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Total body irradiation (TBI) has been a pivotal component of the conditioning

regimen for allogeneic myeloablative haematopoietic stem cell transplantation (HSCT)

in very-high-risk acute lymphoblastic leukaemia (ALL) for decades, especially in children

and young adults. The myeloablative conditioning regimen has two aims: (1) to

eradicate leukaemic cells, and (2) to prevent rejection of the graft through suppression

of the recipient’s immune system. Radiotherapy has the advantage of achieving an

adequate dose effect in sanctuary sites and in areas with poor blood supply. However,

radiotherapy is subject to radiobiological trade-offs between ALL cell destruction,

immune and haematopoietic stem cell survival, and various adverse effects in normal

tissue. To diminish toxicity, a shift from single-fraction to fractionated TBI has taken

place. However, HSCT and TBI are still associated with multiple late sequelae,

leaving room for improvement. This review discusses the past developments of

TBI and considerations for dose, fractionation and dose-rate, as well as issues

regarding TBI setup performance, limitations and possibilities for improvement. TBI is

typically delivered using conventional irradiation techniques and centres have locally

developed heterogeneous treatment methods and ways to achieve reduced doses

in several organs. There are, however, limitations in options to shield organs at

risk without compromising the anti-leukaemic and immunosuppressive effects of

conventional TBI. Technological improvements in radiotherapy planning and delivery

with highly conformal TBI or total marrow irradiation (TMI), and total marrow and

lymphoid irradiation (TMLI) have opened the way to investigate the potential reduction

of radiotherapy-related toxicities without jeopardising efficacy. The demonstration of

the superiority of TBI compared with chemotherapy-only conditioning regimens for
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event-free and overall survival in the randomised For Omitting Radiation Under Majority

age (FORUM) trial in children with high-risk ALL makes exploration of the optimal use of

TBI delivery mandatory. Standardisation and comprehensive reporting of conventional

TBI techniques as well as cooperation between radiotherapy centres may help to

increase the ratio between treatment outcomes and toxicity, and future studies must

determine potential added benefit of innovative conformal techniques to ultimately

improve quality of life for paediatric ALL patients receiving TBI-conditioned HSCT.

Keywords: haematopoietic stem cell transplantation (HSCT), total body irradiation (TBI), total marrow irradiation

(TMI), total lymph node irradiation (TLI), acute lymphoblastic leukaemia (ALL), total marrow and lymphatic

irradiation, paediatric

INTRODUCTION

Since the 1970s total body irradiation (TBI) is considered to be

a cornerstone of myeloablative conditioning for haematopoietic

stem cell transplantation (HSCT) in children. It has been used
in combination with chemotherapy as conditioning regimen
both in autologous and allogeneic HSCT for malignant and

non-malignant diseases (1). However, it gradually became
clear that HSCT survivors suffered from various late adverse
effects, many of which related to TBI (2–6). As HSCT
strategies improved and evolved over time, and reduction of
late sequelae was warranted, chemotherapy-only conditioning
schedules (chemoconditioning) became the mainstay for most
indications; the use of myeloablative TBI was limited mainly
to patients with high-risk haematologic malignancies in the
allogeneic setting (7–10). For most paediatric acute myeloblastic
leukaemia (AML) HSCT indications, chemoconditioning gained
preference over TBI-based conditioning (11–14). In children
with very-high-risk acute lymphoblastic leukaemia (ALL),
studies consistently showed superior survival outcomes of TBI-
based conditioning (15–19).

The aspiration to reduce acute and long-term effects after

HSCT—especially in developing children—has motivated
radiation oncologists to seek out improvements in TBI
performance. For many years, myeloablative TBI was mostly
given as a single fraction of up to 10Gy combined with

cyclophosphamide (20, 21). Gradually, studies showed decreased
toxicities and equal or improved survival with fractionated TBI
(22–24), and this has become the standard. However, institutions
have developed site-specific TBI setups and techniques,
making practises heterogeneous (25–28). With technological
advances, general radiation treatments have evolved into highly
conformal intensity-modulated techniques delivering high
doses to treatment volumes while increasingly sparing the
surrounding tissues. For TBI, however, most centres still use
two-dimensional (2D) conventional techniques with opposing
beams that capture the entire body while shielding certain
organs at risk (OAR) (27, 28) (Figure 1). This technique tends to
deliver heterogeneous doses throughout the body while shielding
also blocks bone marrow compartments. Several centres have
introduced highly conformal techniques that offer better dose
homogeneity while allowing more options to spare OAR, albeit
with higher dose rates than classical setups (29–31). More

targeted radiotherapy strategies such as total marrow irradiation
(TMI), total lymphoid irradiation (TLI), and total marrow and
lymphoid irradiation (TMLI) allow dose escalation to the bone
marrow and/or lymphoid volumes of high-risk ALL patients
while reducing doses in the remainder of the body. Clinical
studies to establish the role of TMLI in HSCT-conditioning are
ongoing (32).

Since the superiority of including TBI in conditioning
regimens prior to HSCT for very-high-risk ALL paediatric
patients has been reinforced by the results of the For Omitting
Radiation Under Majority age (FORUM) trial (19), it is timely
to review TBI application and rationale for these patients and to
gauge future directions.

STUDIES OF TBI-BASED CONDITIONING
FOR ALL

TBI has been the most frequently applied myeloablative
conditioning for HSCT in patients with ALL. Most centres now
avoid TBI in children below the age of 3 years because of
increased side effects especially on the young developing brain.
Prior to the FORUM trial, there was remaining debate over
whether non-inferior conditioning in children, adolescents, or
young adults could be achieved without TBI (33).

Davies et al. compared HSCT outcomes in children with
ALL transplanted from human leukocyte antigen (HLA)-
identical siblings who received cyclophosphamide plus TBI
conditioning (n = 451) vs. those who received oral busulfan
plus cyclophosphamide conditioning (n = 176) (16). The 3-year
probability of overall survival (OS) was 55% [95% confidence
interval (CI) 50–60%] with TBI and cyclophosphamide and 40%
(95% CI 32–48%) with busulfan and cyclophosphamide (p =

0.003), with a higher risk of treatment failure (relapse or death)
in the busulfan group [relative risk (RR) 1.39; p= 0.017].

A retrospective European Society for Blood and Marrow
Transplantation (EBMT) study assessed the role of TBI in
patients aged 2–18 years who were transplanted for ALL
in remission with a bone marrow or peripheral blood graft
from a compatible donor, and compared patients who had
received TBI-based myeloablative conditioning (n = 1,336) with
patients who had been transplanted after chemoconditioning
(n = 210) between 2000 and 2012 (18). An inferior outcome
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FIGURE 1 | Total body irradiation setup examples. (A,B) A patient in an

institution-developed TBI “chair” setup for opposed anterior/posterior (AP-PA)

dose delivery with acrylic beam spoilers in front of and behind the patient; the

chair is rotated 180◦ halfway through each fraction; shielding of lungs, kidneys,

and lenses is performed with individually moulded cerrobend blocks. (C) A

patient in an institution-developed TBI “bed” setup for AP-PA dose delivery in

the lateral decubitus position, with beam spoilers; the patient is rotated 180◦

halfway through each fraction; shielding of lungs, kidneys, and lenses is

performed with individually moulded cerrobend blocks. (D) A patient in an

institution-developed TBI “bed” setup for lateral dose delivery in the supine

position, with beam spoilers; the bed is rotated 180◦ halfway through each

fraction and there is shielding of lungs. (E–G) An institution-developed TBI

(Continued)

FIGURE 1 | “bed” setup for AP-PA dose delivery where the linear accelerator

gantry is positioned one floor above the patient, and the patient is rotated from

the supine to prone position halfway through a fraction. (H,I) A

sweeping-beam TBI “bed” setup for AP-PA dose delivery where the linear

accelerator gantry is positioned ±2m above the patient and sweeps stepwise

in an arc over the entire body, delivering the dose in multiple static (up to 20)

positions, thereby increasing dose homogeneity; the patient is rotated from the

supine to prone position halfway through a fraction; beam spoilers cover the

patient, with individually moulded lung blocks placed below the spoiler. (J,K) A

patient in a highly conformal isocentric technique treatment position (e.g.,

VMAT TBI, TomoTherapy TBI, TMI, or TMLI) lying supine in a body-length

vacuum bag and open head mask for secure positioning during treatment; as

the gantry rotates around sequential isocentres in the body and table

translations take place. TMI, total marrow irradiation; TMLI, total marrow and

lymphoid irradiation; VMAT, volumetric-modulated arc therapy. Images (E–G)

courtesy of S. Supiot, Institut de Cancérologie de l’Ouest, Nantes St. Herblain,

France. Images (H,I) courtesy of L. Sim, Radiation Oncology Princess

Alexandra Raymond Terrace, Brisbane, Queensland, Australia.

was reported after chemoconditioning for patients with ALL
in second complete remission (CR2), with a 1.75-fold higher
risk of death, 1.86-fold higher risk of any failure and a 1.9-
fold higher risk of relapse compared with those receiving
TBI-conditioning. Conversely, no difference could be detected
for those transplanted in first complete remission (CR1).
Nevertheless, as TBI was the standard regimen, a selection
bias could have affected regimen allocation, with patients
who had experienced severe toxicities and infections prior to
HSCT being more likely to being allocated chemoconditioning.
Furthermore, logistical issues could have limited timely access
to fractionated TBI. Similar results were reported when cord
blood units were used as the stem cell source, with TBI being
associated with a lower risk of relapse than chemoconditioning
(34). Within the Centre for International Blood and Marrow
Transplant Research (CIBMTR), attempts to decrease the risk
of relapse by intensifying the conditioning of 12Gy TBI and
cyclophosphamide—which included increasing the TBI dose to
13.2–14Gy and/or adding a second chemotherapeutic agent—
were not effective (35).

In the recent international, multicentre, randomised FORUM
trial in high-risk ALL patients aged 4–21 years at HSCT, 2-
year OS was 91% following conditioning with fractionated 12Gy
TBI and etoposide (n = 212) compared with 75% following
chemoconditioning (a combination of fludarabine, thiotepa, and
either treosulfan of busulfan; n = 201; p < 0.0001); the 2-year
cumulative incidence of relapse and treatment-related mortality
were 33 vs. 12% (p < 0.0001) and 9 vs. 2% (p = 0.0269),
respectively (19). The median follow-up at interim analysis was
relatively short (2.1 years), but the advantage of TBI was striking
throughout all subgroups and randomisation was discontinued,
as the stopping rule was reached. Whether longer follow-up
and associated insights regarding late sequelae will lead to
reassessment of the benefit of TBI remains a question.

Efforts to provide equal outcomes with reduced TBI doses,
adapted radiotherapy target volumes or the exclusion of TBI are
ongoing. For now, however, based on the results of the FORUM
study, TBI (12Gy in six fractions, given twice per day) is the
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standard of care for ALL patients ≥4 years old who are eligible
for HSCT and have no absolute contraindication to radiotherapy.

THE IMPORTANCE OF MINIMAL
RESIDUAL DISEASE

Minimal residual disease (MRD) consists of a small number
of leukaemia cells in the bone marrow detectable by flow
cytometry, real-time quantitative polymerase chain reaction (RT-
qPCR) or next-generation sequencing (NGS) below a level
that can be detected morphologically. MRD is recognised as
the strongest independent prognostic factor for disease relapse
and survival in frontline and relapse ALL treatment, as well
as in the transplant setting (36, 37). Most current protocols
stratify patients according to response to treatment, including
MRD, which, besides guiding treatment decisions, maintains its
predictive value (37–39).

The predictive role of pre- and post-HSCT MRD invariably
stands throughout ALL patient groups (38), despite the fact
that MRD data are mainly used in real time to modulate
immunosuppression tapering and/or discontinuation, possibly
associated with the use of cell therapy (donor lymphocyte
infusion, cytokine-induced killer cells) (40), or targeted therapy
(blinatumomab, chimeric antigen receptor T cells) in the attempt
to reduce the relapse risk (41–44). The effectiveness of such
immunomodulation cannot be assessed.

It has been suggested that the decision regarding the
conditioning regimen could be based on MRD, as defined by
means of next generation sequencing (NGS) (45). Such an
approach is evaluated in the ongoing prospective study which
performs a non-TBI based conditioning regimen in patients≤25
years old diagnosed with B-cell acute ALL who are pre-HSCT
NGS MRD negative (NCT03509961) (46).

The role of the MRD level prior to and after HSCT in children
and adolescents is discussed in depth in the publication by Merli
et al. (47) in this supplement of Frontiers in Paediatrics.

IMMUNOSUPPRESSIVE AND
ANTI-LEUKAEMIC EFFECTS OF TBI

The rationale for inclusion of TBI in the conditioning regimen
before HSCT for ALL is two-fold: 1) to eradicate leukaemic
cells, and 2) to prevent rejection of allogeneic engraftment
through ablation of the recipient’s immune system. Radiotherapy
targets leukaemic cells in the entire body, including in
sanctuary sites where chemotherapy delivery is hampered by
perfusion, diffusion and blood-barrier effects. Optimising the
immunosuppressive effect of fractionated TBI schedules while
sparing normal tissue from injury where possible requires
consideration of the combination of total dose, dose rate,
fraction size, and overall treatment time. Advances in the clinical
radiobiology of TBI inferred from data originating from trials or
retrospective data sets have been limited, in contrast to what is the
case for many solidmalignancies and the associated OAR. This is,
in part, explained by the large variability in patient and treatment
characteristics within and between studies, as well as by the

difficulties in obtaining reliable patient-level dosimetry for tissues
and OAR from TBI. All of these difficulties are compounded by
the fact that many institutional TBI protocols included numerous
temporal adjustments to planning and delivery as well as to the
dose-time-fractionation regimens used, which further hamper
direct comparisons of disease control and toxicity between series.
The lack of consistency in practise patterns, dosimetry and
reporting of TBI doses among institutions is documented in
the recent surveys of practise patterns of paediatric TBI from
the European Society for Paediatric Oncology (SIOPE) and
Children’s Oncology Group (COG) (27, 28). As a result of these
obstacles, much of the radiobiological rationale for current TBI
regimens is derived from in vitro or experimental animal studies,
many dating back to the 1970s and 1980s, and only supported
qualitatively by clinical data.

Dose-Fractionation Biology of Leukaemic
and Haematopoietic Cells
In vitro radiosensitivity estimates have historically been
quantified using the D0 value: the dose required to reduce the
surviving cell fraction to 37% on the log-linear part of the dose
vs. cell-survival curve. Normal haematopoietic cells (mainly
lymphocytes in most studies) have D0 values between 0.5 and
1.4Gy, indicating overall high radiosensitivity (48–50). D0 values
for peripheral blood cells in vivo tend to be somewhat higher
than in vitro values. Studies in animals suggest that there is a
small subpopulation of haematopoietic stem cells with higher
radioresistance than the overall population (51). In a clinical
study, Shank et al. studied peripheral blood cell survival kinetics
during hyperfractionated TBI (13.2Gy in 11 fractions of 1.2Gy,
given three times a day) given before cyclophosphamide as HSCT
conditioning in 14 children in remission for ALL and found a D0

range of 3.7–5.4Gy for peripheral blood lymphocytes, without
a shoulder in the survival curve (see below), and a D0 of 10Gy
for granulocytes (52). Absolute nucleated cell concentration in
the bone marrow had dropped to 7–44% of base levels only on
the last TBI-day, while marrow myeloid elements decreased
continuously. Myeloablative TBI has a prolonged effect on bone
marrow recovery, with a 30% decreased marrow cellularity even
at 1 year post-HSCT (53).

Leukaemic cell populations have an overall high
radiosensitivity with median D0 values of 0.74Gy, usually
with a minimal or absent shoulder in the survival curve (54).
Specific leukaemic cell types, however, show a wide range of in
vitro radiosensitivities: wider than that of normal haematopoietic
cells (55–59). In a study of 74 children with ALL, B-lineage ALL
types proved to be more radioresistant than T-lineage ALL types
(60). Monzen et al. performed mRNA expression analysis on
a model of radioresistant acute promyelocytic leukaemia cells
and found that specific changes in intracellular genetic network
profiles were associated with radioresistance in their AML cell
line (61).

Fractionation sensitivity, i.e., the total dose adjustment
required to maintain a given level of biological effect after
changing the dose per fraction or the dose rate, is generally
quantified using the α/β value of the linear quadratic (LQ)
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model (62). Higher values of α/β indicate less sensitivity to dose
per fraction/dose rate. Historically, this was quantified by the
“shoulder” of the in vitro dose–survival curve: a large shoulder
indicates large fractionation sensitivity, corresponding to a low
α/β value in the LQ model.

Early studies of haematopoietic cells generally showed small
shoulders of in vitro dose–survival curves, suggesting a limited
effect of dose-fractionation (63). In vitro studies on ALL cells
retrieved from 74 children found that, contrary to previous
notions, about a third of B- and T-lineage ALL cell clonogens
display a shoulder in the survival curve and possess sublethal
radiation damage repair capacity, which is most relevant during
fractionated radiotherapy (64). Uckun et al. (64) estimated
α/β values ranging between 0 and 101Gy, and two-thirds of
progenitor cells from 34 evaluated cases had an α/β value <5Gy,
indicating a substantial effect of dose per fraction.

A large dose per fraction and/or increased dose rate of TBI will
counter the recovery of leukaemic cells between fractions (65, 66)
but, obviously, this should be balanced against the potential
sparing of normal tissue effects from low fraction sizes/low
dose rate. Wheldon and Barrett devised a mathematical model
for leukaemic cell kill based on 27 fractionated TBI schedules
that are iso-effective for interstitial pneumonitis (IP) risk and
applied this to a hypothetical patient population with diverse
leukaemic intrinsic radiosensitivities (67). They surmised that
many of the current TBI schedules have a similar propensity
for leukaemia cure in unselected patient populations. Ideally,
a patient’s individual leukaemic cell radiosensitivity should be
known to select their optimal TBI schedule. However, this
would only generate a modest improvement in general cure
probability and would benefit mainly outliers with relatively
low leukaemic radiosensitivity (67). As research into cellular
radiobiology predictive assays generally has failed to impact
clinical radiotherapy in other indications, it seems unlikely
that in vitro cellular assays of the individual radiosensitivity of
haematopoietic volumes and leukaemic cell types in a patient
before beginning TBI-based conditioning prior to HSCT would
be a valuable translational addition to future studies regarding
ALL HSCT.

As genotyping increasingly becomes a part of the routine
clinical work-up of patients with leukaemia, it is conceivable
that putative links between genotypes and the effect of TBI
will be discovered in the coming years. Genomics, in particular
germ-line single nucleotide polymorphisms, have been studied
in 10,000s of radiotherapy patients as a potential cause of inter-
individual variability in early and late toxicity after radiotherapy
(68). Initial reports were encouraging. However, a large UK
validation study in patients with prostate or breast cancer
with 2-year clinical assessment of late radiation adverse effects
showed that the early literature was dominated by false-positive
findings (69). More recently, there is emerging evidence from
large studies that sequence alterations may affect adverse events
after radiotherapy. Somatic sequence alterations in leukaemic
cells could also, in theory, affect the therapeutic effect of
TBI. So far, except for a few rare genetic disorders, there
are currently no generally accepted and validated genotypes
that affect radiotherapy prescriptions in other radiotherapy
indications (70).

CLINICAL DATA ON TBI
DOSE-FRACTIONATION RESPONSE

In the 1950s, the discovery that stem cell transplantation
could counteract acute mortality from the depletion of blood-
forming tissues after TBI injury triggered many studies into
the application of HSCT against haematologic malignancies and
immunodeficiency diseases in particular (71–73). Experiments
in mice showed that extremely high lethal TBI doses of 20–
50Gy or higher were needed to sterilise advanced leukaemia
in the body (74), and that the graft-versus-leukaemia effect
of infused stem cells was therefore essential for cure when
lower TBI doses were applied. The first clinical allogeneic
HSCTs were performed with TBI-only conditioning and were
largely a disappointment because of disease recurrence, non-
engraftment, graft-versus-host-disease- (GvHD) and treatment-
related death (75). When up to 10Gy single-fraction TBI was
combined with cyclophosphamide, and immunosuppressive and
peri-transplantation care evolved, more patients with acute
leukaemia survived (20, 24, 76).

However, the acute and late effects of single-fraction TBI,
especially for developing children, became an issue of worry.
Peters et al. argued that the therapeutic ratio of the radiosensitive
normal tissues vs. the immunosuppressive and anti-leukaemic
effects of TBI could be improved by decreasing the single-fraction
dose rate (which meant an irradiation lasting up to >10 h for
patients) or by dose fractionation (77). The latter was confirmed
in a randomised trial (78).

Many different fractionation schedules began to be used (79)
and it was difficult to evaluate differences in efficacy because
of the multifactorial influence of treatment effects, GvHD and
toxicities in cohorts of patients with various diseases and age
groups (67). Fractionated doses <9–10Gy would result in non-
engraftment and disease relapse (80, 81). In many instances,
lung toxicity was found to be the dose-limiting factor at 2-
Gy fractionated 16Gy TBI (82); it was also diagnosed more
frequently after single-fraction TBI than after fractionated TBI
in leukaemia patients (83–86). For children, other significant
TBI effects such as growth inhibition or cataract formation
were reduced by TBI fractionation (23, 87). One fractionation
schedule that was applied early on was 12Gy in six fractions
given over 3 or 6 days. To optimise the therapeutic ratio, twice-
daily fractionation of doses between 1.5 and 2Gy to doses≥12Gy
was estimated to be optimal, while more hyperfractionated
schedules with three to four fractions daily seem to have
worse anti-leukaemic/immunosuppressive effect as well as being
impractical in terms of delivery within working hours while
giving healthy tissues the aspired 6-hour recovery period between
fractions (54, 88–90). Giving 12Gy TBI in once-daily fractions
of 4Gy increased acute effects such as mucositis (91, 92). A
randomised dose-escalation study comparing 12Gy TBI over
6 days with 15.75Gy TBI over 7 days displayed a decreased
relapse rate after high-dose TBI but increased rate of non-relapse
mortality (NRM), ultimately resulting in equal probabilities of
survival (93, 94). In a single-centre ALL HSCT cohort, 12Gy
in six fractions over 3 days was deemed the optimal TBI
schedule regarding GvHD occurrence and overall prognosis after
variations in TBI dose, dose rate and technical setting had
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been applied during a span of 12 years (95). Another centre—
comparing 10Gy with 12 and 13.2Gy TBI given over 3 days—
concluded that 10Gy gave the highest 5-year OS benefit (96). One
publication compared 16 TBI studies regarding fractionation
and dose rate, the combination of which was recalculated into
the biologically effective dose (BED) for leukaemic cells and
several OAR (e.g., 6 times 2Gy with a dose rate 0.16 Gy/min
gives a BEDleukaemia of 14.2Gy and BEDlens of 42.8Gy) (97).
A high BEDleukaemia in the fractionated schedules significantly
reduced relapse incidence and increased OS. Shielding for
lungs, kidneys and lenses was advised to BEDs ≤15, ≤17,
and ≤40–45Gy, respectively.

Hard conclusions regarding TBI fractionation for ALL
specifically are difficult to draw from these studies as they
cover different patient and disease categories as well as
temporal changes in overall and HSCT-specific treatment
protocols. The FORUM trial delivered a conditioning of
etoposide combined with TBI as a 6 times 2Gy TBI schedule
given over 3 days and lung shielding at 10Gy (19). For
the moment, fractionated TBI schedules giving doses of 12–
14Gy with lung shielding have been adopted as optimal
schedules in ALL HSCT by many paediatric radiation oncology
centres (27, 28). Nonetheless, continuous reassessment of TBI
optimization is needed as pre-HSCT factors improve and new
combinations of chemotherapy with lower doses of TBI are
researched (98, 99).

TBI DOSE RATE

The biologic radiotherapy effect of TBI on cells and tissues
depends on their inherent radiosensitivity, the micro-
environment, total dose, fractionation, overall treatment
time, dose rate, dose homogeneity, TBI setup, patient and disease
characteristics, and other therapies. TBI with an extended
source-surface distance (SSD) setup is institution specific,
precluding normalisation of TBI dose and dose rate (100).
Published works may report dose rate at the prescription point
of a patient’s midplane, in the lung or in air. Reported values may
represent measured or calculated data, and measurement and
calculation methods can differ between centres. These differences
must be considered when comparing and interpreting published
data. In older studies, TBI was often delivered with cobalt
teletherapy and source decay exposed the analysed cohorts
to varying dose rates through time (81). In modern extended
SSD TBI, the dose rate is chiefly determined by the SSD
(through the inverse square law) and the linear accelerator
dose rate.

In the 1970s, the most commonly used TBI schedule was 8–
10Gy given at a low dose rate over several hours, to balance
treatment effect against toxicities (101). Fractionated TBI was
recommended to improve the therapeutic ratio. For leukaemic
cell kill and allogeneic engraftment success, fractionated TBI with
a higher dose rate is preferable to a lower dose rate (77, 89).
In preclinical studies, increased dose rates during TBI improved
allogeneic engraftment (102–104). In clinical studies, dose rates
of≤0.04 Gy/min showed increased leukaemia relapses in patients

given TBI doses of 8.4–12.5Gy in 3 days (81). Bone marrow
displays a marginally increased sensitivity for fractionation with
1.2- and 2-Gy fractions, and little effect of higher dose rates
of 0.8 Gy/min when compared with 0.05 Gy/min in single-
fraction TBI (105). At dose rates >0.3 Gy/min, no extra effect
for haematopoietic cell damage is expected (106).

Multiple studies have explored the effect of TBI dose rate
on toxicity. In preclinical studies exploring single-fraction TBI,
dose rate changes in a lower dose rate range had a much
greater influence on toxicity occurrence in late responding tissues
(especially the lung, kidney and liver), than dose rate changes in
the higher dose rate range (101, 106). For late non-hematopoietic
tissue effects, this resulted in e.g., an iso-effective dose factor of
±2.4 for a dose rate of 0.02 Gy/min, ±1.5 for a dose rate of 0.1
Gy/min, and ±1.0 for a dose rate range of 1 to >10 Gy/min.
Experiments in mice indicate that average dose rate may be
more relevant for lung tissue toxicity than instantaneous dose
rate (107). At midplane dose rates ≤0.15 Gy/min, fractionation
of total dose had a greater sparing effect on late-responding
tissues than reduction of dose rate (23, 106). High dose rates
of 0.75 Gy/min induced more gastrointestinal damage in dogs
after TBI than dose rates down to 0.021 Gy/min, but this effect
could be compensated for by fractionation (108). In dogs given
autologous HSCT, acute TBI tolerance doses measured as 50%
mortality at 7 days were comparable between single-fraction
and fractionated TBI (2Gy three times daily) at exposure rates
of 0.02–0.1 Gy/min, but fractionation benefit occurred at a
dose rate of 0.2 Gy/min, with tolerance doses of 10.56Gy (95%
CI 9.39–11.74) vs. 13.2Gy (95% CI 11.36–15.05), respectively
(109). In mice, low dose rates of 0.05 Gy/min as compared
with 0.8 Gy/min, had a highly protective effect on late lethality
in single dose TBI, but this effect diminished or disappeared
when TBI was given in 1.2- or 2-Gy fractions (105). These
studies exemplify that influence of dose rate on toxicity induction
diminishes through fractionation, that fractionation increases
tolerance of normal tissues, that dose rate changes in the lower
dose rate range (e.g., <0.15 Gy/min) influence late toxicity
effects more than dose rate changes in the higher dose rate
range (e.g., >0.3 Gy/min), and that average dose rate may be
more relevant for biological effect correlation than instantaneous
dose rate.

In a BED calculation of 16 clinical studies, it was demonstrated
that different dose rates at ≤0.15 Gy/min for fractionated
schedules do not induce large BED differences for leukaemic
cells and OAR, in contrast to single-fraction schedules (97).
Most clinical research into dose rate effects has focused on
lung toxicity. In 202 acute leukaemia patients, 8 times 1.65Gy
fractionated TBI given at dose rates of >0.15 Gy/min induced
significantly more IP and worse OS than dose rates of ≤0.15
Gy/min when lungs were only shielded by the arms in a
bilateral beam setup (IP incidence: 29 vs. 10%, respectively, p
< 0.01; 1-year OS: 60 vs. 76%, respectively, p = 0.01) (110).
In studies using fractionated conventional TBI, the impact
of dose rates up to 0.15 Gy/min becomes negligible for IP
development, as long as the registered lung dose does not
exceed 8–9Gy (111–114). At dose rates of 0.15–0.21 Gy/min,
IP risk increased with increasing dose rates in studies with
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lung shielding of 10–12Gy for TBI schedules of 12Gy in 6–
8 fractions (115, 116). In a meta-analysis including TBI lung
dose rates of 0.03–0.41 Gy/min, dose rate was not significantly
associated with IP (117). A high dose rate affects late renal
damage inasmuch as it can increase BED to levels above tolerance
doses, generating the need for kidney shielding (118–120).
Cataract development is related to dose rate, with increasing
cataract risk at increasing dose rates between 0.02 and 0.56
Gy/min (121, 122). Although not repeated in all publications,
clinical studies show that for dose rate ranges of e.g., 0.04–0.4
Gy/min in a conventional SSD TBI setup, increasing the dose
rate increases risk of late toxicities in lungs, kidneys and lenses
even for fractionated schedules, generating a need for adequate
organ shielding.

Momentarily disregarding the numerous influential variables
and inconsistent reports regarding the issue of dose rate,
dose rates between 0.04 and 0.15 Gy/min seem to be the
most frequently reported option for extended-SSD, fractionated
conventional TBI schedules in paediatric ALL patients, albeit
with appropriate OAR shielding. Regarding immunosuppressive
and anti-leukaemic cell effect, the higher end of this spectrum
may be preferable. For more staunch multicentre conclusions,
we need comparable schedules, uniform specifications, and
complete reporting of all relevant parameters including applied
dose rates.

Patient comfort is a factor as well. Delivery of 2-Gy fractions
at 0.04 Gy/min requires 50min beam-on time and motionless
patient positioning, which would mean more indications for
multiple sedations of >1 h in children.

Improved dose homogeneity and specific OAR dose reduction
can be achieved with highly conformal TBI techniques. This,
along with fractionation, may allow for more favourable
toxicity profiles even with a high instantaneous dose rate.
Low dose rates are preserved with an image-guided intensity-
modulated radiotherapy (IMRT) technique at extended SSD,
deriving midplane dose rates of 0.14–0.19 Gy/min (123). First
experiences with this technique show encouraging results for
outcome and lung/kidney toxicity, with a 15% dose reduction
at these organs (124). With highly conformal source-to-axis
distance techniques such as TomoTherapy (a device combining
a helical computed tomography (CT) scanner and a linear
accelerator) and volumetric-modulated arc therapy (VMAT—
rotational IMRT delivered on a standard linear accelerator),
instantaneous dose rates are inherently higher (e.g., 0.2 to >10
Gy/min) and are variable during treatment (125–127). The first
experiences with TomoTherapy and VMAT TBI (with overall
instantaneous dose rates of ±13 Gy/min and ±0.31 Gy/min and
instantaneous dose rates around the lung of ±8.4 and ±0.11
Gy/min, respectively), showed promising results in 197 children
with regard to outcome and toxicity profiles (128). Centres can
opt for a decrease of monitor unit output at the level of e.g.,
the lungs or pelvis to achieve average dose rates of even <0.06
Gy/min if desired (125, 126). Fractionated TMLI, with greater
sparing of dose-limiting OAR, may provide a means to preserve
immunogenic and anti-leukaemic effects while conveying highly
acceptable toxicity profiles with high instantaneous dose rate
(32, 129).

TBI AND HYPOXIA

Hypoxia as a cause of radioresistance is a well-known problem
in rapidly proliferating solid tumours which outgrow their blood
supply. It has not gained much attention in leukaemia research.
However, it turns out that the microenvironment in the deeper
peri-sinusoidal bone marrow regions (where most of the long-
term haematopoietic stem cells reside) is hypoxic, with O2

levels <10 mmHg (130–132). Moreover, leukaemic cells have
been shown to be markedly hypoxic; hypoxia inducible factor-
1α (HIF-1α), a molecular marker of hypoxia, was shown to be
overexpressed in leukaemic cells in the bonemarrow in paediatric
patients with ALL (132, 133). Hypoxia induces chemoresistance
and may play a role in the maintenance of MRD (134). The
level of hypoxia in some leukaemic cells in the bone marrow is
sufficient to cause hypoxic radioresistance. However, there are no
data to support that this is a significant clinical problem, and,
so far, no interventions directed at modifying the hypoxia of
leukaemic cells have been proposed.

TBI AND RADIOTHERAPY BOOST OF
SANCTUARY SITES

The central nervous system (CNS) and the testes are protected by
barriers that are difficult to penetrate by systemic treatment and
have been shown to act as sanctuaries for leukaemic cells with a
high risk of local recurrence. Including TBI in the conditioning
regimen has the distinct advantage of reaching these sites with
the planned treatment.

Radiotherapy can also deliver a higher dose to precisely
defined volumes: a so-called boost. Adding a radiation boost
to the sanctuary sites in order to reduce the recurrence risk
was performed often in the past. However, the effectiveness of
the systemic regimens has improved very significantly, making
radiation boosts unnecessary in most cases (135–141).

The risk of CNS relapse after HSCT is very high in patients
with residual CNS leukaemia after chemotherapy or in patients
who develop a relapse involving the CNS. For these patients,
additional CNS-directed radiotherapy is often considered (140,
142). Most often, whole brain radiotherapy has been applied
to a cumulative cranial dose of 18–24Gy (140). However, data
indicate that craniospinal irradiation (CSI)may bemore effective,
which seems logical with leukaemic cells circulating in the
cerebrospinal fluid. CSI is given to a cumulative dose of 18 in
2Gy fractions (143). CNS-directed radiotherapy is given in the
days immediately prior to TBI.

With modern systemic therapy for ALL, testicular relapses are
rare. A boost is only considered for patients with a very high
risk of testicular relapse, typically patients with residual disease
after chemotherapy or who develop testicular recurrence. The
scrotal content including both testes (or the contralateral testis
after orchiectomy) is irradiated. If only the contralateral testicle
with no evidence of disease is present, a single dose of 4Gy is
often given; however, if one or both testes are clinically involved,
the cumulative dose (together with TBI) is 18–24Gy given in 2Gy
fractions in the days immediately prior to TBI.
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TBI TOXICITY

Survivors after HSCT can develop morbidities in any organ
system and have higher morbidity and mortality rates than
those observed in the general population or in non-transplanted
childhood cancer survivors (5, 6, 144–146). Very young children
(aged below 3–4 years) are more prone to developing serious
side effects from HSCT and TBI-based conditioning (4, 147,
148). Concerns are i.e., more negative effects on neurocognition,
growth, endocrine and metabolic functioning and second
malignancies, and many centres now avoid TBI in these young
patients (27). Radiotherapy can cause toxicities depending
on patient-, tissue-, disease-, treatment-, dose-, and location-
related factors (149). Although many factors are at play in the
establishment of HSCT sequelae, TBI-based conditioning causes
more late effects than chemoconditioning (4, 5, 150). Within
the French Leucémies de l’Enfant et l’Adolescent (LEA) cohort,
at a median follow-up of 10.1 years, the 174 patients who
received TBI reported more complications than the 66 patients
conditioned with busulfan during the same time period (3.01 vs.
2.35, respectively, p= 0.03) (151).

Since late effects of HSCT will be explored in another
review within the current Frontiers in Paediatrics supplement,
this chapter will focus on fractionated TBI effects. Table 1

narrates several fractionated TBI-related sequelae. General
observations from the literature are given as well as
noteworthy specific articles. Consequences/recommendations
for TBI, or consequences after TBI are
remarked upon.

SETUP AND PLANNING FOR
CONVENTIONAL AND HIGHLY
CONFORMAL TBI TECHNIQUES

TBI practise worldwide remains varied, with radiotherapy
centres typically developing site-specific setups and techniques
(25–28, 79, 269, 270). Conventional TBI is mostly delivered
using extended SSD techniques (79), where the radiation
beam covers a patient’s entire body, and delivers a relatively
low dose rate in the patient as a consequence of linear
accelerator dose rate adjustability and the inverse square
dose reduction with distance (Figure 1). Other setups can
be multiple parallel or adjacent beams, sweeping beams, a
moving couch underneath a static beam, and field-in-field
techniques (271–273).

Many large, open-field conventional techniques result in
rather heterogeneous dose distributions, delivering between
<80% to even >120% of prescribed doses (Figure 2B), although
efforts are made to reduce heterogeneity to within 10%,
according to guidelines (e.g., the American Association of
Physicists in Medicine guidelines, Report No. 17) (274). The last
decade has seen nascent implementation of highly conformal
isocentric techniques (where the radiation gantry rotates around
the patient on the treatment couch), with the intention to
improve dose distribution homogeneity and to reduce the dose
to OAR.

Extended SSD Treatments
The Use of a Treatment Planning System
Several clinics deliver TBI plans calculated without the use of
a treatment planning system (TPS) (25). These non-TPS based
techniques may have remained unchanged for decades and do
not allow for the determination of dose-volume histograms of
the body or the OAR to be evaluated the way they would
be in mainstream radiotherapy practise. Only large open-
field TBI treatments should be calculated by these manual
workflow methods. It is worth noting that dose estimates made
without the use of a TPS may be quite inaccurate: this makes
interpretation and comparison of older published outcomes such
as dose-response relationships, dose rates, and normal tissue
tolerances difficult.

If an isocentrically commissioned TPS is used at extended
SSDs, the accuracy of the TPS must be verified for that
specific geometry because the beam may have a different energy
spectrum, resulting in a change in the depth-dose distributions
and a larger component of in-room scatter to the patient dose
(275). If verified under extended SSD conditions, an isocentric
TPS can be used to calculate dose distributions from more
complex techniques such as “step and shoot” IMRT (123, 155,
276) (Figure 2A) or extended SSD VMAT (277, 278).

Beam Angles, Spoilers, and Tissue Compensators
In extended SSD TBI, beams are typically delivered using
an opposed anterior-posterior (AP-PA) technique, bilateral
technique (Figure 2B), or combination of the two (271). Recent
data showed that the use of a solely bilateral technique in children
is disadvantageous since it results in higher lung doses and
decreased survival (111).

Also in extended SSD TBI, a beam spoiler, usually a 1–2 cm
thick acrylic screen that is placed in front of the patient, is
typically used to counter the skin- and subcutaneous tissue-
sparing effect of photon beams (279) (Figure 1). Depending on
the protocol, tissue compensators that provide tissue-equivalent
dose attenuation may be required to improve dose homogeneity
across narrow body sections (155).

Lung Shielding
In TBI delivered with large open fields, the lung dose will be
greater than the dose to the rest of the body because of the lower
density of lung tissue (280). Shielding can be used to reduce
the lung dose to the prescribed dose (280–282) or below the
prescribed dose (159, 281, 283, 284) and may be achieved using
metallic blocks (159, 284) or multi-leaf collimators with an IMRT
setup (123). Unavoidably, lung shielding also reduces the dose to
the target tissues surrounding the lungs, such as bone marrow in
the ribs or mediastinal lymph nodes. The dose to these tissues
may be increased by electron boost fields and mediastinal photon
fields, respectively (285, 286).

Another issue when using a TPS is that it may not account
for the scattered electrons from the non-shielded areas
(287), which may increase the actual lung dose considerably.
However, TPS algorithms have evolved. The differences
between dose distributions calculated by the pencil beam and
anisotropic analytical algorithms can be considerable (288),
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TABLE 1 | Fractionated TBI related effects after HSCT.

Acute toxicities References

During and in the days to weeks after myeloablative TBI, patients can suffer from toxicities such as parotitis, nausea, vomiting,

diarrhoea, xerostomia, mucositis, oesophagitis, skin erythema, headache, alopecia, loss of appetite, and fatigue.

(152, 153)

Consequence for fractionated TBI

These effects are generally transient. Supporting measures during hospitalisation such as dexamethasone, supplemental IV fluids and

antiemetics, pain medication, and skincare can alleviate complaints.

Lung toxicity References

Interstitial pneumonitis (also: idiopathic interstitial pneumonitis/pneumonia syndrome): A potentially fatal semi-acute complication

that can develop in days to months after HSCT conditioning, with a peak incidence at 60–90 days post-HSCT.

General observations

Distinction between idiopathic vs. non-idiopathic pulmonary toxicity in publications is oftentimes ambiguous; standardisation in

diagnostic workup and definitions is needed to clearly correlate IP incidence with TBI parameters in children.

(154)

IP occurs more commonly after allogeneic HSCT than autologous HSCT. (155)

After single-fraction TBI, IP occurred more frequently (occurring in up to 60% of patients) and was associated with 50% fatality in

studies in the 1970s.

(156)

Most series assessing IP after fractionated TBI included adult and paediatric patients with different hematolymphoid diseases and

HSCT conditioning protocols.

(83, 116, 154, 157–161)

IP incidences in children vary from 0 to 35%, typically with a fatal outcome observed in fewer than 20%. (14, 111, 115, 155, 162–169)

IP incidence is affected by lung radiation dose. Factors that reduce the BED (such as lower total dose, more fractionation, lung

shielding, and lower dose rates) decrease IP risk.

(97, 115–117, 158, 160, 161, 170)

Specific articles

Esiashvili et al. analysed 127 children with ALL who received allogeneic HSCT after TBI-based conditioning in different centres, along

with cyclophosphamide, thiotepa, or etoposide. TBI doses of 12 or 13.2Gy were given as six or eight twice-daily fractions, and lung

doses were variable according to TBI set up and mode of shielding. Although study-reported grade 4 and 5 adverse events were not

clearly related to reported lung doses, OS was significantly better after mean lung doses of <8 vs. ≥8Gy (HR 1.85; p = 0.043). Lung

shielding did not cause higher disease relapse.

(111)

Sampath et al. performed a retrospective review of 1,090 patients in 20 studies assessing 26 TBI-based and chemo conditioning

regimens; their IP risk model identified lung dose, total dose, fraction dose, cyclophosphamide dose, and busulfan use as predictive

factors for IP. Once-daily fractionated 12Gy TBI induced an IPS incidence of 11% as compared to 2.3 with 50% lung shielding (p <

0.05). No dose-rate effect was observed.

(117)

A 2011 meta-analysis of randomised trials comparing chemoconditioning with TBI-based conditioning (mostly fractionated TBI

11–13.5Gy with variable amounts of lung shielding of 6–13.2Gy) for allogeneic HSCT in leukaemia patients found no significant

differences for occurrence of IP between these conditioning regimens (RR 1.22, 95% CI 0.79–1.88; p = 0.37).

(17)

Long-term lung toxicities (restrictive/obstructive fibrosis and lung function reduction)

Busulfan may be associated with more chronic lung toxicity than fractionated TBI, with restrictive pulmonary disease occurring in up

to 75% of busulfan-treated patients after a median of 3 years.

(171–173)

Development of restrictive/obstructive lung disease after HSCT is multifactorial, including the transplant regimen, diagnosis, donor

major histocompatibility complex mismatch, chronic GvHD, and time after transplant.

Consequence for fractionated TBI

Paediatric oncology radiotherapy centres reduce the dose given to the lungs, mostly to a mean dose of 8–10Gy. (27, 28)

Liver toxicity References

Sinusoidal obstructive syndrome (SOS) is a semi-acute complication of allogeneic HSCT with a mean incidence of 14% after HSCT

and high mortality rate for severe SOS.

(174–177)

General observations

Numerous HSCT-conditioning chemotherapies, among which busulfan, as well as TBI are associated with SOS. (175, 176, 178)

Higher SOS incidences may be seen with the addition of other drugs such as sirolimus. (179)

In preclinical studies and clinical studies in patients with a haematologic malignancy, busulfan and cyclophosphamide conditioning

showed more frequent SOS occurrence than TBI conditioning, although both regimens can cause damage to liver sinusoid

endothelial cells resulting in SOS.

(17, 33, 180, 181)

Specific articles

In a retrospective analysis of 305 leukaemia patients, as well as in a trial of 157 hematolymphoid malignancy patients with

randomised TBI fractionation and dose rates, investigators found no relationship between use of single-fraction 10Gy vs. fractionated

12Gy in six fractions or different dose rates and SOS incidence.

(113, 182)

Girinsky et al. found a significantly higher 8-year incidence of SOS after single-fraction 10Gy TBI (n = 73; 14%) vs. fractionated

14.85Gy TBI (n = 74; 4%; p = 0.04) in a randomised trial of TBI in adult patients with haematologic malignancies.

(112)

(Continued)
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TABLE 1 | Continued

Liver toxicity References

Consequence for fractionated TBI

In dose-escalation studies of fractionated TBI, SOS was the dose-limiting toxicity at 16Gy in 2-Gy fractions twice per day, or

14–14.4Gy in 1.2- to 1.6-Gy fractions three times per day.

(82, 163, 170)

A dose reduction of 10% of 14Gy over the liver was associated with a lower risk of fatal SOS after fractionated TBI in one study (3/20

patients without shielding had fatal SOS vs. 5/98 patients with shielding) without an apparent reduction in engraftment (96%).

(170)

It is unclear whether shielding the liver during TBI increases leukaemia relapse risk.

Renal toxicity References

Chronic renal disease (CRD) occurs in ∼17% of patients after HSCT (reported range 3.6–89%) and has multiple risk factors including

acute renal failure, GvHD, type of transplant, sex, age, TBI (single-fraction vs. fractionated), impaired baseline renal function,

long-term cyclosporine, nephrotoxic drugs, and development of SOS.

(183–185)

General observations

Children are less likely to experience CRD after HSCT than are adults. In a cohort of 148 patients surviving 2 years after HSCT, 12%

of 91 adults had CRD vs. 0% of 57 children aged <15 years old.

(186)

Fractionated TBI is variably reported as risk factor in children. (118, 166, 187–189)

Radiotherapy-related CRD develops in different stages and is caused by pathological mechanisms such as inflammation, fibrosis,

and vasculopathy.

(190)

Specific articles

Ellis et al. calculated a pooled odds ratio for CRD of 2.56 for TBI doses >11Gy from seven combined cohorts in a meta-analysis. (183)

Based on a meta-analysis, Kal et al. advised to keep the BED <16Gy, by shielding of the kidneys if needed, to keep the risk of

TBI-related CRD below 3%.

(97)

Igaki et al. treated 109 adult and paediatric leukaemia patients with 12Gy TBI in six fractions with and without kidney shielding; while

2 year survival rates were not significantly different between arms, patients without shielding experienced 21.5% renal dysfunction at

2 years compared with 0% of patients after shielding.

(191)

Lawton et al. performed 14Gy fractionated TBI on 157 adult patients with various hematolymphoid diseases, with varying amounts of

shielding and found lower rates of post-HSCT CRD when higher amounts of shielding were used (actuarial risks of CRD at 2.5 years

were 29 ± 7% SE with no shielding, 14 ± 5% with 15% shielding, and 0 with 30% shielding).

(192)

Consequence for fractionated TBI

Dose reduction to the kidneys to a BED <16Gy should be considered to reduce the risk of CRD.

Cataracts References

Lenses are very radiosensitive and cataracts frequently develop after TBI-containing conditioning for HSCT.

General observations

Cataract development is more common after single-fraction TBI than after fractionated TBI and is related to dose rate. (121, 122)

TBI when given as 12–14.4Gy in six to eight fractions is associated with fewer occurrences of cataracts than when given as 12Gy in

four fractions.

(160, 193)

Specific articles

In 2,149 patients in the EBMT registry, Belkacemi et al. reported a 10-year estimated cataract incidence of 60% after single-fraction

TBI (6–11.8Gy), 43% after fewer than six fractions, 7% after more than six fractions (8.5–16Gy) (p < 0.001), 30% with dose rate

≤0.04 Gy/min, and 59% with dose rate >0.04 Gy/min (p < 0.001).

(121)

In a study of 174 paediatric patients with acute leukaemia who received HSCT, cataract incidence after a median of 10 years’

follow-up was 51.7%, and most patients received 12Gy TBI in six fractions.

(151)

A meta-regression model included 1,386 patients from 21 series in which TBI was administered to a total dose of 0 to 15.75Gy in

single-fraction or fractionated schedules and dose rates of 0.04–0.16 Gy/min. Dose, dose × dose per fraction, paediatric status

instead of adult, and standard follow-up by an ophthalmologist were predictive of 5-year cataract incidence after HSCT.

(194)

In a model established from 17 reports, Kal et al. calculated that the risk of development of a severe cataract needing surgery was

<5% if lens BED was <40Gy.

(195)

Few paediatric radiotherapy centres apply eye shielding during TBI, although partial shielding did not increase risk of CNS recurrence

in a study of 188 children receiving single-fraction 5–8Gy or two fractions of 6Gy TBI.

(27, 196)

Consequence for fractionated TBI

Dose reduction to the lenses to a BED <40Gy should be considered.

Endocrinopathies References

General observations

Endocrine dysfunctions have a high prevalence after allogeneic HSCT, even without TBI. (197)

(Continued)
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TABLE 1 | Continued

Endocrinopathies References

The most commonly reported endocrine deficiencies after HSCT are growth hormone deficiencies, subclinical or overt

hypothyroidism, metabolic dysregulation, and pre- or post-pubertal gonadal failure. TBI may cause disturbances throughout

hormonal axes, from the pituitary to secreting organs.

Various researchers did not find significant differences in the rate of endocrinopathies between those paediatric patients receiving

fractionated TBI vs. chemoconditioning before HSCT, e.g., In a retrospective multicentre study of paediatric recipients of HSCT with a

median follow-up of 10.1 years, Bernard et al. found higher incidences of hypothyroidism for TBI-conditioned patients than

busulfan-conditioned patients (28.2 vs. 15.2%, respectively, p = 0.04), and equivalent gonadal dysfunction (53.9 vs. 48.1%,

respectively, p = 0.47), but any significant influence of TBI disappeared in multivariate analysis.

(151, 198–200)

Other studies found more endocrine abnormalities after fractionated TBI than after chemoconditioning, e.g., In a single-centre study

after a median follow-up of 13.1 years, significantly more endocrinopathies were observed in 23 children conditioned with TBI than in

17 children receiving chemoconditioning (≥1 endocrine deficiency: 91 vs. 41%, respectively, p < 0.05).

(12, 164, 201–205)

Metabolic syndrome, insulin resistance, and abnormal glucose tolerance can occur in HSCT survivors in the absence of obesity;

related factors such as increased waist-to-hip ratio, abnormal glucose tolerance, fasting hyperinsulinemia, diabetes mellitus,

dyslipidaemia, and hypertriglyceridaemia have been observed in retrospective studies in inconsistent numbers and relationships to

TBI.

(206–208)

Consequences after fractionated TBI

With increasing age of childhood ALL survivors receiving allogeneic HSCT, disturbances in endocrine systems and the metabolic

syndrome spectrum should be monitored and corrected where possible.

Growth impairment References

General observations

Childhood ALL survivors are at risk of growth impairment, especially when treated before puberty, after receiving higher-dose cranial

radiotherapy (≥20Gy) or radiotherapy to the spine, and girls are more at risk after gonadal failure.

(209)

TBI is associated with growth impairment through growth hormone reduction and a direct effect on bone growth plates; the latter

occurs mainly after radiation doses of more than the equivalent of 15Gy in 2-Gy fractions (EQD2).

(210, 211)

Final height can be diminished by −1.0 to −2.5 standard deviation scores compared to the average height of the population or the

expected final height calculated from parental heights.

(212–214)

Younger children are more greatly affected than older children, and single-fraction TBI causes a greater decrease in final height than

fractionated TBI.

(87, 212–215)

Even after fractionated TBI, the majority of patients (>75%) reach a final height within the normal range of the average population. (87)

Consequences after fractionated TBI

Growth hormone treatment has a positive effect on growth rate and final height but does not induce a “catch-up effect” and may be

less effective in ALL patients than in children receiving HSCT for other reasons.

(216–218)

Cardiovascular complications References

General observations

After HSCT, endothelial damage is induced by conditioning regimens with or without TBI and by HSCT complications such as GvHD. (219, 220)

Patients receiving HSCT have a higher prevalence of metabolic syndrome and atherosclerosis than general, both of which predispose

to cardiovascular adverse events such as myocardial infarction, stroke and peripheral vascular disease.

(220–227)

TBI (as compared to chemoconditioning), TBI dose (≤10 vs. >10Gy) and TBI fractionation (single-fraction vs. multiple fractions) were

not associated with direct cardiovascular outcomes in several studies.

(228, 229)

However, use of TBI conditioning and a higher TBI dose both emerged as risk factors for cardiometabolic traits such as metabolic

syndrome, higher fasting insulin, higher blood pressure, adverse lipid profile, subclinical decreased systolic and diastolic heart

function, and higher waist-to-hip ratio in studies that followed children after HSCT.

(203, 206, 223, 230–235)

Specific articles

Accumulated data in 24,215 patients on cardiovascular disease risk 5 years after treatment for childhood cancer show an increase in

clinically manifested cardiac sequelae decades after radiotherapy: low-to-moderate radiotherapy doses (5–19.9Gy) to large cardiac

volumes (≥50% of the heart)—as is true for TBI—were associated with an increased rate of cardiac disease (relative rate 1.6, 95% CI

1.1–2.3) compared with no cardiac radiotherapy.

(236)

Consequences after fractionated TBI

With prolonged follow-up, TBI-treated patients are at risk for cardiovascular adverse events and should be chronically monitored to

ameliorate risk factors where possible.

Neurocognitive effects References

It is difficult to compare studies of neurocognitive function with one other. Different study methodologies, patient characteristics,

treatment schedules, use or lacking of baseline testing, comparisons with control groups, and the length and manner of follow-up

hamper direct comparisons. Moreover, cognitive function does not always directly relate to educational functioning.

(237, 238)

(Continued)
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TABLE 1 | Continued

Neurocognitive effects References

General observations

Regarding paediatric leukaemia patients who received radiotherapy only in the form of single-fraction or fractionated TBI before

HSCT, studies report mostly clinically insignificant but statistically significant decrements in intelligence quotient (IQ) or sensory-motor

and cognitive functioning, with however profound effects in children receiving TBI before the age of 3–4 years. This is one of the main

reasons to refrain from TBI at such young ages.

(147, 148, 237, 239–243)

In contrast, various studies of patients with mixed diagnoses found no significant changes in children’s cognitive status after HSCT,

even with TBI.

(244–247)

The difference may be the additive adverse effect of methotrexate therapy. Even in children with ALL treated without radiotherapy, IQ

deficits of 6–8 points and deficits in several neurocognitive domains as compared with healthy controls are frequent.

(248, 249)

Specific articles

The PENTEC group recently modelled the detrimental interaction between cranial radiation and methotrexate. Methotrexate

increased the risk of an IQ <85 to a level equivalent to a generalised uniform brain dose of 5.9Gy; this effect should be added to any

received cranial radiotherapy dose in the PENTEC risk computation model.

(250)

A recent study by Zajac-Spychala et al. evaluated differences regarding neuropsychological outcomes and anatomical changes on

MRI at a median of 5 years after therapy between paediatric patients with high-risk ALL who were treated with or without HSCT with

fractionated TBI, and newly diagnosed ALL patients. Transplanted patients had significantly lower volumes of white and grey matter

and lower cognitive performance in several neuropsychological domains than the non-transplanted patients. This underlines the

added detriment of TBI-based HSCT in high-risk ALL patients.

(251)

Consequences after fractionated TBI

An expert review from the CIBMTR and EBMT on the neurocognitive dysfunction in both adult and paediatric HSCT recipients

recommends neurocognitive testing in children before and 1 year after HSCT and then at the beginning of each new stage of

education.

(238)

The vast majority of these children will still display neurocognitive functioning skills within the average population range and their

very-long-term neurocognitive quality of life is likely to be only moderately affected.

(252)

Secondary malignancies References

Second malignant neoplasms (SMNs) are a distressing complication for childhood ALL survivors. Children who have received HSCT

form a special risk category.

(253–257)

General observations

Chronic GvHD may have influence on the risk of SMN but this has not been systematically observed. (204, 258–260)

Prolonged immunosuppression may play a role in the correlation between chronic GvHD and SMN. (261)

Specific articles

In a cohort of 3,182 childhood acute leukaemia survivors who underwent HSCT, 25 solid tumours and 20 post-transplant

lymphoproliferative disorders were observed after a median of 6 years (range 0.4–14.3 years). The cumulative risk of solid cancers

increased to 11% at 15 years and multivariate analyses showed increased risks of solid tumour associated with high-dose TBI of

≥10Gy as a single fraction or ≥13Gy as a fractionated dose, and younger age (especially <5 years old at transplantation).

(260)

In a study of 426 children after allogeneic HSCT for multiple indications, 18 out of 20 SMNs occurring at a median follow-up of 11.7

years (range 5.4–21.5 years) developed after 12–14.4Gy fractionated TBI.

(255)

A study of 826 adolescents and young adults who received HSCT for AML extrapolated a 10-year cumulative incidence of SMN of

4%, which was equally distributed between those patients conditioned with TBI or chemotherapy; 16 tumours were diagnosed after

a median follow-up of 77 months (range 12–194).

(262)

Consequences for after fractionated TBI

All HSCT recipients and their caregivers should be advised about SMN risks and undergo appropriate screening based on the

patient’s predisposition.

(261)

Additional late effects References

Additional late effects occurring in patients who received TBI conditioning before HSCT in childhood include oral/dental sequelae,

potential splenic dysfunction, changes in body mass index, and body composition and musculoskeletal complications.

(263–267)

ALL survivors should be followed for late effects according to appropriate risk-based protocols in long-term screening programs. (5, 268)

AML, acute myeloblastic leukaemia; ALL, acute lymphoblastic leukaemia; CIBMTR, Centre for international blood and marrow transplant research; CNS, central nervous system;

CRD, chronic renal disease; EBMT, European society for blood and marrow transplantation; GvHD, Graft versus host disease; HSCT, haematopoietic stem cell transplantation; IQ,

intelligence quotient; MRI, magnetic resonance imaging; OS, overall survival; PENTEC, Paediatric normal tissues effects in the clinic; SMN, secondary malignant neoplasm; SOS,

sinusoidal obstructive syndrome; TBI, total body irradiation.

and thus discrepancies between measured doses and doses
calculated with a pencil-beam algorithm may not be relevant to
modern practise.

Shielding of Other Organs
While lung shielding for paediatric TBI delivery is common
practise for many clinics (Figures 1C,I) (27, 28), shielding of
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FIGURE 2 | Conventional vs. SSD IMRT-planned total body irradiation dose

distribution. (A) Computed tomography (CT)-planned, image-guided

intensity-modulated radiotherapy (IMRT) dose distribution with lateral-beam

setup at source-surface distance (SSD) (123); dose reductions were planned

over lungs, and kidneys. (B) CT-planned two-dimensional conventional total

body irradiation dose distribution with a lateral-beam setup, with lung dose

reduction using lung blocks; the isowash-depicted dose range in the images

represents 90% (10.8Gy; blue) to ≥110% (≥13.2Gy; red) of the

prescribed dose.

other organs occurs infrequently. However, shielding should be
considered for kidneys and lenses in children (Figure 1C). Dose-
effect evaluation of 14 published cohorts produced a kidney
BED tolerance threshold of 16Gy (195). This report and others
concluded that kidney shielding is required to avoid post-TBI
CRD for almost all myeloablative regimens (192). Eye shielding
for cataract reduction has been discussed in several papers (121,
122, 151, 160, 193). Eye shielding to BED <40Gy reduces the
risk of severe cataracts and increases latency time of cataract
formation (195, 196).

Individual centres have conventional TBI setup protocols for
shielding of the heart, liver (170) and even ovaries (289) but these
measures are reported incidentally and no clear recommendation
can be given. With highly conformal techniques, centres may
choose to deliver reduced doses to multiple OAR, while the bone
marrow/lymphoid target volume is adequately covered (31, 124).

Isocentric Highly Conformal TBI
Techniques
Isocentrically delivered IMRT TBI requires the use of a TPS. It is
a fundamentally different approach to extended SSD TBI because
it uses a much higher dose rate and requires field junctioning.

FIGURE 3 | CT-planned VMAT total body irradiation technique dose

distribution. Computed tomography (CT)-planned volumetric-modulated arc

therapy (VMAT) total body irradiation technique dose distribution for a 12Gy

prescription dose in the sagittal (A), coronal (B), and transversal view (C). The

isofill-depicted dose levels are 75% (9Gy; blue), 90% (10.8Gy; purple), and

110% (13.2Gy; red) of the prescription dose.

Examples of isocentric TBI techniques include TomoTherapy
(29, 290–293) and VMAT (30, 125, 127, 294) (Figure 3). These
isocentric techniques are seeing nascent clinical implementation
in centres around the world, although outcome data from long-
term follow-up are yet to be published.

The challenge of field junctioning in these techniques includes
the combination of head-first and feet-first treatment, as the
couch travel ability of linear accelerators is limited to 120–
150 cm (295). Most centres plan five to nine isocentres along the
patient’s longitudinal axis (30, 125, 126, 294). Aspects that have
to be considered include dose homogeneity in the junction areas,
junction from head-first to feet-first treatment and robustness of
the dose in junction areas.

Modern TPSs allow the combined optimization of multiple
isocentres and, thus, homogeneity constraints will automatically
include junction areas. This issue has been extensively addressed
in the context of CSI, which has even more challenging
homogeneity requirements (296–298). Special complexity in TBI
results from isocentre extension over two separate datasets with
different patient orientations. This is handled either by a mutual
“bias dose” addition in each plan orientation (30, 127) or by the
use of help contours to create decreasing or increasing doses in
the transition areas (294, 295). If inhomogeneities resulting from
missing divergence compensation are accepted, legs can also be
treated with a simple AP-PA technique (125).

At junction areas, robustness against setup errors is primarily
determined by two factors: 1) the length of the field overlap,
and 2) the dose profile in the transitional region (299, 300).
Whereas the former can be easily addressed by the choice of
position and number of isocentres, the latter is largely influenced
by the optimization and segmentation algorithm of the TPS and
can be supported by techniques such as “gradient optimization”
(299). In order to retain the planned inter-isocentre distance,
setup corrections must never be made for single isocentres
only but always for the entire beam set. This is substantially
complicated by the length of the planning target volume (PTV):
small rotational errors can produce significant lateral shifts in
parts of the body. Thus, planning has to ensure PTV coverage
with regard to setup as well as geometric and intrafraction
motion uncertainties. Whereas open-field techniques imply an
inherent robustness against those errors, robust VMAT planning
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is more challenging and—once again—is dependent on the TPS.
In principle, the complexity of segments should be limited and
field borders should be extended from the surface, which can
be supported by the use of a virtual bolus (29, 292, 301). The
prescription of the skin dose has to be handled carefully as
some TPSs tend to compensate dose build-up with small highly
weighted tangential fields (302). Usually, the PTV is contracted to
5mm below the skin (30, 127) but, in practise, the combination
of multiple arcs, oblique beam incidence and beam exit from
all angles significantly reduces the intrinsic photon beam skin-
sparing effect (31).

Other Physics Aspects
Energy
With both isocentric and extended SSD techniques, the choice
of energy is pertinent. A beam energy of 6 or 10MV does not
produce an additional neutron dose to the patient or staff. For
bilateral TBI setups, photon intensities of at least 10MV provide
more homogeneity than do lower intensities; homogeneity can
increase with 18 to 24MV beams but this is relevant mostly for
patients with greater body diameters (162).

Treatment Imaging
If shielding or non-open fields are used for TBI delivery,
treatment imaging may be used to monitor the position of the
patient relative to the fields or the position of the shielding
relative to the patient (123, 275).

The accuracy requirements of image guidance depend on
the plan complexity. They are generally higher for highly
conformal techniques and precision OAR dose reduction.
Isocentric techniques require multiple images to cover at least
part of the whole-body PTV but optical surface-guided devices
might also be used (127). The beam size poses an additional
challenge in extended SSD techniques: positioning the imager
in the treatment beam requires considerable shielding to protect
the electronics from radiation damage. Image acquisition using
the megavoltage beam with a detector positioned downstream
from the patient may facilitate online verification of organ
shielding but the relatively poorer image resolution has to be
taken into account.

In vivo Dosimetry
In vivo dosimetry allows the delivered dose to be monitored
to ensure that it is sufficiently close to the prescribed
dose, making it possible to adjust the fractional dose if
needed. Possible measurement devices include diodes, thermo-
luminescent dosimeters, optically stimulated luminescence
dosimeters, ionisation chambers, and film (303). These devices
have varying sensitivities to temperature, orientation with respect
to the direction of the radiation, beam energy, and radiation
exposure. Some devices offer instantaneous read-out while some
do not. Their readings may differ somewhat (304). Dosimeters
may be used to measure dose at the patient surface (at the beam
entry and/or exit). The dose at that level within the patient must
then be extrapolated from these measurements.

While the uncertainty in the measured dose in TBI may be
considerable, in vivo dosimetry facilitates a check on the delivered

dose. This is particularly pertinent when introducing a new
technique or when not using a TPS.

ORGAN SPARING TOTAL BODY
IRRADIATION, TOTAL MARROW
IRRADIATION, AND TOTAL LYMPH NODE
IRRADIATION

Image guided highly conformal delivery of TBI allows the
radiation oncology and the transplant teams to define what
critical organs to spare, what anatomic structures to target, and
the dose that each organ and target structure should receive.
This offers the advantage to reduce acute and long-term toxicities
(305), the potential to reduce risk of secondary malignancies
(306), and the ability to dose escalate to target structures
with acceptable toxicities and improved outcomes (307). This
is particularly relevant to the paediatric population where, in
patients with ALL receiving fractionated TBI, mean lung dose
>8Gy was associated with a statistically significant decrease in
overall survival (111).

TMI (Figure 4A) and TMLI (Figure 4B) are defined as highly
conformal organ sparing forms of TBI delivered to the bone
marrow, lymph nodes, and spleen (308–310), while sparing lungs,
kidneys, heart, oral cavity, GI tract, and other critical organs. In
some studies the liver, brain and testes are included as target
regions (Figure 4C) (311). Today the terms TMI/TMLI can be
broadly applied to a spectrum of highly conformal IMRT TBI
dose distributions, including TBI with only lung sparing, which
has been shown to result superior dose reduction to the lungs
compared to conventional TBI delivery using lung blocks (312).

The advantages of IMRT based delivery of TBI and TMI/TMLI
are clinically important for both adult and paediatric patients,
particularly in patients with co-morbidities who cannot tolerate
standard myeloablative TBI regimens, in paediatric patients to

FIGURE 4 | Radiation dose distribution in the coronal plane of TMI and TMLI

with different TMI/TMLI approaches. (A) Total marrow irradiation (TMI) of 12Gy

to the bone marrow. (B) Total marrow and lymphoid irradiation (TMLI) of 12Gy

to bone marrow and the lymph nodes. (C) TMLI of 20Gy to the bone, spleen,

and lymph node chains, with a liver and brain prescription dose to 12Gy. The

isofill-depicted dose levels are 10Gy (blue), 12Gy (purple), and 20Gy (red).
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FIGURE 5 | Radiation dose distribution of TMLI in a young patient.

Isofill-depicted dose levels of a 12Gy total marrow and lymphoid irradiation

(TMLI) plan in a 5 year old patient with ALL. Target structures were bone,

lymph nodes, spleen and brain. The isofill-depicted dose levels are 8.4Gy

(dark green), 9.6Gy (light green), 11.4Gy (orange), and 12Gy (red).

TABLE 2 | Median doses (Gy) to organs at risk for conventional TBI with lung

blocks vs. TMLI in a 5 year old patient with ALL.

Organ TBI 12Gy with lung

blocks

TMLI 12Gy (bone,

lymph nodes, spleen,

liver, and brain)

Lungs 8.2 4.7

Kidneys 12.0 6.1

Heart 11.1 4.6

Oral Cavity 11.9 2.9

Oesophagus 12.4 3.8

Gasto-Intestinal

tract

12.1 3.7

Bladder 12.0 6.4

Thyroid 12.2 3.9

Eyes 11.2 6.2

limit short and long term toxicities, and in patients with relapsed
or refractory (R/R) disease who have no standard transplant
options. Figure 5 and Table 2 provide an example of a TMLI
plan of a 5 year old patient with ALL, with superior organ dose
reduction compared to conventional SSD TBI.

TMI and TMLI are feasible because of advances in IMRT that
have made targeted irradiation of large body regions possible
(308, 310, 313–316). The first attempts to cover the whole bone
marrow with a very conformal dose distribution were performed
with helical TomoTherapy (HT) (308). The first planning studies
of HT-based TMI showed that the technique was feasible and that
good target coverage could be achieved while reducing doses to
key normal tissues by 35–70% compared with conventional TBI
(308, 310).

This was followed by the use of a standard linear accelerator
to deliver TMI with a number of static (so-called “step and

shoot”) IMRT fields (313, 314), with a dose reduction of 29–
65% to various OARs in comparison with conventional TBI
(314). VMAT-based TMI was shown to obtain comparable target
coverage to that obtained with HT and IMRT, with similar dose
reduction to normal tissues (314–316).

Clinical Trials in Acute Leukaemia
Including TMI and TMLI
The majority of trials have focused on patients with refractory or
relapsed (R/R) AML and ALL and are summarised below and in
Table 3. Most clinical trials have included adult and adolescent
patients, but the strategies being evaluated are applicable to
younger paediatric patients (128). A prospective observational
study including 37 children and adults treated withmyeloablative
TMI of 12Gy in six fractions over 3 days, found favourable
outcomes regarding GvHD- and relapse-free survival, as well as
toxicity outcomes when compared with retrospective data of 33
patients receiving TBI (326).

Dose-Escalated TMI and TMLI
Dose escalation by conventional delivery of TBI has reduced
relapse rates but has failed to increase OS because it increases
toxicities and non-relapse mortality (NRM) (94, 327, 328),
underscoring the need to develop targeted and organ-sparing
forms of radiotherapy such as TMI. In a Phase I trial of 51 patients
<60 years old with R/R AML and ALL, patients were conditioned
with TMLI (12–20Gy in 10 fractions on days −10 to −6),
cyclophosphamide (100 mg/kg on day −3) and etoposide (60
mg/kg on day −5) prior to allogeneic HSCT (Figure 4C) (311).
Dose escalation with acceptable toxicity to 20Gy was achievable
(327). NRM rates were 3.9% at day 100 and 8.1% at 1 year. A
subsequent Phase II trial in 57 patients reported 1-year estimates
of NRM, OS and PFS of 6, 67, and 48%, respectively, which
are superior outcomes to those reported for standard-of-care
regimens (318).

A Phase I trial of TMI (3–12Gy delivered as two fractions of
1.5Gy per day during 1–4 days) with fludarabine (40 mg/m2/day
× 4) and busulfan (4,800 µM∗min) reported a maximum
tolerated dose (MTD) of 9Gy. NRM was 29%, relapse-free
survival (RFS) was 43% and OS was 50% (319). A Phase I trial
combining dose-escalated TMI from 12 to 18Gy (3 Gy/day) with
fludarabine (25mg/m2 on days−9 to−7) and cyclophosphamide
(60 mg/m2 on days −8 and −7), established 15Gy as the MTD
(320). Other groups are evaluating larger fraction sizes of up to
5Gy in ongoing trials (32, 329, 330).

TMI or TMLI Added to Reduced-Intensity

Conditioning Regimens
Reduced-intensity conditioning (RIC) regimens were developed
for patients who cannot tolerate standardmyeloablative regimens
(331) and for paediatric patients where there are concerns
regarding feasibility of myeloablative conditioning. These
regimens are better tolerated and less cytotoxic but can be
associated with a significant increase in relapse rates and
a decrease in OS (332). Adding TMI/TMLI may achieve
myeloablative medullary radiotherapy doses while not increasing
risks for OAR. Rosenthal et al. successfully added 12Gy TMLI (in
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TABLE 3 | TMI and TMLI Trials in Patients with Acute Leukaemia.

Study* Patients (N) age

range (years)

Disease Radiation targets TMI dose (fractionation) Chemotherapy Outcomes

Wong et al. (317),

Phase I,

NCT00540995

20

23–52

Relapsed or refractory

AML

Bone, nodes, testes, spleen

12 Gy: liver, brain

12 or 13.5Gy

(1.5 BID)

Bu 4,800 µM*min

VP16 30 mg/kg

NRM: 8 of 20 patients

CR: 5 of 20 patients at 20.8–49.4 months

Stein et al. (311),

Phase I,

NCT02446964

51

16–57

AML, relapsed or

refractory ALL

Bone, nodes, testes, spleen

12 Gy: liver, brain

12–20Gy

(1.5–2.0 BID)

Cy 100 mg/kg

VP16 60 mg/kg

NRM: 3.9% at day 100, 8.1% at 1 year

PFS: 40% at 1 year

OS: 55.5% at 1 year, 41.5% at 2 years

Stein et al. (311, 318),

Phase II,

NCT02094794

57

16–59

AML or ALL, IF, relapsed

or >CR2

Bone, spleen, node

12 Gy: liver, brain

20Gy

(2.0 BID)

Cy 100 mg/kg

VP16 60 mg/kg

NRM: 4% at day 100, 6% at 1 year

PFS: 48% at 1 year

OS: 67% at 1 year

Patel et al. (319),

Phase I,

NCT00988013

14

20–65

Refractory or relapsed

AML, ALL, MDS, MM,

CML

Bone 3–12Gy

(1.5 BID)

Flu 40 mg/m2/day × 4

Bu 4,800 µM*min

NRM: 29%

RFS: 43%

OS: 50%

Hui et al. (320),

Phase I,

NCT00686556

12

2–55

High-risk ALL, AML

CR2, CR3, relapse, IF

Bone 15 or 18Gy

(3.0 BID)

Flu 25 mg/m2/day × 3

Cy 60 mg/m2/day × 2

NRM: 42% at 1 year

Relapse rate: 36%

DFS: 22% at 1 year

OS: 42% at 1 year

Rosenthal et al. (309),

Jensen et al. (321),

Pilot,

NCT00544466

61

9–70

AML, ALL >50 years old

or comorbidities

Bone, nodes, spleen

ALL: testes, brain

12Gy

(1.5 BID)

Flu 25 mg/m2/days × 4

Mel 140 mg/m2

NRM: 30% at 2 years, 33% at 5 years

EFS: 49% at 2 years, 41% at 5 years

OS: 50% at 2 years, 42% at 5 years

Welliver et al. (322),

Pilot,

NCT02122081

15

18–75

High-risk AML, ALL, MDS

>50 years old or

comorbidities and unable

to undergo TBI-based

regimens

Bone, brain, testes 12Gy

(2.0 BID)

Cy NRM: 4 of 16 patients

Median OS: 313 days

Al Malki et al. (323),

Arslan and Al Malki

(324),

Phase I,

NCT02446964

29

21–58

AML, ALL, MDS

CR1 high risk, CR2, CR3,

refractory

Haplo-identical

Bone, spleen, nodes

12 Gy: liver, spleen

16 Gy: testes in ALL

12 Gy: brain in ALL

12–20Gy

(1.5–2.0 BID)

Flu 25 mg/m2/day × 5

Cy 14.5 mg/kg/day × 2

PTCy 50 mg/kg/day × 2

NRM: 9.3% at 1 year

OS: 83% at 1 year

Relapse rate: 24% at 1 year

Pierini et al. (325),

Phase II,

NCT03977103

50

38–65

AML

CR1, CR2, PR

Haplo-identical

Bone, nodes
TMLI: bone 13.5Gy; nodes

11.7Gy if >50 years old

TBI: 13.5Gy in nine

fractions or an 8Gy single

fraction if ≤50 years old

Thio 5–10 mg/kg

Flu 150–200 mg/m2

Cy 30 mg/kg/day

T-cell manipulated graft

NRM: 10 patients

Relapse: 2 patients

Moderate/severe cGvHD: 1 patient

Moderate/severe cGvHD/RFS: 75%

Stein et al. (307),

Pilot,

NCT03467386

18

19–56

AML

CR1 and CR2

Matched donor

Bone, spleen, node

12 Gy: liver, brain

20Gy

(2.0 BID)

PTCy 50 mg/kg/day × 2 Mild cGvHD: 5 patients

OS: 100% at 1 year

RFS: 80.8% at 1 year

NRM: 0% at both day 100 and 1 year

Relapse: 3 patients (16.7%)

NCT numbers are Clinicaltrials.gov identifiers. AML, acute myeloblastic leukaemia; ALL, acute lymphoblastic leukaemia; BID, twice per day; Bu, busulfan; cGvHD, chronic graft-versus-host disease; CML, chronic myeloid leukaemia; CR1,

first complete remission; CR2, second complete remission; CR3, third complete remission; Cy, cyclophosphamide; DFS, disease free survival; EFS, event-free survival; Flu, fludarabine; Gy, Gray; IF, induction failure; MDS, myelodysplastic

syndrome; Mel, melphalan; MM, multiple myeloma; NRM, non-relapse mortality; OS, overall survival; PFS, progression-free survival; PR, partial response; PTCy, post-transplant cyclophosphamide; RFS, relapse-free survival; TBI, total

body irradiation; Thio, thiotepa; TMI, total marrow irradiation; TMLI, total marrow and lymphoid irradiation; VP-16, etoposide.
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eight fractions on days−7 to−4) (Figure 4B) to an RIC regimen
of fludarabine (25 mg/m2/day on days−7 to−4) and melphalan
(140 mg/m2 on day −2) in 61 patients (309, 321). Two-year OS
was 54%, EFS was 49% and NRM was 30%. A successor Phase I
trial of dose-escalated TMLI is ongoing, with a modified schedule
of TMLI 12–20Gy (days −9 to −5), fludarabine (30 mg/m2/day
on days −4 to −2) and melphalan (100 mg/m2 on day −2).
Welliver et al. are conducting an ongoing trial evaluating TMI
and cyclophosphamide in patients who were unable to undergo
myeloablative TBI (322).

TMI or TMLI Combined With GvHD Reduction

Strategies
Strategies to reduce GvHD include the use of post-transplant
cyclophosphamide (PTCy) (333, 334) and regulatory T
cell/conventional T cell (Treg/Tcon) adoptive immunotherapy
(325, 335). These regimens can also reduce graft vs. leukaemia
effects. TMLI has been added to counterbalance this. In a Phase
I trial, 29 patients with high-risk AML, ALL or myelodysplastic
syndrome (MDS) received TMLI (12–20Gy on days −7 to −3)
combined with a regimen of fludarabine (25 mg/m2/day on days
−7 to −4), cyclophosphamide (14.5 mg/kg/day on days −7 and
−6), and PTCy (50 mg/kg on days +3 and +4), and reported
a MTD for TMLI of 20Gy (323). At 1 year, the cumulative
incidence rate of relapse/progression was 24% and OS was 83%.
Cumulative incidence of chronic GvHD was 25%. Day 100 and
1-year NRM rates were 4 and 9%, respectively (324). A Phase II
trial is ongoing.

A recent Phase II trial of 50 patients with high-risk
AML used Treg/Tcon adoptive immunotherapy combined with
myeloablative TMLI in patients >50 years (13.5Gy to the bone
marrow and 11.7Gy to the lymph nodes in eight fractions) or TBI
in patients ≤50 years (13.5Gy in nine fractions or an 8Gy single
fraction) plus thiotepa, fludarabine, and cyclophosphamide.
Moderate/severe chronic GvHD occurred in only one patient,
NRM occurred in 10 patients, and only two patients relapsed.
With a median follow-up of 29 months, the probability of
moderate-to-severe chronic GvHD-free, relapse-free survival was
75% (325).

TMI or TMLI in Patients in First Remission as a

Possible Alternative to TBI
TMI and TMLI are under investigation for patients in remission
who normally would be eligible for standard TBI regimens (307).
A pilot trial of TMLI of 20Gy and PTCy reported a 2 year OS
86.7%, RFS of 83.3%, chronic GVHD incidence of 35% (moderate
to severe 7%) and NRM of 0%, which compares favourably to
the historical TBI experience (307). Other centres are evaluating
IMRT-based organ sparing TBI in this population (127, 292, 336,
337).

Long-Term Toxicities With TMI and TMLI
Long-term toxicities were recently reported in 142 patients
receiving TMI (129, 305). The median dose was 14Gy (range
10–19Gy). One patient developed radiation pneumonitis (0.7%).
Mean lung dose ≤8 vs. >8Gy was predictive of significantly
lower rates of both respiratory infection and IP at 2 years

(21 vs. 32%, respectively, p = 0.01). The incidence of
radiation-induced renal toxicity was 0%, hypothyroidism was
6% and cataract formation was 7%. The low incidence of
toxicities compared with conventional TBI and the successful
engraftment rates also suggest that higher dose rates with TMI
do not significantly contribute to the incidence of marrow or
organ toxicities.

Extramedullary Relapses After TMI and
TMLI
In a study assessing the incidence of extramedullary
recurrences in 101 patients undergoing allogeneic HSCT
following conditioning with TMLI, 13 patients developed
extramedullary relapses at 19 sites. The site of relapse was
not dose dependent, and the risk of extramedullary relapse
observed was comparable to that previously reported with
standard TBI, suggesting that TMLI did not increase the
risk of relapse in non-target regions (338). This possibly
indicates that the main added value of radiotherapy to
conditioning before HSCT lies in its immunosuppressive
ability and the eradication of leukaemic deposits in bone
marrow, lymphatic volumes and sanctuary sites, and not so
much in depleting extramedullary or circulating leukaemic
cell volumes. The lower integral dose given over the entire
body during TMI/TMLI may still function in eradicating
small numbers of extramedullary or circulating leukaemic
cells (339). Therefore, TMI/TMLI delivery techniques should
not be withheld based on concerns of dose heterogeneity to
extramedullary/extralymphoid sites.

CONCLUSIONS AND FUTURE
DIRECTIONS

Myeloablative fractionated TBI delivered together with
chemotherapy remains the standard for conditioning prior to
HSCT in paediatric patients with high-risk or relapsed/refractory
ALL. Since its introduction, TBI has undergone developments
to decrease the risks of late sequelae. Still, survivors typically
develop serious late effects and efforts to improve the balance
between outcomes and toxicity need to continue. While
TBI performance between different radiotherapy centres is
heterogeneous, with many centres not changing practises
for a long time, new techniques may have the potential to
mitigate adverse effects while preserving efficacy. To properly
evaluate real-world data, we need comparable TBI schedules,
uniform specifications, and comprehensive standardised
reporting of all relevant parameters. Cooperation between
treatment centres and research groups can support new insights,
implementation of new techniques and research regarding
the potential to reduce the need for TBI, lower TBI doses, or
decrease radiotherapy treatment volumes within the body.
Future studies must identify whether highly conformal TBI
or TMI/TMLI techniques offer equal disease outcomes while
reducing toxicity.
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