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    Introduction 
 Progranulin (PGRN) is a glycosylated protein released by a 

variety of cells. It contains a signal peptide and 7.5 tandem 

repeats of highly conserved granulin motifs each with 12 cys-

teine residues ( Bateman et al., 1990 ;  Shoyab et al., 1990 ; 

 Bhandari et al., 1992 ;  Plowman et al., 1992 ;  He and Bateman, 

2003 ). PGRN is widely expressed ( Bhandari et al., 1993 ;  Daniel 

et al., 2000 ) and has been implicated in many processes, such 

as development, tumor proliferation, wound healing, and 

infl ammation ( Bateman and Bennett, 1998 ;  He and Bateman, 

2003 ;  Ahmed et al., 2007 ). In peripheral tissues, extracellular 

proteases, such as elastase, were shown to be able to cleave 

PGRN into several GRNs (GRN A – F and paragranulin), which 

probably have separate functions ( Zhu et al., 2002 ;  He and 

Bateman, 2003 ). In models of wound healing, secreted leuko-

cyte protease inhibitor (SLPI) prevents PGRN processing 

through inhibition of elastase enzymatic activity and by binding 

PGRN and thus sequestering it from elastase ( Zhu et al., 2002 ; 

 He and Bateman, 2003 ). 

 Little is known about the role of PGRN in the central 

nervous system. PGRN is widely expressed during early 

neural development ( Daniel et al., 2003 ) but later on its ex-

pression becomes restricted to defi ned neuronal populations, 

such as cortical and hippocampal pyramidal neurons and Pur-

kinje cells ( Daniel et al., 2000 ). It has been implicated in the 

sexual differentiation of the brain ( Suzuki and Nishiahara, 

2002 ). PGRN is up-regulated in activated microglial cells 

( Baker and Manuelidis, 2003 ;  Baker et al., 2006 ;  Mackenzie 

et al., 2006 ;  Mukherjee et al., 2006 ) but not in astrocytes 

or oligodendrocytes. 

 Recently the interest in PGRN was raised because of the 

discovery of null mutations in the  PGRN  gene as a common 

cause of autosomal dominant tau-negative frontotemporal lobe 

dementia (FTLD;  Baker et al., 2006 ;  Cruts et al., 2006 ;  Gass 

et al., 2006 ;  Mukherjee et al., 2006 ;  Pickering-Brown et al., 

2006 ;  Bronner et al., 2007 ;  van der Zee et al., 2007 ). Further-

more, null mutations were also found in apparently sporadic 

patients ( Le Ber et al., 2007 ). The majority of FTLD-causing 

mutations in  PGRN  are predicted to cause functional null alleles 

with premature termination of the coding sequence followed 

by nonsense-mediated decay of the mutant mRNA ( Baker et al., 

2006 ;  Cruts et al., 2006 ). Therefore, haploinsuffi ciency with 
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ecently, mutations in the  progranulin  ( PGRN ) gene 

were found to cause familial and apparently spo-

radic frontotemporal lobe dementia (FTLD). More-

over, missense changes in  PGRN  were identifi ed in patients 

with motor neuron degeneration, a condition that is re-

lated to FTLD. Most mutations identifi ed in patients with 

FTLD until now have been null mutations. However, it re-

mains unknown whether PGRN protein levels are reduced 

in the central nervous system from such patients. The ef-

fects of PGRN on neurons also remain to be established. 

We report that PGRN levels are reduced in the cerebro-

spinal fl uid from FTLD patients carrying a PGRN mutation. 

We observe that PGRN and GRN E (one of the proteolytic 

fragments of PGRN) promote neuronal survival and en-

hance neurite outgrowth in cultured neurons. These results 

demonstrate that PGRN/GRN is a neurotrophic factor 

with activities that may be involved in the development of 

the nervous system and in neurodegeneration.
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brain neuroblastoma) cells ( Daniel et al., 2000 ) and to inhibit 

apoptosis of tumor cells ( He et al., 2002 ;  Tangkeangsirisin et al., 

2004 ), the effects of PGRN on neurons have not been estab-

lished. To explore the neurotrophic potential of PGRN, we stud-

ied the effects of recombinant GRN E (aa 494 – 594 of PGRN, 

a functional proteolytic fragment of PGRN) and full-length 

PGRN (only lacking the first 18 aa, which code for the signal 

peptide) in monocultures of rat motor and cortical neurons. 

To reduce potential confounding effects from other growth 

factors, neurons were treated with GRN E or PGRN in serum-

free medium with no other recombinant growth factors added. 

Motor neurons isolated from the ventral spinal cord were seeded 

at low density allowing reliable quantifi cation of survival by 

counting experiments ( Van Den Bosch et al., 2004 ;  Van Damme 

et al., 2007 ). GRN E was added to these cultures on day 1 in 

culture and was found to support neuronal survival in a dose-

dependent manner ( Fig. 2 A ). This neurotrophic effect was 

still visible after 1 wk, a time point at which only a limited 

number of neurons in these serum-free and neurotrophin-free 

cultures survive ( Fig. 2 B ). The maximal dose of GRN E 

increased neuronal survival by 64% on day 2 and by 101% 

on day 6. 

reduced PGRN-induced neuronal survival is thought to cause 

neurodegeneration. Missense mutations in  PGRN  have been 

identifi ed as well. They were found in some patients with 

FTLD, with or without amyotrophic lateral sclerosis (ALS; 

 Spina et al., 2007 ;  van der Zee et al., 2007 ), and in rare ALS 

patients ( Schymick et al., 2007 ;  Sleegers et al., 2008 ). The patho-

genetic nature of these missense mutations remains to be 

demonstrated. It was recently shown that several of these 

missense mutations reduce the release of PGRN and thus 

also give rise to insuffi cient availability of PGRN ( Shankaran 

et al., 2008 ). 

 Whether PGRN levels are indeed reduced in the central 

nervous system of patients with null mutations requires confi rma-

tion and whether PGRN can directly affect neurons has not 

yet been shown. We therefore measured PGRN levels in the 

cerebrospinal fl uid (CSF) from patients with PGRN mutations 

and controls and explored the potential neurotrophic effects of 

PGRN. The effects of exogenous PGRN and one of its proteo-

lytic fragments (GRN E) were studied in cortical neurons and 

spinal motor neurons, the two types of neurons relevant for 

FTLD and ALS. 

 Results and discussion 
 PGRN protein levels in the CSF from 
patients and controls 
 To measure PGRN protein levels, we developed an ELISA as-

say using a monoclonal PGRN antibody to coat 96-well plates, 

a polyclonal biotinylated PGRN antibody to detect the signal, 

and human recombinant PGRN as standard ( Fig. 1 A ). PGRN 

protein was detectable in CSF and was measured in the CSF 

from three patients carrying the Ser82fs mutation in  PGRN  and 

from 24 controls. The optical densities were 0.08  ±  0.04 and 

0.23  ±  0.02 for patients and controls, respectively (P = 0.004). 

This corresponded to 2.2  ±  1.0 and 6.2  ±  0.6 ng/ml in patients 

and controls, respectively (P = 0.04;  Fig. 1 B ). The clearly 

reduced levels in patients with the Ser82fs mutation are in 

agreement with the predicted nonsense-mediated mRNA decay 

caused by the premature translation termination, resulting in re-

duced protein levels. 

 Effect of PGRN on neuronal survival 
 Although PGRN was shown to induce proliferation of PC-12 

(rat adrenal gland pheochromocytoma) and SK-N-DZ (human 

 Figure 1.    Measurement of PGRN levels in the CSF by ELISA.  (A) Example 
of standard curve of recombinant PGRN (R 2  = 0.99). (B) Mean PGRN 
levels in controls ( n  = 24) and patients with a Ser82fs mutation ( n  = 3; 
*, P = 0.04). Error bars show mean  ±  SEM.   

 Figure 2.    PGRN/GRN improves neuronal survival.  (A) Effect of GRN E 
on survival of motor neurons on day 2 in culture normalized to survival 
on day 1 ( n  = 5 – 11; R 2  = 0.99). (B) Effect of GRN E on the survival of 
motor neurons at different time points in culture ( n  = 5 – 11; *, P  <  0.03). 
(C) Fluorescence (fl uorescein counts/1,000) emitted by cortical neurons 
seeded in different densities after loading with calcein-AM on day 2 in 
culture ( n  = 5; R 2  = 0.99; inset shows neurons loaded with calcein; Bar, 
50  μ m). (D) Effect of GRN E on fl uorescence of cortical neurons on day 2 
in culture normalized to untreated control ( n  = 8 – 15; R 2  = 0.98). (E) Effect 
of PGRN on survival of motor neurons ( n  = 6 – 10; R 2  = 0.95). (F) Effect of 
PGRN on survival of cortical neurons ( n  = 9; R 2  = 0.95). Error bars show 
mean  ±  SEM.   
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survival and axonal outgrowth, respectively, supports the hypoth-

esis that different GRNs and their precursors may have distinct 

biological functions ( Zhu et al., 2002 ). 

 Recently, PGRN-deficient mice have been generated 

( Kayasuga et al., 2007 ). These mice develop normally and do 

not show behavioral or motor abnormalities until 11 wk of age. 

However, it remains to be seen whether these animals develop 

axonal loss or neurodegeneration as they age. 

 Our results demonstrate that PGRN/GRN is a neurotrophic 

factor that enhances neuronal survival and axonal outgrowth. 

It supports the hypothesis that a relative lack of PGRN in pa-

tients with PGRN mutations may alter the integrity of neurites 

and lead to neurodegeneration. Mechanisms other than the lack 

of neurotrophic effect resulting from PGRN shortage may play 

a role in PGRN-associated neurodegeneration as well. In a 

recent study, PGRN knockdown was found to induce caspase-

dependent cleavage of TDP-43 with accumulation of TDP-43 

fragments ( Zhang et al., 2007 ), similar to what is seen in FTLD 

and ALS ( Neumann et al., 2006 ). 

 Although insuffi cient trophic support for neurons has been 

an appealing hypothesis for the pathogenesis of neurodegenera-

tive disorders and the premise for many therapeutic strategies 

( Vande Velde and Cleveland, 2005 ), PGRN is the only neuro-

trophic factor identifi ed to cause human disease through null 

mutations and haploinsuffi ciency. Therefore, it is warranted 

to investigate the therapeutic potential of PGRN for neuro-

de generative disorders. 

 Similar results were obtained in cortical neurons. To quan-

tify survival of cortical cultures, a calcein-acetyoxymethyl (AM) 

assay was used ( Bozyczko-Coyne et al., 1993 ;  Lin et al., 2001 ). 

This assay proved to reliably refl ect the number of living cells 

in culture, as shown in  Fig. 2 C . To assure that the signal ob-

tained was in the linear part of the assay, 10,000 cells per 

well were seeded for survival experiments. GRN E improved 

survival of cortical neurons by 41.4% ( Fig. 2 D ), confi rming 

that the GRN E proteolytic fragment of PGRN has neuro-

trophic properties. 

 The full-length precursor, PGRN, exerted similar neuro tro-

phic properties, both in motor and cortical neurons ( Fig. 2, E and F ). 

The maximal effect observed was a 38.5 and 22.0% increase in 

neuronal survival for motor and cortical neurons, respectively. 

 The effects of GRN E and PGRN on motor and cortical 

neurons were dose-dependent and the ED 50  (0.1 – 3 ng/ml) ap-

proximated the ED 50  of the proliferative effects on cell lines 

reported previously ( Zhou et al., 1993 ). 

 In wound healing, SLPI was shown to block PGRN pro-

cessing both by inhibiting the proteolytic activity of elastase 

and by direct binding to PGRN ( Zhu et al., 2002 ). We there-

fore investigated the effect of SLPI on the effects of PGRN 

in neuronal cultures and found that coadministration of SLPI 

abolished the neurotrophic effects of PGRN on both motor 

neurons and cortical neurons ( Fig. 3, A and B ). This suggests 

that proteolysis of PGRN is needed for it to have neurotrophic 

effects. Alternatively, because of its dual actions, SLPI may 

scavenge PGRN and thus keep PGRN from exerting its neuro-

trophic effect. 

 Effect of PGRN on neurite outgrowth 
 To study the effect of PGRN/GRN on neurite outgrowth, motor 

and cortical neuronal cultures were treated with GRN E or 

PGRN on day 0 and cells were stained for neurofi lament heavy 

chain (NF-H) after 24 h. This allowed us to quantify the size of 

the soma and the length of neurites present ( Fig. 4, A – D ). GRN E 

and PGRN had no effect on the size of the cell soma. Both 

molecules increased the maximal neurite length, an effect that 

was especially apparent after the treatment of cells with full-

length PGRN ( Fig. 4, E and F ). Again, the neurite outgrowth –

 stimulating effect of PGRN was inhibited by SLPI ( Fig. 4 F ). 

 From these experiments, it is clear that neurite length is 

mainly affected by PGRN and, to a lesser extent, by GRN E, 

whereas the opposite was true for the effect on neuronal sur-

vival. This differential effect of GRN E and PGRN on neuronal 

 Figure 3.    Inhibition of PGRN by SLPI abolishes its neurotrophic properties.  
(A and B) Effect of SLPI (ng/ml) on the neurotrophic properties of PGRN 
(ng/ml) in motor neurons (A;  n  = 3 – 4; *, P  <  0.001) and cortical neurons 
(B;  n  = 6; *, P  <  0.01). Error bars show mean  ±  SEM.   

 Figure 4.    Effect of PGRN/GRN on soma size and neurite outgrowth.  
(A – D) NF-H staining of motor neuron (A and B) and cortical culture 
(C and D) treated with GRN E (B), PGRN (D), or control (A and C; Bar, 
50  μ m). (E and F) Effect of 100 ng/ml GRN E or PGRN (in the absence 
and presence of 100 ng/ml SLPI) on soma size (E) and maximal neu-
rite length (F;  n  = 109 – 476; *, signifi cantly different from control [P  <  
0.001]; #, signifi cantly different from GRN E [P  <  0.03]). Error bars 
show mean  ±  SEM.   
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more than 100 neurons per experimental condition were measured on the 
obtained digital pictures using Lucia imaging software (version 4.60; 
 Laboratory Imaging). 

 Materials and statistics 
 Media and additives were obtained from Invitrogen. All other chemicals 
were obtained from Sigma-Aldrich. Partial recombinant human PGRN (aa 
494 – 594, coding for GRN E and fl anking regions) was obtained from Ab-
nova Corporation. Full-length recombinant human PGRN (aa 18 – 593) was 
obtained from R & D Systems. NF-H and GFAP antibodies were obtained 
from Sigma-Aldrich. NeuN antibody was obtained from Millipore and anti-
oligodendrocyte marker 04 was obtained from R & D Systems. Alexa-
labeled secondary antibodies were obtained from Invitrogen. 

 Mean data are shown as mean  ±  SEM and Student ’ s  t  tests were 
used to calculate signifi cance. When more than two groups were com-
pared, a one-way analysis of variance with Tukey-Kramer multiple compar-
isons was used. 
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