mood, anger, affective

instability, irritability, and anxiety [52]. Previous structural and

functional studies have consistently revealed abnormal OFC

features in patients with MDD. For example, MRI morphometric

studies have reported gray matter reductions in the OFC of

patients with MDD [10–12]. Postmortem studies further provided

morphological evidence for the involvement of cell atrophy in the

OFC in MDD [53,54]. Reduced metabolism of the OFC in

depressed patients has also been reported in several studies using

different brain imaging techniques including magnetic resonance

spectroscopy [55], PET [7,8] and single-photon emission com-

puted tomography [9]. In addition, severity of depressive

symptoms correlates inversely with OFC activity in MDD patients

[8,13]. Given that anhedonia is a classic symptom of depression, it

is interesting to note that the OFC has been implicated in reward

valuation [56] and hedonic experience [57]. These imaging

findings provide converging evidence supporting the view that

MDD involves OFC dysfunction.

Neurotransmitter studies also support the important role of the

OFC in MDD. For example, reduced central serotonin and

catecholamine neurotransmission (produced by tryptophan deple-

tion and alpha-methyl-para-tyrosine administration, respectively)

have been shown to decrease metabolism in the OFC and trigger

depressive relapse in remitted patients with MDD [58–60]. Both

serotonergic and catecholaminergic transmission appear necessary

for optimal PFC function, and depletion of these neurotransmitters

impairs OFC functioning [61,62]. These findings further suggest

that OFC dysfunction may underlie vulnerability to depression,

perhaps due to impaired emotional and cognitive regulation.

Whether the reduced synchronicity in the OFC of our patient

group was the result of depleted central serotonin and/or

catecholamine neurotransmission is unknown and remains an

important question for future study.

Our findings of increased spontaneous activity in the bilateral

temporal lobe of patients with MDD are consistent with recent rs-

fMRI studies examining depression [63,64]. A recent study also

found abnormal ALFF in the fusiform and temporal regions in

MDD patients [36], which may reflect perturbations in neural

networks related to social functioning and emotional processing.

The fusiform gyrus, part of the visual recognition network, is

thought to be involved in the perception of emotions during the

presentation of facial stimuli [65,66]. Altered responsiveness to

facial emotional stimuli has been suggested as a possible biomarker

for the early diagnosis of MDD [67].

However, we did not observe any ALFF changes in the

amygdala in patients with MDD compared with healthy controls.

This null finding is inconsistent with prior neuroimaging evidence

of apparently increased amygdala activity in MDD patients [14–

16]. The reason for the inconsistency could arise from differences

in experimental design. Those studies are based on event-related

fMRI, whereas our study uses resting-state fMRI.

Amygdala-OFC FC
In the current study, we demonstrated that, relative to the HC

group, patients with MDD showed significantly enhanced anti-

correlation of activity between the left amygdala and left OFC,

suggesting increased top-down inhibition of the OFC on the

amygdala. Previous imaging studies have suggested an inhibitory

effect of the OFC on the amygdala [17–19]. Urry and colleagues

found evidence of inverse coupling of the amygdala and

ventromedial PFC, the portion of the PFC that includes the

OFC (i.e. BA10), during regulation of negative emotion [21]. Thus

impaired functioning of this region (OFC/ventromedial PFC) may

disrupt top-down inhibition of the OFC on the amygdala, which

may then compromise one’s ability to regulate cognition and

emotion, especially negative emotion. Indeed, Versace et al.

suggested recently that elevated left amygdala-OFC FC in subjects

viewing sad stimuli could be used as a depression state marker

[24]. Using dynamic causal modeling, a technique for examining

inter-regional influences [68], Almeida et al. found that, relative to

controls, patients with MDD had significantly greater negative left-

sided top-down connectivity between the OFC and amygdala

[25]. Furthermore, Tang et al. observed decreased FC between

the amygdala and the left ventral PFC in treatment-naive patients

with MDD [38]. The present study corroborates and extends these

earlier findings by demonstrating that patients with MDD, when

at rest, exhibit abnormal left amygdala-OFC FC, suggesting an

indirect modulation of the affective network between the amygdala

and the OFC, and possibly increased top-down inhibition of the

OFC on the amygdala. Our FC results extend our understanding

of the integration of the amygdala and OFC in MDD patients in a

resting state.

Together with these prior studies, the present results from both

ALFF and FC analysis suggest that impaired OFC functioning

may be an important factor that could affect the top-down

inhibition of the OFC on the amygdala. Additionally, the

enhanced anti-correlation of activity between left-side OFC and

amygdala possibly reflects dysfunction of the amygdala-OFC

network and may represent a pathological process of MDD. The

enhanced anti-correlation between left-side OFC and amygdala

seen in MDD patients but not in HC could represent a

maladaptive process of MDD. In our results, the two regions that

show decreased ALFF in the left OFC, but abnormal FC to left

amygdala in the left OFC do not substantially overlap, which

could motivate studies of the correlation between these two

features in the future.

Limitations
There are several limitations of this study. First, as patients with

MDD were already experiencing acute episodes, future studies of

individuals at risk for MDD may be warranted to elucidate the

changed resting brain function in the affective network associated

with a predisposition to MDD. Secondly, we cannot ensure the

clinical consistency of MDD patients because the patients are

younger and in an earlier phase of their illness, and 12.5%–30% of

MDD patients may develop bipolar disorder in subsequent years

[69]. In addition, although the ALFF has been increasingly used to

measure spontaneous neural activity [33], its exact neurophysio-

logical basis remains unclear. The underlying reasons for reduced

OFC spontaneous activity in patients with MDD need to be

discerned in future studies.

Conclusions

The current study reveals significantly reduced resting-state

ALFF but abnormally enhanced anti-correlation of activity

between the left-side OFC and the amygdala in first-episode,

medication-naive young MDD patients compared with healthy

controls. Decreased ALFF in the OFC may reflect the hypo-

functioning of negative emotion regulation in the affective

network, which could be a hallmark of major depression.

Enhanced anti-correlation of activity between the OFC and

amygdala may reflect dysfunction of the amygdala-OFC network

and additionally represent a pathological process of MDD.

MDD and Resting-State Brain Function
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