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Genetic variants in humanin nuclear isoform 
gene regions show no association with coronary 
artery disease
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Abstract 

Objective:  Coronary artery disease contributes to noncommunicable disease deaths worldwide. In order to make 
preventive methods more accurate, we need to know more about the development and progress of this pathology, 
including the genetic aspects. Humanin is a small peptide known for its cytoprotective and anti-apoptotic properties. 
Our study looked for genomic associations between humanin-like nuclear isoform genes and coronary artery disease 
using CARDIoGRAMplusC4D Consortium data.

Results:  Lookup from meta-analysis datasets gave single nucleotide polymorphisms in all 13 humanin-like nuclear 
isoform genes with the lowest P value for rs6151662 from the MTRNR2L2 gene including the 50 kb flanking region in 
both directions (P-value = 0.0037). Within the gene region alone the top variant was rs78083998 from the MTRNR2L13 
region (meta-analysis P-value = 0.042). None of the found associations were statistically significant after correction for 
multiple testing. Lookup for expression trait loci in these gene regions gave no statistically significant variants.
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Introduction
Cardiovascular diseases account for most noncommu-
nicable disease (NCD) deaths worldwide [1]. The WHO 
global action plan [1] for the years 2013–2020 aims to 
support and promote research in NCD to reduce the 
global burden via better prevention. Therefore, a lot of 
effort has been made to better understand the interplay 
of environmental, behavioural and genetic risk factors in 
order to make preventive methods more efficient.

Coronary artery disease (CAD) or ischaemic heart dis-
ease involves the reduction of blood flow to the heart 
muscle because of pathological process of atherosclerosis 
in coronary vessels. The typical presentations are angina 
pectoris, unstable angina, myocardial infarction and 
sudden cardiac death [2]. The genetic predisposition to 
CAD has received increasing attention. For example, in 
a recent study, 64 novel genetic risk loci for CAD were 

identified, expanding the total to 161 [3]. There are genes 
known to have a large effect on, for example, lipoprotein 
metabolism (e.g. LDLR), resulting in increased risk of 
early-onset coronary disease [4]. However, CAD seems to 
be an omnigenic disease where all gene-regulatory net-
works may be interrelated and different tissues may con-
tribute to disease progression [3].

In 2001, a novel gene cDNA, 99% identical to the 
mitochondrially encoded 16S rRNA gene (MTRNR2), 
was reported to encode a short peptide-humanin [5, 6]. 
Functionally, it was shown that this peptide binds with 
insulin-like growth factor-binding protein-3 (IGFBP-3) 
and Bax protein [7, 8]. Additional studies have revealed 
that humanin has a cytoprotective function and a role 
in apoptosis regulation [5–8]. Regarding cardiovascular 
diseases, this peptide has been shown to be expressed in 
the endothelial layer of human blood vessels including 
the mammary artery, atherosclerotic coronary artery, and 
greater saphenous vein [9]. A lower circulating huma-
nin level has been described in patients with coronary 
endothelial dysfunction compared to healthy controls 
[10].
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Data from Bodzioch et al. [11] suggested the existence 
of 13 nuclear-encoded humanin isoforms: humanin-like 
open reading frames named and numbered MTRNR2L1 
to MTRNR2L13 after the original humanin MTRNR2 
gene in the mitochondrial genome. This research also 
showed considerable gene homology between dif-
ferent species. The study showed that MTRNR2L1–
MTRNR2L10 were expressed variably in most human 
tissues, whereas MTRNR2 expression was consider-
ably higher compared to the isoforms in all the stud-
ied tissues. MTRNR2, MTRNR2L1, MTRNR2L8 and 
MTRNR2L9 were highly expressed in the heart muscle 
suggesting their possible role in this tissue as cytoprotec-
tive peptides.

Most research has focused on humanin and its func-
tion. Studies done on several subjects have revealed dif-
ferences in expression of humanin-like isoform genes 
and their regulation through hypoxia, miRNA or cir-
cRNA, to name some of these [12–19]. DNA copy num-
ber change in isoform genes has been found in arteries of 
patients with CHD and metabolic comorbidities [20]. A 
genome-wide association study on Huntington`s disease 
and copy number variation studies in classic heterotaxy 
and schizophrenia have identified variants in humanin-
like isoform genes [21–23]. Humanin isoforms have also 
been studied as potential biomarkers for Alzheimer`s 
disease-like dementia and Hirschsprung’s disease, sug-
gesting their wider role in physiological processes [24, 
25]. Research on cancer subtypes, Dicer-binding genes, 
genomic mosaicism, extracellular RNA profiles, chromo-
somal rearrangements and huntingtin interactions has 
provided insight into networks in which humanin-like 
isoforms might be of importance [26–31].

Previously, we have shown changes in some humanin-
like isoform expression levels in the context of cardio-
vascular disease [32]. This study design involved adult 
patients undergoing general anaesthesia before coronary 
artery bypass grafting; patients were randomly assigned 
to be ventilated with different FiO2 60  min before 
operation. Exposure to > 96% oxygen upregulated two 
of the humanin-like peptide genes—MTRNR2L2 and 
MTRNR2L8—in the right atrial appendage tissue sam-
ple. Whether this change was the consequence of the 
different oxygen levels or whether there could be possi-
ble single nucleotide variations (SNVs) in isoform genes 
responsible for the observed effect after oxygen exposure, 
is not clear. Therefore, we decided to look for possible 
single nucleotide polymorphisms (SNPs) in gene regions 
of humanin-like peptides.

To study the possible association between coronary 
artery disease and genetic variation in humanin-like 
nuclear isoform peptide coding genes, we performed 
a lookup within all 13 humanin-like-peptide-coding 

genomic regions using publicly accessible meta-analy-
sis data for coronary artery disease from the CARDIo-
GRAMplusC4D Consortium (Coronary ARtery DIsease 
Genome wide Replication and Meta-analysis (CARDIo-
GRAM) plus The Coronary Artery Disease (C4D) Con-
sortium) [33]. We also analysed tissue-specific expression 
influences at the DNA level using data from the GTEx 
expression quantitative trait loci (eQTL) database [34].

Main text
Methods
The aim of this study was to conduct a lookup from pub-
licly available meta-analysis data on genetic associations 
between single nucleotide variants in 13 humanin-like 
nuclear isoform genes and coronary artery disease.

Materials
Genome-wide SNP association lookup was conducted 
using CARDIoGRAMplusC4D consortium data. This 
combines data from multiple large-scale genetic studies 
to identify risk loci for coronary artery disease and myo-
cardial infarction [33, 35]. From the consortium we used 
two meta-analysis datasets to perform the lookup:

1.	 X-chromosome analysis dataset: Chromosome 
X-CAD [35]—meta-analysis of X-chromosomal vari-
ants for CAD including data from more than 43,000 
CAD cases and 58,000 controls from 35 interna-
tional study cohorts with random effects models. The 
X-chromosome dataset was used for MTRNRL10 
gene region lookup since it is located in the X-chro-
mosome.

2.	 The second dataset was meta-analysis data of UK 
Biobank SOFT CAD GWAS (an interim release) 
with CARDIoGRAMplusC4D 1000 Genomes-based 
GWAS (i.e. dataset 4) and the Myocardial Infarc-
tion Genetics and CARDIoGRAM Exome (dataset 5) 
[33]. SOFT CAD phenotype was defined by the con-
sortium as: fatal or nonfatal myocardial infarction, 
percutaneous transluminal coronary angioplasty or 
coronary artery bypass grafting, chronic ischemic 
heart disease, and angina. There were 10,801 cases 
and 137,914 controls.

eQTL analysis was carried out using the GTEx v7 data 
[34] from the GTEx Portal on 02/18/19 where lookup 
was conducted manually for all available tissues.

Description of analysis
For analysis we identified gene loci of 13 humanin-like 
nuclear isoform genes using the UCSC Genome Browser 
GRCh37/hg19 assembly [36]. We then performed a 
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Table 1  Humanin-like nuclear isoform gene chromosomal 
position (GRCh37)

Gene Chromosome Position

MTRNR2L1 17 22022437–22023991

MTRNR2L2 5 79945819–79946854

MTRNR2L3 20 55933496–55934878

MTRNR2L4 16 3421053–3422283

MTRNR2L5 10 57358750–57360488

MTRNR2L6 7 142374131–142375525

MTRNR2L7 10 37890366–37891859

MTRNR2L8 11 10529434–10530723

MTRNR2L9 6 62284008–62284534

MTRNR2L10 X 55207824–55208944

MTRNR2L11 1 238107024–238108513

MTRNR2L12 3 96336030–96337067

MTRNR2L13 4 117220016–117221478

lookup for SNPs and eQTLs using the downloaded 
datasets.

1.	 SNP analysis:

a.	 The first analysis was done with the specific gene 
locus and the second analysis was done using the 
50 kb flanking region in both directions.

b.	 As several variants were tested, multiple testing 
correction was used. The significance level for 
gene region analysis was calculated using Bon-
ferroni correction; for the number of variants 
within the gene region it was 0.05/73 = 0.0007, 
and for the analysis with flanking regions it was 
0.05/4909 = 0.00001.

2.	 eQTL analysis:

	 A lookup was performed from the database for all 
available tissues. eQTL results were combined with 
SNP analysis results for reporting the hits present in 
both analyses.

Results
We conducted a lookup for associations from 13 huma-
nin-like nuclear isoform human gene regions located in 
different chromosomes using CARDIoGRAMplusC4D 
data [33, 35] (Table 1).

First, we looked for associations only within the regions 
of genes MTRNR2L1–MTRNR2L13, and second, we 
added 50  kb flanking regions in both directions to our 
lookup to extend the search for possible regulatory vari-
ants near these gene positions. The top variants for each 
region and from both lookups are shown in Table  2. 
There were no statistically significant associations in 

these gene regions after Bonferroni correction for the 
73 variants found within the gene regions alone, nor for 
the 4909 variants found when these gene regions were 
searched with their added 50  kb flanking regions. The 
Bonferroni-corrected statistical significance limits were, 
respectively, 0.05/73 = 0.0007 and 0.05/4909 = 0.00001. 
The top variants within genes were rs78083998 from 
the MTRNR2L13 region (meta-analysis P-value = 0.042) 
and rs11004929 from the MTRNR2L5 region 
(P-value = 0.10). For lookup with flanking regions, the 
top variants were rs6151662 from the MTRNR2L2 region 
(P-value = 0.0037) and rs76836360 from the MTRNR2L8 
region (P-value = 0.0044).

Additionally, we looked for eQTL variants of genes 
MTRNR2L1–MTRNR2L13 from all available tissues 
using the GTEx database [34] and found 876 variants 
altogether. Out of these, 113 were present in CARDIo-
GRAMplusCD4D meta-analysis data. None of these 
exceeded the P-value threshold for Bonferroni multi-
ple testing correction. The top marker was rs71476855 
(P-value = 0.008) from the MTRNR2L8 region. This vari-
ant showed eQTL association in thyroid tissue. Another 
marker, rs975494 from the MTRNR2L6 region, is an 
eQTL in lung tissue (P-value = 0.047).

Discussion
The lookup study for genetic association between coro-
nary artery disease and humanin-like isoforms focused 
on genetic variants in different humanin-like peptide 
genes, both in the gene region and within the 50  kb 
flanking region we investigated, although none were 
statistically significant after multiple testing correction. 
The top variants in the flanking region analysis were in 
the MTRNR2L2 and MTRNR2L8 gene regions. These 
same genes were overexpressed in our previous study, 
and MTRNR2L8 has, already earlier, been shown to be 
expressed in heart tissue [11, 32]. Our results gave a pos-
sible eQTL SNP in the MTRNR2L8 gene, which did not 
obtain statistical significance. It is possible that these iso-
form genes contribute to the omnigenic development of 
CAD, and factors influencing the expression of isoforms 
or the post-transcriptional and post-translational modi-
fication of isoforms may contribute to either the devel-
opment or progression of CAD thereafter. Future studies 
should aim to answer these questions while specifying 
the role of humanin isoforms in cardiac cell metabolism, 
function and survival. Our study is the first that tries to 
answer whether single nucleotide variants in humanin-
like nuclear isoform genes have an association with CAD.

The use of meta-analysis data from a multi-national 
consortium is one strength of this study. The number 
of participants is in the tens of thousands, which gives 
our study sufficient statistical power. Potential problem 
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with phenotype association studies is that the definition 
of CAD is complicated due to differences in disease and 
symptom definitions, and coding systems. Furthermore, 
in this study, we only used the definition used by the 
original consortium, where CAD phenotype was defined 
as follows: fatal or nonfatal myocardial infarction, percu-
taneous transluminal coronary angioplasty or coronary 
artery bypass grafting, chronic ischemic heart disease 
and angina. It is possible that the results may differ when 
using a different phenotype definition.

Our study aimed to look for associations between 
DNA nucleotide variations in humanin-like nuclear iso-
form genes and established coronary heart disease. This 
lookup study showed no statistically significant associa-
tions between genetic variants in humanin nuclear iso-
form gene regions and coronary artery disease suggesting 
that these variants are not major contributors. They may 
influence disease development and progression in the 
omnigenic network.

Limitations

•	 as the used consortium data did not contain mito-
chondrial DNA data we were not able to look for 
possible associations in the MTRNR2 gene.

•	 We were only able to use the definition of CAD 
provided by the original consortium.

•	 Future studies should also address gender differ-
ences.
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