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Abstract: Bile duct damage is present in virtually all cholangiopathies, which share the biliary epithelial cells (i.e. cholangiocytes) as 
a common pathogenic target. Cholangiocyte cell death largely occurs through the process of apoptosis. In this review, we will summa-
rize the mechanisms through which biliary damage occurs in a variety of animal and in vitro models, such as extrahepatic cholestasis 
induced by bile duct ligation (BDL), cytotoxin- and hepatotoxin-induced liver injury, and biliary atresia. Although we have increased our 
knowledge of the factors that regulate cholangiocyte cell death mechanisms during cholangiopathies, especially in experimental models, 
there is still a lack of effective treatment modalities for these biliary disorders. However, future studies will hopefully provide for new 
therapeutic modalities for the prevention or restoration of biliary mass and function lost during the progression of cholangiopathies.
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Introduction
The liver is composed of two types of epithelial 
cells, which are hepatocytes and cholangiocytes (i.e. 
biliary epithelial cells).1,2 While hepatocytes account 
for approximately 70% of the total liver mass, chol-
angiocytes contribute to 3 to 5% of the endogenous 
liver cell population.1 Cholangiocytes line the intra- 
and extrahepatic bile ducts of the biliary system, 
which is comprised of a series of interconnected 
tube like structures that drain bile from the liver and 
delivers it to the gallbladder or duodenum.1 Chol-
angiocytes modify the composition of bile that is 
secreted at the canalicular membranes of hepato-
cytes as it flows through the biliary system.1,3,4 This 
modification involves the secretion and absorption 
of water, electrolytes and other organic solutes from 
hepatocellular bile.1,2,4–9

Cholangiocytes are the target cells of a number 
of diseases termed cholangiopathies.1 This disease 
class is made up of inherited disorders (Alagille syn-
drome and cystic fibrosis (CF)), autoimmune disor-
ders (primary sclerosing cholangitis (PSC), primary 
biliary cholangitis (PBC), autoimmune cholangitis 
(AIC), allograft rejection, graft-versus-host disease 
(GVHD)), infections (cholangitis due to bacteria, 
fungi, parasites or viruses), drug-induced injury, 
ischemic injury, and diseases of unknown etiology 
(biliary atresia and idiopathic vanishing bile duct 
syndromes).10 Cholangiopathies are predominantly 
characterized by a bile duct-directed inflammatory 
response that leads to bile duct injury associated with 
biliary proliferation in the early stage of the disease 
course.10 If the biliary injury is chronic there will be 
increased bile duct loss (ductopenia), biliary fibrosis 
and the increased incidence of bile duct cancer (i.e. 
cholangiocarcinoma).10 This review summarizes the 
mechanisms responsible for non-neoplastic cholan-
giocyte proliferation and cell death.

Types of Cell Death
Cell death has been subdivided into three categories: 
apoptosis (Type I), autophagic cell death (Type II), 
and necrosis (Type III).11–13 A fine line exists between 
the two forms of programmed cell death, apoptosis 
(‘self-killing’) and autophagy (‘self-eating’) in 
that they share common pathways and are function-
ally linked.14–16 Apoptosis is the most investigated 
of the types of programmed cell death. Apoptosis 

results from the activation of a signaling cascade of 
catabolic enzymes, which lead to the destruction of 
cellular structures and organelles.17,18 At the conclu-
sion of this process, morphologically changes occur 
that include cellular shrinkage, chromatin condensa-
tion and nuclear fragmentation.13

Apoptosis can be activated extrinsic and intrinsic 
pathways that lead to caspase-dependent cell death. 
The extrinsic pathway begins outside the cell through 
the activation of pro-apoptotic or death receptors.19 
These death receptors are members of the tumor 
necrosis factor receptor (TNFR) superfamily, which 
includes TNF-receptor 1 (TNF-R1/p55/CD120a), 
Fas (CD95/APO-1), TNF-related apoptosis-inducing 
ligand receptor (TRAIL-R1/Death Receptor-4 (DR4), 
DR3 (APO-3/TRAMP/WSL-1/LARD), and TRAIL-
R2(DR5/APO-2/KILLER).19,20 The ligands for 
death receptors include tumor necrosis factor-alpha 
(TNF-α), Apo2L/TRAIL and CD95L/FasL.20 The 
signaling mechanisms downstream of the activation 
of death receptors has been previously review.19 The 
key caspases activated by the extrinsic pathway are 
caspase 8 and 10.19 As its name suggests, the intrinsic 
pathway is initiated from within the cell. The intrinsic 
pathway is activated in response to cellular signals 
resulting from DNA damage, a defective cell cycle, 
detachment from the extracellular matrix, hypoxia, 
loss of cell survival factors, oxidative stress or other 
types of severe cell stress.21 The intrinsic pathway is 
characterized by the involvement of the mitochondria 
with mitochondrial outer membrane permeabilization 
and the release of mitochondrial cytochrome c.22 The 
release of cytochrome c stimulates the assembly of 
caspase-activating complex between caspase-9 and 
APAF1 (i.e. apoptosome).16 The role of the BH3-only 
proteins that participate in initiation of mitochondrial 
outer membrane permeabilization have been reviewed 
elsewhere.23 During DNA damage, activation of p53 
can result in the transcriptional activation of the BH3 
only proteins PUMA and NOXA, which can then pro-
mote mitochondrial outer membrane permeabiliza-
tion via BAX and BAK channels.24 In addition, DNA 
damage can also activate caspase-2 in a complex of 
proteins that involves p53-induced protein with a 
death domain (PIDD) and RIP-associated protein with 
a death domain (RAIDD), which together is known as 
the piddosome.25,26 Activation of other cellular stress 
pathways can lead to the stimulation of apoptosis 
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including the activation of caspase independent cell 
death that can result from factors that trigger lyso-
somal membrane permeabilization.27,28

On the other hand, autophagy (i.e. macroautoph-
agy) represents a stress adaptation that avoids cell 
death while suppressing apoptosis in certain cellu-
lar conditions.15 However, in other stress conditions 
it represents an alternative cell death mechanism.15 
Autophagy is a cellular mechanism that promotes 
the degradation of aging cytoplasmic proteins and 
intracellular organelles.15 Autophagy also plays a 
role in cellular adaptation to starvation by triggering 
self-catabolism to provide for the bioenergetic needs 
of the cell.29,30 The cellular signaling pathways that 
guide the cellular response to either autophagy as a 
survival or cell death mechanism and its relation-
ship with apoptosis have been thoroughly reviewed 
elsewhere.11,14–16,27,31

The definition of necrosis is somewhat ambigu-
ous in light of the fact that it is most often defined 
as a type of cell death that lacks features of apop-
tosis and autophagy, and is an uncontrolled mecha-
nism.32 Whether or not necrosis is a controlled cell 
death mechanism remains controversial.32 However, 
necrosis can include signs of controlled processes 
such as mitochondrial dysfunction, ATP depletion 
and proteolysis by calpains and cathepsins.32

Types of Cell Death Observed  
in Cholangiopathies
Necrosis is usually the consequence of acute meta-
bolic perturbations as those that occur in ischemia-
reperfusion or acute drug-induced cellular toxicity.10 
Bile duct necrosis is present in ischemic cholangiopa-
thies, which predominantly affects the middle third 
of the common bile ducts, followed by the hepatic 
duct confluence, with intrahepatic involvement being 
the least common feature.33 In the liver, autophagy 
plays a key role in the regulation of energy balance 
and nutrients for basic cell functions as well as the 
removal of misfolded proteins and the turnover of 
organelles.34 The role of autophagy as a death mecha-
nism has not been well addressed for biliary injury or 
cholestatic liver diseases. However, autophagy does 
play a role in autoimmunity in particular in the control 
of T lymphocyte homeostasis and potentially could 
be involved in immune-mediated liver diseases.32 On 
the other hand, apoptosis is thought to play a major 

role in cholestatic liver diseases such as PBC, PSC 
and biliary atresia.35,36 In immune-mediated liver dis-
eases, such as PBC, PSC and autoimmune hepatitis, 
recent studies have indicated that programmed cell 
death ligands and circulating apoptotic markers might 
serve as diagnostic markers for these diseases.35,37 
Apoptosis of cholangiocytes has been observed in a 
number of animal models of cholestasis and biliary 
injury.38–42 In light of these findings, our review will 
focus on apoptosis in non-neoplastic cholangiocytes.

Cholestatic Animal Models  
and Cholangiocyte Proliferation
A number of animal models that mimic cholestatic 
liver diseases and liver injury have been utilized 
to expand our knowledge concerning the mecha-
nisms of cholangiocyte proliferation and bile duct 
damage.1,43–47 Of these models of bile duct injury, 
the bile duct ligated (BDL) model has been the 
most commonly used.4,8,44,47,48 In normal human 
and rodent liver, cholangiocytes are mitotically 
dormant and apoptosis is rare.1,47,49 BDL induces 
proliferation of cholangiocytes. Although cholan-
giocyte apoptosis is minimal, this model has proved 
valuable because it renders cholangiocytes more 
susceptible to injury.39,40,45,50,51 Proliferating cholan-
giocytes acquire a neuroendocrine phenotype and 
secrete and respond to a number of hormones, neu-
ropeptides and neurotransmitters.52 The formation 
of a neuroendocrine compartment predominated by 
cholangiocytes represents a unique opportunity for 
cholangiocytes to regulate their own proliferation 
via autocrine pathways and for cholangiocytes to 
influence other nearby cell types, such as vascular 
endothelial cells, portal fibroblasts and hepatic stel-
late cells (HSC).52

Of importance to both normal physiology and patho-
physiology, cholangiocytes are the only cell types in the 
liver that express the secretin receptor (SR). Secretin 
stimulates ductal bile secretion by a series of coordi-
nated events, which involves the elevation of intracel-
lular 3’,5’-cyclic adenosine monophosphate (cAMP) 
leading to the activation of protein kinase A (PKA).53 
Subsequently, PKA phosphorylates the cystic fibrosis 
transmembrane conductance regulator (CFTR) trig-
gering the opening of Cl- channels leading to extrusion 
of Cl- at the apical membrane.54 The Cl- efflux from 
CFTR creates a Cl- gradient that favors the activation 
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of the apically located Cl-/HCO3
- exchanger,55 which 

results in secretin-stimulated bicarbonate-enriched 
bile.1,2,4,6,8 Several studies have revealed that SR 
expression is linked to cholangiocyte proliferative 
responses in animal models of biliary hyperplasia such 
as BDL, partial hepatectomy, chronic feeding of bile 
acids [e.g. taurocholic acid (TC)] and cirrhosis induced 
by chronic carbon tetrachloride (CCl4) administration 
and can serve as a surrogate marker for prolifera-
tive status and biliary damage.1,4,43,44,49,56 Proliferating 
cholangiocytes have increased SR expression while 
cholangiocytes that are damaged have lower levels 
of SR expression. Changes in the functional expres-
sion of this receptor have been suggested as a patho-
physiological tool for evaluating changes in the degree 
of cholangiocyte growth/loss.1,7,40,49 In humans, SR 
expression is present in the biliary tract in normal bile 
ducts and ductules and the majority of cholangiocarci-
nomas, but is not present in hepatocytes or hepatocel-
lular carcinoma.57,58 Consistent with animal models of 
cholestasis, SR expression was upregulated in ductular 
reactions in liver cirrhosis.58 No studies have deter-
mined yet whether SR expression can be a clinical 
therapeutic target. However, we have data demonstrat-
ing that cholangiocyte proliferation during cholestasis 
is heavily dependent upon the expression of SR. In SR 
knockout mice, biliary proliferation is dramatically 
reduced during extrahepatic cholestasis induced by 

BDL59 (and Alpini, G. unpublished data). Interestingly, 
cholangiocyte proliferation is predominantly regulated 
through the cAMP/PKA/ERK1/2-dependent signaling 
mechanisms, which is a critical mechanism involved 
in the activation of biliary epithelial cell damage and a 
mechanism that can be activated to protect cholangio-
cytes from damage under certain circumstances.38,46,48,60–

65 A summary of the regulation of biliary damage that 
will be discussed in the following discussion is illus-
trated in Figure 1.

Mechanisms of Cholangiocyte  
Cell Death
Sympathetic and parasympathetic 
innervation
In rat liver, sympathetic and parasympathetic nerves 
are located around the hepatic artery, portal vein, and 
intrahepatic and extrahepatic biliary epithelium.66 
Cholangiocytes have been shown to express α-1, 
α-2, β-1 and β-2 adrenergic receptor subtypes.64 The 
expression of these receptors is closely linked to the 
functional activity of cholangiocytes. The α-1 agonist, 
phenylephrine, stimulates secretin-induced choleresis 
of BDL rats through the activation of IP3/Ca2+-
dependent PKC-α and PKC-βII.64 However, the α-2 
agonist, UK14,304, modulates ductal bile secretion by 
decreasing secretin-stimulated choleresis of BDL rats 

Figure 1. Mechanisms of biliary damage during cholestasis. Bile duct ligation (BDL) induces the proliferation of cholangiocytes, which is associated with 
increased cAMP-dependent signaling mechanisms. Cholestasis induced by BDL renders cholangiocytes more sensitive to damage by hepatotoxins, 
hepatic artery ligation (HAL) and denervation. This damage is associated with increased cholangiocyte apoptosis and decreased cAMP-dependent signal-
ing mechanisms. Administration of cAMP agonists (for CCl4 and denervation), VEGF-A (for HAL), and TC (for HAL and denervation) have been shown to 
restore cholangiocyte proliferation and cAMP dependent signaling mechanisms and prevent cholangiocyte apoptosis.
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by down-regulating cAMP/PKA/CFTR/Cl-/HCO3
- 

exchanger (AE2)67 activity in cholangiocytes.61

Denervation of adrenergic terminal fibers of 
BDL rats by administration of 6-hydroxydopamine 
(6-OHDA) induces functional damage of the biliary 
system via the down-regulation of the cAMP-dependent 
signaling and the induction of cholangiocyte apopto-
sis.38 The functional damage and apoptosis induced by 
6-OHDA was reversed by the administration of for-
skolin (adenylyl cyclase activator), clenbuterol (β-2 
adrenergic agonist) and dobutamine (β-1 adrenergic 
agonist), which are all factors that stimulate adenylyl 
cyclase and elevate intracellular cAMP levels.38 Simi-
lar results were obtained when 6-OHDA treated BDL 
rats were fed the bile acid taurocholate for one week 
post 6-OHDA administration.68 Taurocholate feeding 
had previously been shown to increase cholangio-
cyte proliferation and secretion.56 Taurocholic acid 
prevented 6-OHDA-induced cholangiocyte apoptosis 
and restored cholangiocyte proliferation and secretin-
stimulated ductal secretion through an AKT-dependent 
mechanism.68

Similar findings were observed with parasympa-
thetic denervation by total vagotomy. Cholangiocytes 
express the M3 acetylcholine receptor and interruption 
of cholinergic innervation induces functional damage 
of cholangiocytes by apoptosis in BDL but not nor-
mal rats.5,47 Vagotomy-induced apoptosis was associ-
ated with decreased cAMP-dependent signaling and 
reduced cholangiocyte hyperplasia.47 In fact, chronic 
forskolin administration prevents vagotomy-induced 
damage of cholangiocytes in BDL rats. Chronic feed-
ing of taurocholic acid also prevented vagotomy-
induced apoptosis of cholangiocytes, which was 
dependent upon maintenance of ABAT (apical bile 
acid transporter) activity, down-regulation of caspase 
activity, and activation of PI3-kinase signaling.41

These studies clearly indicate the importance of 
the cAMP-dependent signaling mechanism in the 
prevention of cholangiocyte apoptosis and restoration 
of cholangiocyte proliferation in the absence of sym-
pathetic and parasympathetic innervation. Cholangio-
cyte necrosis and autophagy have not been evaluated 
in the context of sympathetic and parasympathetic 
innervation. However, these findings indicate that the 
sympathetic and parasympathetic nervous systems 
play a key role in the regulation of biliary mass during 
cholestasis and that the modulation of these systems 

could potentially have a therapeutic effect in patients 
with early extrahepatic cholestasis.

Ischemic injury
The function of the intrahepatic biliary epithelium 
is closely linked to its vascular supply the peribili-
ary vascular plexus (PBP).69 Alterations of the intra-
hepatic biliary tree during cholestasis are associated 
architectural changes of the PBP.69 The PBP undergoes 
marked proliferation in order to support the increased 
nutritional and functional demands from proliferating 
bile ducts during bile duct ligation (BDL).70 Interest-
ingly, the proliferation of the PBP occurs only after 
hyperplasia of the intrahepatic biliary epithelium dur-
ing extrahepatic cholestasis.70 Apoptosis of cholangio-
cytes is also observed in BDL rats following hepatic 
artery ligation, which interrupts the main blood supply 
of the intrahepatic biliary epithelium.70 The dramatic 
loss of cholangiocytes was presumably due to lack of 
oxygen and nutrients to supply the increased biliary 
mass induced by bile duct ligation thus, making pro-
liferating cholangiocytes more sensitive to apoptosis. 
Hepatic artery ligation was associated with the disap-
pearance of the peribiliary vascular plexus (PBP) and 
decreased expression of vascular endothelial growth 
factor (VEGF) by cholangiopcytes.42 Administration 
of recombinant VEGF-A to BDL rats with hepatic 
artery ligation prevented cholangiocyte apoptosis due 
to a VEGF-A-dependent maintenance of the PBP and 
blood flow to cholangiocytes,42 which might have 
occurred through the formation of collaterals. In addi-
tion, administration of anti-VEGF antibodies to BDL 
rats was associated with a decrease in cholangiocyte 
proliferation and increased cholangiocyte apoptosis.42 
This work highlights the importance of VEGF in the 
modulation of biliary mass and is supported by other 
studies that demonstrate that VEGF-A regulates chol-
angiocyte proliferation in an autocrine fashion during 
extrahepatic cholestasis.50 These studies suggest that 
administration of VEGF-A during ischemic periods 
such as during liver transplantation might reduce bile 
duct injury in humans.

Tumor necrosis factor-alpha  
(TNF-α)-induced and cytotoxic cell death
TNF-α is a pro-inflammatory mediator with the 
capacity to induce apoptosis. Cholangiocytes are the 
primary epithelial source of TNF-α in the liver, and 
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biliary levels of TNF-α are increased in patients with 
cholangitis following biliary tract obstruction.71,72 
TNF-α plays a critical role in epithelial cell injury as 
well as in immune-mediated cholangiocyte injury.73 
Immune mediated injury has been implicated in the 
pathogenesis of PBC and PSC.1 In vitro studies have 
demonstrated that that TNF-α in combination with 
interleukin-1 (IL-1), IL-6 and interferon-γ, inhibits 
cAMP-dependent ductal secretion.74 TNF-α binds 
to TNF-receptor 1 (TNF-R1/p55/CD120a), which 
is part of the TNF superfamily of membrane death 
receptors.19 Death receptors are characterized by a 
cytoplasmic region termed, the death domain, which 
is required for apoptotic signaling.20 The mechanisms 
by which death receptors trigger apoptosis have been 
recently reviewed.19 We have previously shown that 
TNF-α, when administered in combination with acti-
nomycin D, induces cholangiocyte apoptosis and loss 
of ductal secretion in BDL rats.45 In this study co-
incubation with actinomycin D sensitized the cholan-
giocytes from BDL (but not normal cholangiocytes) 
to TNF-α toxicity.45 These findings suggest that dur-
ing cholestasis proliferating cholangiocytes are more 
sensitive to the toxic effects of TNF-α. The bile acid, 
taurocholate, was shown to prevent TNF-α induced 
damage of cholangiocyte through the activation of 
the PI3K pathway.75

Human cholangiocytes express DR5, and TRAIL 
expression and apoptosis were shown to be signifi-
cantly elevated in cholangiocytes of human PSC and 
PBC patients.76 Takeda et al have shown that TRAIL 
receptor 2/DR5 may be a key play in the regulation 
of cholestatic liver injury.76 In the study, they dem-
onstrated that administration of agonistic anti-DR5 
antibody triggered cholangiocyte apoptosis, induced 
cholangitis and cholestatic liver injury in B6 mice.76 
BDL in the mice augmented DR5 expression and 
sensitized the mice to DR5-induced cholangitis with 
a histological presentation similar to PSC.76 Their 
findings suggest that TRAIL-mediated apoptosis 
may play an important role in the progression of 
chronic cholestasis. Recently, Feng and colleagues 
have reported an up-regulation of tumor necrosis 
factor related apoptosis-inducing ligand (TRAIL) 
receptors, death receptors (DR) DR4 and DR5, in an 
in vitro model of hypoxia/reoxygenation, a condition 
that may occur during the pathogenesis of liver dis-
eases.77 The upregulation of DR4 and DR5 resulted in 

increased sensitivity to TRAIL-induced apoptosis in 
cholangiocytes.77

TNF-α has been implicated in the pathogenesis of 
biliary atresia, which is a fibrosis/inflammatory chol-
angiopathy that obstructs the extrahepatic bile ducts 
in infants.36 Apoptosis is thought to play a key role in 
the progression of biliary atresia. In a mouse rotavirus 
model of biliary atresia, the biliary epithelium under-
goes an extensive activation of early apoptosis. This 
increase in apoptosis was associated with increased 
expression of caspase 1 and 4, interferon-γ (IFNγ)-
related and TNFα-related gene expression.36 Simulta-
neous exposure of cholangiocytes to IFNγ and TNFα 
decreased cell viability.36 Blockade of caspase activ-
ity in vivo decreased the extent of injury to the biliary 
epithelium and supports the role of apoptosis in the 
pathogenesis of biliary atresia in animal models.36

PBC is characterized by sustained macrophage 
infiltration suggesting that these immune cells may 
mediate the destruction of bile ducts.78 Activation of 
CD40 on cholangiocytes by soluble CD154 induces 
apoptosis in vitro.79 Co-incubation of human cholan-
giocytes with activated liver-derived macrophages 
stimulated CD40-dependent secretion of proinflamma-
tory cytokines and apoptosis of cholangiocytes, which 
suggest that macrophages play a role in the destruction 
of bile ducts through CD40 in liver disease pathogen-
esis.80 Recently, Shimoda and colleagues have shown 
that chemokine-adhesion molecule CX3CL1 (fractal-
kine) plays a role in bile duct destruction in PBC.81 
Their data indicate that TNF-α and CX3CL1, induced 
by toll-like receptor ligand, participate in processes 
that lead to the recruitment of lymphoid cells into the 
portal tracts characteristic of chronic nonsuppurative 
destructive cholangitis of PBC.81

Hepatoxin-induced biliary damage
As mentioned early, the bile ducts of animals with 
BDL are more sensitive to damage. However, in the 
CCl4 model of hepatotoxin induced liver damage 
both normal and BDL cholangiocytes are susceptible 
to damage.39,40 Administration of an acute dose of 
CCl4 to normal or BDL rats induces apoptosis of large 
cholangiocytes39,40 (which line large ducts).82,83 Small 
cholangiocyte (which line small ducts)82,83 were resis-
tant to injury and proliferated to compensate for the 
loss of functionally active large cholangiocytes.39,40 
Recently, it has been shown that exendin-4 (a long 
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acting analogue of glucagon-like peptide-1 (GLP-1)) 
prevents cholangiocyte apoptosis in rats with BDL 
treated with CCl4, which was due to exendin-4 ability 
to counteract the activation of the mitochondrial path-
way of apoptosis.84 On the other hand, chronic feeding 
of the hepatotoxin, α-napthylisothiocyanate (ANIT), 
induces cholangiocyte proliferation in both small 
and large cholangiocytes.51 Apoptosis is observed in 
small and large cholangiocytes upon withdrawal of 
the diet allowing for the regression of biliary mass.51

Conclusion and Future Directions
Over the previous 20 years, we have significantly 
increased our understanding of the mechanisms 
involved in cholangiocyte death. Cholangiocyte 
apoptosis plays a key role in the pathogenesis of 
many cholangiopathies such as PBC and biliary atre-
sia. In most models of biliary damage, proliferating 
cholangiocytes are more sensitive to factors that acti-
vate apoptosis (Fig. 1). New therapies based upon 
the inhibition of cholangiocyte apoptosis (i.e. biliary 
damage) should prove beneficial for sustaining bili-
ary mass in cholangiopathies that result in the loss of 
cholangiocytes, such as PBC and biliary atresia. Due 
to the high probability that a large proportion of chol-
angiopathies are autoimmune in nature, more stud-
ies that address how cholangiocytes interact with the 
immune system and immune cells will be required for 
a complete understanding of the pathogenesis of these 
devastating biliary tract diseases. In addition, evalua-
tion of the role of autophagy and its relationship with 
apoptotic programmed cell death is needed for a com-
plete understanding of how cell death mechanisms 
participate in the pathogenesis of cholangiopathies.
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