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Inflammatory bowel disease (IBD) is a chronic immune-mediated condition arising due to
complex interactions between multiple genetic and environmental factors. Despite recent
advances, the pathogenesis of the condition is not fully understood and patients still
experience suboptimal clinical outcomes. Over the past few years, investigators are
increasingly capturing multi-omics data from patient cohorts to better characterise the
disease. However, reaching clinically translatable endpoints from these complex multi-
omics datasets is an arduous task. Network biology, a branch of systems biology that
utilises mathematical graph theory to represent, integrate and analyse biological data
through networks, will be key to addressing this challenge. In this narrative review, we
provide an overview of various types of network biology approaches that have been utilised
in IBD including protein-protein interaction networks, metabolic networks, gene regulatory
networks and gene co-expression networks. We also include examples of multi-layered
networks that have combined various network types to gain deeper insights into IBD
pathogenesis. Finally, we discuss the need to incorporate other data sources including
metabolomic, histopathological, and high-quality clinical meta-data. Together with more
robust network data integration and analysis frameworks, such efforts have the potential to
realise the key goal of precision medicine in IBD.
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INTRODUCTION

Inflammatory bowel disease (IBD), comprising Ulcerative Colitis (UC) and Crohn’s disease (CD), is
a chronic, immune-mediated inflammatory disorder which primarily involves the gastrointestinal
tract (Lennard-Jones, 1989; Baumgart and Carding, 2007). It causes significant morbidity and affects
almost seven million people worldwide. The prevalence is forecasted to rise steeply in the decades
ahead, particularly in newly industrialised countries (GBD 2017 Inflammatory Bowel Disease
Collaborators, 2020). IBD arises due to a dysregulated immune response secondary to complex
interactions between multiple genetic risk factors, a “dysbiotic” gut microbiota, and environmental
factors (Xavier and Podolsky, 2007; Cader and Kaser, 2013). However, the precise mechanistic
pathways interlinking these various facets of IBD pathogenesis are still largely unknown (Cader and
Kaser, 2013). In addition, despite recent advances in medical management including the use of
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biologic and small molecule therapies, a significant proportion of
patients who wish to avoid surgery fail to achieve sustained
clinical remission (Cosnes et al., 2011). This highlights the
need for novel, effective therapeutic strategies in IBD.

Unlike rare, and well-defined monogenic disorders (e.g., cystic
fibrosis) which occur due to mutations within a single gene,
complex diseases such as IBD arise due to interactions between
numerous genetic variants and environmental factors. These
interactions occur across several layers that transcend the
ecologic, genetic, epigenetic, protein and cellular levels, and
work collectively to manifest the disease phenotype.
Consequently, IBD demonstrates significant heterogeneity
across the population i.e., patients may have varying
environmental exposures and express different genetic variants
which result in the activation of varying pathogenic pathways.
Hence, a one-size-fits-all approach to therapy, as is currently
practised, may explain the suboptimal clinical outcomes seen
in IBD.

As a result, precision medicine has been identified as a key
strategy for improving clinical outcomes in IBD (Denson et al.,
2019; Verstockt et al., 2021). Precision medicine aims to harness
the biological characteristics of individual patients to tailor the
right therapy to the right patient at the right time (Whitcomb,
2019). This would require an understanding of the function of
individual biological components and also the holistic effects of
their multifactorial interactions to stratify patients (Green et al.,
2017; Sudhakar et al., 2021). Whilst still in its infancy, an early
example of this approach in IBD is the PROFILE study. In this
trial, researchers are utilising a transcriptomic signature of
peripheral blood CD8+ T lymphocytes as a biomarker to
separate CD patients into two subgroups according to
predicted disease course to guide therapeutic strategy i.e. “step
up” vs “top down” therapy (Noor et al., 2020). This
transcriptomic signature was found to be effective for
prognostication through an earlier non-interventional study
(Biasci et al., 2019). It is anticipated that multi-omics
approaches may be even more robust for directing precision
therapies in IBD and other complex disorders (Olivera et al.,
2019; Borg-Bartolo et al., 2020). In this effort, over the past
decade, researchers across the world have begun profiling the
transcriptomics, epigenetics, metabolomics, and proteomics data
of large patient cohorts. For IBD, a number of biorepositories
have become established such as the IBD BioResource in the
United Kingdom (Parkes and IBD BioResource Investigators,
2019), the 1000IBD project in the Netherlands (Spekhorst et al.,
2017), and the IBDMultiomics Data project in the USA (Imhann
et al., 2019). However, this exponential increase in the availability
of molecular data harnessed through “omics” technologies has
created one of the biggest challenges we face in biology in the 21st
century i.e., what is the best way to make meaningful sense of this
data to ultimately improve clinical outcomes in individual
patients?

Systems biology and artificial intelligence are two
complementary fields that are driving novel computational
biology approaches to address this challenge. Systems biology
is an interdisciplinary field that allows the systematic study of
complex interactions in biological systems using a holistic

approach (Ahn et al., 2006; Breitling, 2010). Artificial
intelligence, on the other hand, is a domain within computer
science which leverages computer systems to perform tasks that
normally require human intelligence including problem-solving
and decision-making (Meskó and Görög, 2020). Machine
learning and deep learning, which are subdomains of artificial
intelligence, offer a number of potential solutions to tackle this
problem. We have previously reviewed these approaches in depth
in the context of IBD (Seyed Tabib et al., 2020). In this narrative
review, however, we will focus on the utility of network biology, a
subfield of systems biology, to facilitate precision medicine
in IBD.

Network biology is one of the fundamental tenets of systems
biology, which involves using mathematical graph theory to
represent, integrate, and analyse biological processes and data
through networks (Pavlopoulos et al., 2011). Depending on the
type of data, various biological networks can be produced, such as
protein-protein interaction networks, gene regulatory networks,
and metabolic networks (Vidal et al., 2011). Using network-based
methods as an integration and modelling tool, important
molecular interactions can be unravelled. When applied to
individual patients, personalised network analysis can lead to
the identification of new disease subtypes and therapeutic targets,
which facilitates novel drug discovery, biomarker discovery, and
drug repurposing as has been seen in cancer (Módos et al., 2017).
Hence, network biology can be a valuable tool for analysing
multi-omics patient data to achieve the key goal of precision
medicine in IBD and other complex disorders (Korcsmaros et al.,
2017).

Although in its nascent stages, in this narrative review we will
highlight a variety of innovative network biology approaches that
are bringing the promise of precision medicine closer to a
translational reality in IBD (Table 1). First, however, we will
briefly discuss some of the fundamental concepts underpinning
network biology.

KEY PRINCIPLES OF NETWORK BIOLOGY

A biological network is the representation of a biological system
using graphs. It contains biological entities (e.g., cells, proteins or
genes) and their interactions with each other (e.g., protein-
protein interactions). In network biology, these are called
nodes and edges, respectively (Koutrouli et al., 2020). The
topology of a network (i.e., the way in which nodes and edges
are arranged within a network) can be evaluated to better
understand a biological system (Figure 1). In biological
networks, the topology is usually scale-free i.e., the degree
distribution of nodes follows a power law, unlike random
networks (Barabási and Oltvai, 2004). This means that some
nodes in a biological network may have many interactions called
“hubs,”whilst other nodes may have fewer connections (Charitou
et al., 2016). Furthermore, specific regions of a scale-free network
can be more highly interconnected than other parts of the
network. These highly connected regions of a network are
called modules. Modules often correspond to specific
biological functions within the overall system. Specific nodes
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that connect distinct modules can also be identified. These are
termed “bottleneck nodes” as information needs to traverse
through them for one module (or biological subtask) to
communicate with another (Csermely et al., 2013).

To further analyse the topology of networks many tools have
been developed. One method is to identify network motifs.
Network motifs are recurring, significant patterns of
interconnections within a network (Milo et al., 2002). Network
motifs can provide insights into the type of signalling interactions
that occur within different biological networks. For instance,
feedforward loops are more common in transcriptional
regulatory networks (Hong et al., 2018). Another technique to
find the building blocks of a network is to identify graphlets.
Graphlets are small, unique (non-isomorphic) subnetworks of a
network (Przulj et al., 2004). Using graphlets, the local structure
of a network can be better described (Przulj, 2007). Przulj and her
colleagues have used graphlets to describe various networks

including protein-protein interactions (Przulj et al., 2006) and
the world trade network (Sarajlić et al., 2016).

Although it may not be possible to encapsulate all dimensions
and features of a complex disease using networks, network
analysis can be a valuable approach for better understanding
the disease. For instance, disturbance of hubs and bottlenecks in a
biological network are likely to have significant consequences on
the overall functioning of system. A prime example is the
mechanisms driving drug resistance in HER2-amplified breast
cancer, in which hub proteins within compensatory circuits and
feedback loops were identified (Lee et al., 2012). This led to novel
therapeutic strategies for overcoming drug resistance and
improving outcomes in these patients (Kirouac et al., 2013).
With the successful implementation of network biology in
breast cancer and other cancers over the past decade (Yan
et al., 2016), researchers are increasingly looking to gain
similar translatable insights in complex diseases such as IBD.

USE OF NETWORK BIOLOGY
APPROACHES IN IBD

Protein-Protein Interaction Networks
Protein-protein interaction (PPI) networks refer to networks
consisting of proteins as nodes and the physical interactions
between them as edges (Vidal et al., 2011) (Table 1). PPI data can
be captured using several different methodologies including
experimental approaches such as yeast two-hybrid assays and
affinity purification coupled mass spectrometry, as well as
computational predictive methods such as text-mining and
machine learning approaches (Snider et al., 2015). Several
resources containing PPI data are available for use including
STRING (Szklarczyk et al., 2019), BioGRID (Chatr-Aryamontri
et al., 2015), Bioplex (Huttlin et al., 2021), HAPPI-2 (Chen et al.,
2009), HuRI (Luck et al., 2020), and IntAct (Hermjakob et al.,
2004) (Table 2). PPI networks that are directed can facilitate
better modelling of intra- and inter-cellular signalling. To gain

TABLE 1 | Characteristics of various network types discussed in this review and their main advantages and disadvantages.

Network type Node Edge Required information
to build

the network

Pros Cons

Protein-protein
interaction
networks

Proteins Physical
interactions

Measurement of the actual protein
interactions e.g. using yeast two-
hybrid, affinity purification mass
spectrometry or small-scale binding
experiments

Many different resources,
based on physical interactions
ensuring larger coverage

Highly incomplete, biases in
network generating methods

Metabolic
networks

Metabolites Enzymes,
reactions

Measured reactions of the enzymes Most complete network type,
good for systematic modelling

Need to decide what
parameter to optimise

Gene regulatory
networks

Transcription factors,
promoters, enhancers,
and target genes

Regulatory
interaction

Measurement or modelling of the
regulatory interactions e.g. using
ChIP-seq, yeast one-hybrid, or
through inference from
transcriptomics

Various network building
approaches to build large
coverage and make it research
question specific

Highly variable and state-
specific, cannot infer feedback
loops from transcriptomics
only

Gene co-
expression
networks

Genes Similarity between
the expression of
two genes

Gene expression measurement Needs only transcriptomic data Correlation does not always
equal causation

FIGURE 1 | Basic network biological nomenclature and concepts. Hubs
are nodes with a high number of interactions (edges). Modules are regions of
the network where the nodes interact with members of the region more than
with non-members. Bottlenecks are nodes which are connecting two.
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information regarding the direction of PPIs, additional
experimental data is often required. Several databases have
performed a comprehensive manual curation of such
experimental data from the literature to provide information
on directed PPIs. These include SignaLink (Fazekas et al., 2013),
Reactome (Jassal et al., 2020), and the community-driven
WikiPathways (Kutmon et al., 2016) (Table 2). It is important
to note that all network resources have drawbacks depending on
the methods that were used to compile the data. Manually curated
and text mining-based networks overrepresent certain genes
which are hot topics of research - for instance, p53 is often a
culprit. On the other hand, unbiased approaches like yeast two-
hybrid or affinity purification overrepresent proteins that bind
easily to other proteins like heat shock proteins. This can
inadvertently implicate heat shock proteins as being associated
with all diseases (Csermely et al., 2013). Hence, researchers need
to be aware of the scope and bias of the network resources they
use for their analysis.

By overlaying additional expression data from RNA
sequencing or microarrays, PPI networks can be
contextualised to specific pathological states or conditions
(Figure 2). As a result, proteins are often represented by their
transcripts in PPI networks. In this way, PPI networks can be used

to detect novel disease-related genes, modules and signalling
pathways. However, the application of transcriptomics data to
build protein interactions is based on the assumption that a gene
transcript accurately represents the amount of protein within the
cell. This assumption is only partially true (Kosti et al., 2016).

Network propagation can also be utilised to reveal further
disease-associated genes (reviewed by Cowen et al. (2017)). In
short, with this approach, a set of known disease-related genes are
first mapped to a PPI network and algorithms are used to detect
additional proteins (or genes) that are likely to be disease-
associated. Such algorithms identify additional proteins (or
genes) by finding the interactor partners of the known disease-
related genes using a heat propagation algorithm or a random
walk approach. These methods assume that proteins (or genes)
near a disease-related gene are likely to be associated with the
disease as well. This is called guilt by association. Huang et al
evaluated various resources that generate PPI networks to see
which is the most useful for detecting disease-related genes using
network propagation (Huang et al., 2018). They found that the
optimal solution came from building a composite network (the
parsimonious composite network or PCNet) in which
interactions were supported by a minimum of two network
resources.

TABLE 2 | Network resources relevant to IBD research.

Name Description Website Latest version
(year)

STRING Szklarczyk et al. (2019) Large PPI database with various sources and confidence scores. It
contains text mining data and also other databases. It has both directed
and undirected interactions

https://string-db.org/ 11.5 (2021)

BioGRID Stark et al. (2006) Genetic and protein interactions from both high and low throughput
experiments

https://thebiogrid.org/ 4.4.201 (2021)

BioPlex Huttlin et al. (2021) Large affinity-purification mass spectrometry based database. It contains
undirected PPI data

https://bioplex.hms.harvard.edu/ 3.0 (2021)

HAPPI-2 Chen et al. (2017) Large database collection of PPI data with confidence scores http://discovery.informatics.uab.edu/
HAPPI/

HAPPI 2.0 (2017)

IntAct Kerrien et al. (2012) Large PPI database collection. Mostly undirected interactions https://www.ebi.ac.uk/intact/ 4.2.18 (2021)
Reactome Jassal et al. (2020) Large reaction-centric PPI database, concentrating on signalling with well-

developed toolsets. It has directed interactions
https://reactome.org/ 77 (2021)

WikiPathways Martens et al.
(2021)

Community curated database of signalling pathways. It has varying
coverage

https://www.wikipathways.org/ September 2021
(2021)

SignaLink Fazekas et al. (2013) Multi-layered database of signalling pathways with a manually curated
core extended by regulatory data, external datasets and predictions

http://signalink.org/ 3.0 (2021)

Signor Licata et al. (2020) Manually curated signalling network https://signor.uniroma2.it/ 2.0 (2020)
CellPhoneDB Efremova et al.
(2020)

Network database containing directed intercellular ligand-receptor
interactions (i.e. a type of PPI network database)

https://www.cellphonedb.org/ 2.1.7 (2021)

Ramilowski et al. Ramilowski
et al. (2015)

Directed intercellular ligand-receptor interaction (PPI) network database
developed by the FANTOM5 team

https://fantom.gsc.riken.jp/5/suppl/
Ramilowski_et_al_2015/

(2015)

DoRothEA Garcia-Alonso et al.
(2018)

Transcription factor (TF)-target gene (i.e. GRN) database with varying
confidence levels and an easy-to-use application programming
interface (API)

https://saezlab.github.io/dorothea 1.5.0 (2021)

TRRUST Han et al. (2015) Manually curated transcription factor (TF)-target gene (i.e. GRN) database https://www.grnpedia.org/trrust 2 (2017)
HuRI Luck et al. (2020) References interactome of human binary protein-protein interactions

captured using high throughput yeast two-hybrid assays
http://www.interactome-atlas.org/ April 2020 (2020)

ConsensusPathDB Kamburov
et al. (2011)

A meta-database of binary and complex protein-protein, genetic,
metabolic, signaling, gene regulatory and drug-target interactions, as well
as biochemical pathways, originating from over 30 publicly available
resources

http://cpdb.molgen.mpg.de/ Release 35 (2021)

OmniPath Türei et al. (2021) One-stop solution of intracellular and intercellular interactions. It contains
almost all the above mentioned databases and has a programmatically
accessible application programming interface (API) both in R and Python

https://omnipathdb.org/ 2.0 (2021)
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PPI network-based approaches have been frequently used in
IBD research over the past decade such as the study by Eguchi
et al. (2018). In this study, the authors determined differentially
expressed genes (DEGs) from transcriptomic data of IBD patients
and extracted a set of known IBD genes from the DisGeNet
database (Piñero et al., 2017) to construct an IBD-relevant PPI
network (Figure 2B). The authors were able to identify modules
within this network by using the DPClusO algorithm (Altaf-
Ul-Amin et al., 2012). These IBD gene-enriched modules were
used to predict novel IBD-relevant genes and pathways.

In recent years, PPI networks have also been used to generate
intercellular communication networks with single-cell RNA
sequencing (scRNAseq) data (Figure 2C). The method for
overlaying PPI networks with scRNAseq data is dependent on
the research question being asked i.e., whether the researcher is
interested in studying the overall possible ligand-receptor
interactions or the condition-specific changes in the strength
of interactions between particular cell populations (see review by
Armingol et al. (2021)). In either case, databases containing

ligand-receptor interactions are required such as CellPhoneDB
(Efremova et al., 2020), the FANTOM5 consortium database
(Ramilowski et al., 2015) or a one-stop solution OmniPath, which
we co-developed recently (Türei et al., 2021) (Table 2). OmniPath
contains both ligand-receptor interactions as well as downstream
intracellular signalling connections (Türei et al., 2021).

An example of such an approach using scRNAseq data in IBD
is the study by Smillie et al. (2019). They obtained scRNAseq data
from healthy, non-inflamed UC, and inflamed UC colonic
biopsies to create PPI networks of intercellular communication
(Smillie et al., 2019). The authors first identified ligand-receptor
interactions within specific cell types in their scRNAseq datasets
by using the FANTOM5 consortium database (Ramilowski et al.,
2015). They included only ligand and receptor genes that were
significantly differentially expressed between the three conditions
and that were also highly-expressed cell subset markers. Using the
connections between these filtered ligands and receptors they
then constructed cell-cell interaction networks. Statistical analysis
of this network revealed significant cell-cell interactions in the

FIGURE 2 | Various methods for generating PPI networks in IBD. (A) Known IBD-associated genes can be mapped to a PPI network and the nearby genes in the
network can be associated with IBD as well (guilt by association) (B)Mapping a transcriptome to the PPI network can elucidate disease-specific modules in the network
(C) Single-cell RNA-seq data combined with intercellular (ligand-receptor) communication networks can show how various cells are interacting with each other in disease
or healthy states. For b) the data from (Olsen et al., 2009) was used. For c) the uniform manifold approximation and projection (UMAP) plot (a nonlinear
dimensionality reduction technique for visualising high-dimensional data) was generated using data from Lukassen et al., 2020 (Lukassen et al., 2020).
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various states. In this way, the authors were able to reveal the
rewiring of intercellular connections between healthy and UC
states. In the healthy colonic mucosa, intercellular interactions

were largely found to be occurring between cell types typically
associated with colonic homeostasis such as T regulatory (Treg)
cells, dendritic cell type 1 (DC1) cells, as well as CD8+

FIGURE 3 | Flux balance analysis - the basics of metabolic networkmodelling. For metabolic networks the initial step involves collecting themetabolic reactions that
form the network. These reactions are represented by a stoichiometric matrix where each reaction is represented by the nodes and metabolites by the edges. The aim of
flux balance analysis is to find the optimal vector (flux) that yields the maximum output for a givenmetabolite or metabolites (Z) through these reactions. For illustration, the
glucose metabolism was used from Köenig et al., 2012 (König et al., 2012).
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intraepithelial lymphocytes (IELs) and CD8+ IL17+ T cells.
However, in both uninflamed and inflamed states of the UC
colonic mucosa, intercellular interactions were shown to be
enriched between M-like cells and inflammatory fibroblasts.

To further discern changes in intercellular communication as
well as subsequent downstream intracellular signalling in UC
patients, we interrogated the scRNAseq data from Smillie et al
using OmniPath (Türei et al., 2021). This enabled us to build an
integrated network containing both intercellular PPIs and
downstream intracellular PPIs in UC patients and healthy
controls. This analysis revealed significant rewiring of
intercellular communication between myofibroblasts and T
regulatory cells (Tregs) in UC patients in comparison to
healthy individuals. These changes in intercellular interactions
led to major downstream signalling differences in Tregs in UC
patients, in particular the TLR4 and TLR3 pathways. These
pathways regulate inflammatory cytokine expression and can
decrease the abundance of Treg cells (Türei et al., 2021).
These findings support the hypothesis that disruption of
myofibroblast-mediated regulation of Tregs may play a key
role in UC pathogenesis (Pinchuk et al., 2011).

Metabolic Networks
In metabolic networks, nodes represent metabolites whilst edges
refer to enzymes that catalyse metabolic reactions between the
substrate and product metabolites (Vidal et al., 2011). The most
common way of analysing a metabolic network is using flux-
balance analysis, which involves calculating the flow of metabolites
through the network in steady state (Orth et al., 2010; Anand et al.,
2020). (Figure 3). The aim of the analysis is to find the best
potential flux through the various reactions tomaximise the output
of a given reaction. These reactions are usually represented by cell
mass or energy (ATP production). This results in an optimizable
linear equation system giving back metabolic fluxes. The
constraints of the model can be modified by gene expression or
other experimental results. In recent years the metabolic networks
of entire organisms have become available. To model the human
host, the Recon2 resource provides a comprehensive global
reconstruction of human metabolism (Thiele et al., 2013). For
the gutmicrobiome, the semi-automatedAGORA approachmakes
it possible to reconstruct the metabolism of gut microbial
communities from metagenomic data (Magnúsdóttir et al.,
2017). These genome-scale metabolic networks make it possible
to evaluate the metabolism of the human host and gut bacterial
species in the context of IBD, and discover important host-
microbiome interactions (Jansma and El Aidy, 2021).

Out of all the network types reviewed here, metabolic
networks have the highest completeness in terms of
interactions. This makes them ideal for modelling. However,
metabolomic studies are far less numerous in comparison to
transcriptomics studies as RNA sequencing technologies are now
far more high-throughput. In addition, a disadvantage of the
standard flux balance analysis is that it needs to be optimised
towards a selected metabolic reaction. When investigating IBD,
the usual optimisation functions like cell growth are not relevant,
so other appropriate targets need to be selected e.g., bile acid
production. An alternative solution to avoid this problem is by

using the metabolic network as a template and analysing it
topologically (Knecht et al., 2016).

In a recent study, Heinken et al used the COBRA (Heirendt
et al., 2019) genome-scale metabolic modelling software to
evaluate the metabolic potential of the gut microbiome in IBD
patients (Heinken et al., 2021). They found that IBD patients with
dysbiosis had reduced metabolic diversity with diminished
sulphur production, owing to the reduced diversity in
microbial strains. In a separate study, Heinken et al also
utilised flux balance analysis and genome-scale metabolic
modelling to evaluate the differences in bile acid metabolism
between IBD patients and healthy controls (Heinken et al., 2019).
Here the optimisation function of the flux balance analysis was
bile acid biotransformation. They found that one microbial
species alone could not generate the whole spectrum of
secondary bile acids present in the gut, but microbial pairs
could generate most of these bile acids in silico. The network
modelling also revealed that the dysbiotic microbiome of
paediatric IBD patients was depleted of secondary bile acids
compared to healthy children, as observed in previous studies
(Duboc et al., 2013). The analysis also identified strain-specific
bottlenecks that limited primary bile acid (PBA)
biotransformation to secondary bile acids (SBA). Disruption of
these strains may have important consequences on the
inflammatory milieu in IBD, as PBAs and SBAs have been
found to exert immune modulatory effects on the gut mucosa
through their actions on T regulatory cells and Th17 cells (Hang
et al., 2019; Sinha et al., 2020; Song et al., 2020).

An alternative approach of utilising metabolic networks to
explore host metabolism in IBD was demonstrated by Knecht
et al. They constructed metabolic networks by selecting enzymes
which were differentially expressed between healthy controls and
paediatric IBD patients from gene expression data (Knecht et al.,
2016). They found that metabolic network coherence was high
and varied significantly between individuals in the IBD patient
cohort in comparison to healthy controls. This could have
important implications for drug response in IBD patients, as
metabolic networks can play a significant role in determining
drug metabolism and response to treatment. Further work is
needed to identify whether metabolic networks could act as a
novel biomarker for determining drug response in IBD.

Gene Regulatory Networks and Gene
Co-expression Networks
A gene regulatory network (GRN) depicts the molecules that
govern expression levels of genes as messenger RNA (mRNA)
and proteins (Vidal et al., 2011) (Table 1). Nodes can represent
transcription factor proteins, genes, cis- and trans- DNA
regulatory elements, or microRNA (miRNA). Edges represent
physical interactions between these molecular entities and are
directed i.e. information is provided regarding whether a
molecule inhibits or activates another molecule (Schlitt and
Brazma, 2007). GRNs can be mapped using yeast one-hybrid
(Y1H), chromatin immunoprecipitation (ChIP) approaches,
ChIP-sequencing, and DNA affinity purification (Yeh et al.,
2019).
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GRNs can be modelled with so-called Bayesian-based network
inference approaches to predict the hierarchy and the
directionality of the interactions in the network. Bayesian
networks are founded on the Bayes theorem, which states that
the probability of event A given the occurrence of another event B
i.e., P (A|B), is equal to the product of the probability of event B
given the occurrence of event A i.e., P(B|A) and the probability of
event A i.e., P(A), divided by the probability of event B i.e., P(B)
(Bayes, 1763) (Figure 4). We can predict the likelihood of event A
given the occurrence of event B i.e., P (A|B), if we know how often
events A and B occur and how often event B occurs given the
prior occurrence of event A. The Bayes theorem can be expanded
to be used with transcriptomics data, because the expression of
certain genes is dependent on other genes (Friedman et al., 2000).
Hence, by applying the Bayes theorem to transcriptomic data it is
possible to develop a network to predict which genes are
influencing the expression of other genes. As an output, a
Bayesian network approach produces a hierarchical graph
which reveals the most plausible causal interactions occurring
between genes. However, there are two limitations with this
approach. Firstly, the Bayesian graph has to be acyclic i.e., it

must lack biological feedback loops. Secondly, finding the optimal
Bayesian network is a computationally hard optimisation
problem as a Bayesian approach results in many equally or
similarly good solutions. To tackle the first issue, the research
question must be properly defined i.e., research questions
involving feedback loops in the biological process cannot be
studied using Bayesian network approaches. The second
problem can be addressed by reducing the optimisation
problem to a limited search space by using predefined
biologically meaningful interactions (e.g., interactions from
experimentally validated sources).

In gene co-expression networks (GCNs), nodes represent
genes and edges connect pairs of genes that are considered co-
expressed based on a certain measure (Vidal et al., 2011).
Unlike GRNs, edges are undirected and simply indicate a
correlation in the expression of two genes, from which
causality is inferred. GCNs have become a particularly
popular method in recent years as they can be constructed
directly from data obtained through high-throughput gene
expression experiments such as microarrays or RNA-
sequencing (van Dam et al., 2018). The gene co-expression
can be measured using a variety of techniques (we encourage
the reader to read the comprehensive review by Sonawane et al
for a summary of these algorithms (Sonawane et al., 2019)). Of
these, the most commonly used algorithm is the Weighted
Gene Co-expression Analysis (WGCNA) (Langfelder and
Horvath, 2008) (Figure 5). In essence, the WGCNA
algorithm calculates the correlation between the genes. This
correlation is raised on a user-defined power to filter out weak
interactions resulting in a scale-free network. The adjacency
matrix of this network is used for clustering to find modules
which represent co-regulated biological functions. GCNs and
GRNs are often used together as they complement each other.
The biggest advantage of these networks is that only gene
expression data is required and this can be specific for the
disease in question. Furthermore, the models can be refined by
adding biological constraints such as known regulatory
interactions like transcription factor-target gene
interactions. However, their largest drawback is the a priori
assumption that genes which are regulated and expressed
together have similar functions. This notion is not always
true (Sevilla et al., 2005). GRNs are also based on the
assumption that correlation implies causation.

An example of using GCNs and GRNs in IBD is the landmark
study by Jostins et al. In this paper, the authors performed ameta-
analysis of 15 genome-wide association studies (GWAS) of CD
and/or UC, to identify 73 novel and a total of 163 IBD-associated
genomic loci (Jostins et al., 2012). The authors undertook
network biology analysis of this data to understand how IBD-
associated loci may influence pathogenesis. They performed
WGCNA of gene expression data obtained from a variety of
tissues including stomach, liver, adipose tissue, and blood, and
identified 211 co-expression modules. These were then screened
against the IBD-associated genomic loci. They identified that
IBD-associated loci were particularly enriched in a module
consisting of 523 genes from omental adipose tissue obtained
from morbidly obese patients (i.e. the “IBD-enriched module”).

FIGURE 4 | Bayesian network construction for gene regulatory
networks. From the high dimension of gene expression data, the correlations
between genes can be calculated. These correlations can be modelled as
conditional probabilities and, using the Bayes theorem, a casual gene
regulatory network can be constructed.
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Jostins et al also used a Bayesian network inference method to
create a GRN for IBD. To do this, they combined both genotype
and gene expression data to infer a direction in terms of causality
for the effect of single nucleotide polymorphisms (SNPs) on the
identified gene expression. The overlap between this network and
the genes in the IBD-enriched module revealed a sub-network of
genes that were highly expressed in bone marrow-derived
macrophages. Thus, by using gene regulatory and gene co-
expression networks, the authors were able to annotate IBD-
associated GWAS loci to a particular immune cell network and
infer causality.

Peters et al employed network biology approaches in three
independent cohorts of IBD patients, representing distinct stages
of the disease (treatment naïve paediatric patients, patients

refractory to biologic therapy, and patients with advanced
disease undergoing bowel resection), to identify key driver
genes that regulated IBD networks (Peters et al., 2017). The
authors integrated data about known IBD-associated SNPs,
and expression quantitative trait loci (eQTL) and cis-
regulatory element (CRE) data from the aforementioned IBD
cohorts, to identify candidate causal IBD genes in specific
immune cell types. These candidate genes from all immune
cell types were then intersected with modules found within
GCNs obtained from the three IBD patient cohorts. The
authors then identified modules in these networks that were
significantly enriched for genes within the macrophage-enriched
immune network from Jostins et al. (2012). This enabled them to
generate “super-immune” modules by taking the union of these

FIGURE 5 | Gene co-expression network analysis. Calculating a similarity between the genes from expression data can be used as an adjacency matrix in a co-
expression network. The similarity function depends on the used method but after that the most similar parts of the network can be denoted as modules.
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modules from each cohort. By evaluating common genes of these
super-modules, the authors identified a core set of IBD
susceptibility genes that were conserved across all three
cohorts that were also enriched for the macrophage-enriched
immune network and macrophage expression. This was termed
the core immune activation module (IAM). By overlaying the
core IAM onto Bayesian networks constructed from gene
expression data from each cohort, the authors were able to
identify an IBD-specific conserved immune component (CIC)
in each network. Ultimately, using this approach, the authors
identified 133 key driver genes which could regulate the IBD CIC
networks, five of which had not been previously associated with
IBD including DOCK2, DOK3, AIF1, GPSM3, NCKAP1L. The
expression of these genes were shown to correlate with disease
duration and also were upregulated in inflamed IBD patient
intestinal biopsies.

Verstockt et al demonstrated the utility of GCNs to evaluate
gene dysregulation at various stages of CD (Verstockt et al., 2019).
In this study, transcriptomic and miRNA data were obtained
from ileal mucosal biopsies of CD patients at three different stages
of their disease i.e., newly diagnosed, recurrent disease following
ileal resection, and late-stage disease. The authors conducted a
WGCNA on this data which revealed modules that correlated
with the three disease stages. The modules positively correlating
with the different stages of CD were enriched in genes relating to
granulocyte adhesion, diapedesis, and fibrosis. Conversely, genes
associated with cholesterol biosynthesis were enriched in the
module that negatively correlated with these stages of CD.
They also constructed a miRNA-target gene GRN using the
Ingenuity Pathway Analysis (IPA) microRNA Target Filter
tool. This revealed that dysregulated miRNAs were more
abundant in newly diagnosed and late-stage CD in
comparison to post-operative recurrent CD. This suggests that
surgical resection of the ileum followed by ileo-colonic
anastomosis may reset the gene dysregulation occurring in CD.

A recent study by Aschenbrenner et al showed how GCNs
could also be used to study cytokine signalling in CD
(Aschenbrenner et al., 2021). They utilised transcriptomic data
of ileal biopsies from a cohort of treatment naïve paediatric CD
patients and non-inflamed controls to investigate the regulation
of IL23. IL23 is a pro-inflammatory cytokine that has been
implicated in IBD pathogenesis. Genetic studies have
previously identified IBD-associated SNPs affecting the IL23R
gene (Duerr et al., 2006). Furthermore, increased production of
IL23 by macrophages and dendritic cells have been detected in
mouse models of colitis and IBD patients (Maloy and Kullberg,
2008). Aschenbrenner et al conducted a WGCNA to see which
modules of the transcriptome from inflamed and non-inflamed
tissues correlate with IL23 expression. This analysis identified 22
gene co-expression modules. Analysis of these modules revealed
that IL23A expression strongly correlated with the modules
enriched in functions for “immune cell differentiation” and
“lymphocyte differentiation.” These modules were found not
to be significantly enriched in CD patients. However, an
“inflammatory cytokine” module containing myeloid and
stromal marker genes, proinflammatory cytokines (including
OSM, IL1B, and IL6) and fibroblast activation protein, was

identified that significantly correlated with IL23A expression
and were also enriched in CD patients. This work supports
the hypothesis that a subgroup of IBD patients may possess a
pathogenic myeloid-stromal cell circuit involving OSM as
identified in recent landmark studies (West et al., 2017; Smillie
et al., 2019).

Multi-Layered Network Approaches
Over the past decade, there has been an increased appetite for the
capture of different types of omics data from a single sample as it
is believed this could provide greater insights into disease biology.
This multi-omics revolution necessitates the combination of
various network modelling approaches. Multi-layered networks
can be used to integrate the many facets of multi-omics data
including the different time scales of biological processes
(Hammoud and Kramer, 2020). In recent years, various
databases have been developed such as OmniPath (Türei et al.,
2021), SignaLink2 (Fazekas et al., 2013), TranscriptomeBrowser
(Lepoivre et al., 2012) or ConsensusPathDB (Kamburov et al.,
2011), that can be used to generate multi-layered networks to
integrate multi-omics data (Santra et al., 2014).

Combining different types of networks together has unravelled
important insights into IBD pathogenesis. However, such multi-
layered network approaches have largely been performed on a
single type of omics data so far i.e., most commonly, gene
expression data. This was seen in the earlier landmark study
by Jostins et al where GCNs and GRNs were used together as
mentioned earlier (Jostins et al., 2012). More recently, Martin et al
generated intercellular ligand-receptor networks (a type of PPI
network) and GCNs from scRNAseq data obtained from ileal
biopsies of patients with ileal CD (Martin et al., 2019). By
applying gene co-expression analysis to the scRNAseq data,
they first identified a group of cell types which strongly
correlated with ileal inflammation in a subset of ileal CD
patients and also lack of response to anti-TNF therapy. They
termed this group the GIMATS (IgG plasma cells, inflammatory
mononuclear phagocytes, activated T cells and stromal cells)
module. Next they evaluated intercellular interactions
communicating with the GIMATS module by using the
scRNAseq data to identify experimentally validated cytokine-
cytokine receptor pairs (Ramilowski et al., 2015). This revealed a
distinct intercellular network driving the GIMATS module
including T cells, mononuclear phagocytes, fibroblasts and
endothelial cells.

Cell signalling networks are another important type of multi-
layered network consisting of two components: an upstream
component which is a directed PPI network containing
various intracellular signaling pathways, and a downstream
component which is a GRN of transcription factor-target
interactions (Csermely et al., 2013). The OmniPath database is
particularly useful for generating cell signalling networks as it
allows the user to not only access the intracellular PPI network of
a cell but also GRNs and even the extracellular ligand-receptor
networks from a myriad of databases (Türei et al., 2021).
Although examples of cell signalling networks have been
limited in IBD thus far, recently we established a novel
bioinformatic pipeline termed “iSNP”, to create a UC-specific
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cell signalling network from patient-derived SNP data (Brooks
et al., 2019). In this approach we focused on SNPs located within
non-coding regions of the genome, which represent the vast
majority of SNPs associated with UC. These non-coding SNPs
were annotated to transcription factor binding sites (TFBS) and
miRNA-target sites (miRNA-TS) using available databases
reporting transcription factor binding profiles and miRNA
sequences. Protein-coding genes located within the vicinity of
SNP-affected TFBS and those targeted by the SNP-affected
miRNA-TS were identified using regulatory interaction data
sources. In this way SNP-affected proteins were revealed.
Using OmniPath, the first neighbours of these SNP-affected
proteins were also pinpointed. Utilising genotyped patient data
from an IBD patient cohort in East Anglia in the
United Kingdom, we created individual patient-specific cell
signalling networks. By applying unsupervised clustering
algorithms to these patient-specific cell signalling networks, we
revealed that patients clustered into four main groups and
identified distinct pathogenic pathways involved in each
cluster. Thus, using a novel network biology workflow
involving cell signalling networks, we were able to identify
distinct regulatory effects of disease-associated non-coding
SNPs in subgroups of UC patients.

FUTURE CHALLENGES AND POTENTIAL
MITIGATING STRATEGIES TO DEVELOP
NETWORK BIOLOGY APPROACHES FOR
PRECISION MEDICINE

Despite the recent strides made in unravelling IBD pathogenesis
using the aforementioned network biology approaches, there are
several challenges that need to be overcome to achieve the goal of
precision medicine in IBD (Fiocchi and Iliopoulos, 2021).

First and foremost, research efforts must focus on acquiring
patient-specific data from a variety of relevant data sources that
could provide a more holistic picture of the disease biology of
individual patients. In the past, network biology models used only
one or two dimensions of data such as PPI networks, sets of
DEGs, or transcriptomic information to reconstruct biological
networks (Seyed Tabib et al., 2020). However, recent
breakthroughs made in cancer demonstrate that multi-layered
networks which incorporate various omics data are likely to yield
more powerful and translatable insights for complex diseases (Du
and Elemento, 2015). There is a paucity of such approaches in
IBD to date, although the aforementioned studies by Jostins et al.
(2012), Martin et al. (2019) and Brooks et al. (2019) demonstrate
the potential of such methods. In addition, despite the
exponential increase in transcriptomics and
metatranscriptomics studies in IBD in the past decade, such
datasets are often limited by low patient numbers. Recently, a
novel meta-analysis framework for transcriptome and
metatranscriptome data in IBD has been introduced, called the
IBD Transcriptome and Metatranscriptome Meta-Analysis
(TaMMA) platform (Massimino et al., 2021). The TaMMA
platform collates and integrates transcriptomics (and

metatranscriptomics) data from multiple IBD patient cohorts
using a standardised pipeline that corrects batch effects and
performs differential analysis of the data. This significantly
increases the sample size and statistical power for downstream
analysis (Modos et al., 2021). This platform, which is available as a
user-friendly, open-source web application, can maximise the
utility of existing transcriptomics and metatranscriptomics
datasets generated from various research centers across the
world. Such meta-analysis frameworks could be a powerful
way for analysing other omic layers too in the future.

In IBD, it is particularly important to consider the effects of the
gut luminal microenvironment which contains bacterial cells up to
1013 in number and their repertoire of metabolite products on the
host. However, this is an extremely complex ecosystem to model.
Adding to this complexity is the dynamic nature of the gut
microbiota, which can be affected by the age of the individual
and environmental exposures such as diet and drugs. The
development of novel genome-scale metabolic models as
mentioned earlier as well as strain-specific metabolomics have
potential to enhance our understanding of the IBD metabolome
and the intestinal microflora (Han et al., 2021; Heinken et al.,
2021). In addition to the metabolome, another data source for
integration in IBD that should be strongly considered is
histopathological data. The importance of integrating
histopathological data for precision medicine has been clearly
demonstrated in colorectal cancer (CRC) (Thomas et al., 2019).
Over the past couple of decades it has been revealed that the type,
density, and location of immune cells (i.e., the “immune
contexture”) within CRC tissues are a better prognostic tool
than the traditional Dukes staging for predicting CRC survival
and recurrence (Galon et al., 2006; Fridman et al., 2012).
Subsequently, transcriptomic data from CRC tissues were
integrated with this histological classification, to shed light on
the remarkable immunogenomic heterogeneity of CRC (Becht
et al., 2016). Similar efforts to amalgamate histopathological and
genomic data have thus far been scarce in IBD, but appear to be on
the horizon: Friedrich et al have recently revealed distinct
pathotypes in IBD that are associated with non-response to
several therapies using such an approach (Friedrich et al., 2021).
Furthermore, to fully realise the potential of molecular,
metabolomic, and histopathological data, it is integral that they
arematched with pertinent clinical metadata i.e., information of the
patients’ treatment(s), age, comorbidities etc (Ahmed, 2020). This
has been lacking in many previous studies (Olivera et al., 2019).
However, acquiring good quality clinical metadata is challenging
due to the use of paper medical records by many hospitals. Also
despite the increasing use of electronic medical records (EMRs),
hospitals seldom use the same EMR software resulting in
interoperability issues and fragmentation of data (Warren et al.,
2019). Nevertheless, artificial intelligence, including natural
language processing (NLP), may help transform the extraction
of clinical metadata from EMRs in the coming decades. Such big
data methods can help to better understand and personalise
network biology models and can also be used for validation of
findings (Olivera et al., 2019; Seyed Tabib et al., 2020) (Figure 6).

Another strategy that may yield important insights into IBD
disease pathogenesis is to evaluate omics data in IBD in the
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context of other comorbid disorders. Patients with IBD are more
likely to develop other disorders with a significant immune
component such as rheumatoid arthritis (RA), psoriasis,
asthma and colorectal cancer (García et al., 2020). These
disorders share underlying genetic risk factors and
environmental exposures which can result in similarities in the
immune pathways and cytokines driving inflammatory responses
in these conditions (Moni and Liò, 2015). This is reflected in the
fact that biologic agents targeting TNFα are effective in IBD as
well as inflammatory arthritides such as RA, axial
spondyloarthritis and psoriatic arthritis (Schett et al., 2021).
However, thus far, there has been limited work which has
evaluated multi-omics data between comorbid disease
networks involving IBD. Nevertheless, bioinformatics tools
have recently been generated that could be readily utilised to
generate comorbidity networks from published multi-omics
datasets for estimating disease comorbidity risks and patient
stratification (Moni and Liò, 2015; Xiao et al., 2018).

One of the major challenges that will need to be addressed in
all such approaches is how to integrate the vast amounts of multi-
omics data generated from disparate sources to reveal clinically

meaningful insights in IBD. Integrating genomics,
transcriptomics (ideally single-cell transcriptomics),
epigenomics, metabolomics, and metagenomic datasets of
patients together with robust clinical meta-data and
histopathological data over time will be critical for realising
the goal of precision medicine in IBD (Figure 6). However,
there is often a low degree of agreement between networks
generated from different omics datasets, making it difficult to
identify salient features that are shared between them. Therefore,
more advanced data integration and analysis methods for multi-
omics data are necessary.

Recently, a number of novel multi-omic data integration tools
have been developed but their use has not yet penetrated the field
of IBD. These include early data integration (i.e., combining all
datasets into a single dataset first before developing the model)
and late data integration (i.e., generating individual models from
each dataset first and then finally integrating the models together)
methods. Early examples of the former approach which create an
aggregative layer within a multiplex network include iCluster
(Shen et al., 2009), a joint latent variable model, and a similarity
network fusion method by Wang et al. (2014). A weighted

FIGURE 6 | Future perspectives of using network biology and network based modeling in IBD research. From the large amount of omics datasets (genomics,
transcriptomics, metabolomics, metagenomics), various interaction networks can be used to develop sophisticated network models, ideally in a multi-layered fashion.
Adding granularity with patient metadata from large databases can help to validate these models and will result in better understanding of IBD pathogenesis, novel/
personalised therapeutic strategies, and clinical decision-driving signatures.
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network fusion method has also been developed which
incorporates the relative weight or importance of each layer
when integrating omics layers (Angione et al., 2016). At
present, one of the most common methods of omics
integration is an early integration method called non-negative
matrix factorisation as implemented in the MOFA package
(Argelaguet et al., 2018). In short, in this method a large
matrix is first constructed where the columns are the patient
samples and the rows are the measurements from the various
types of omics data. This large matrix is then deconvoluted into
two matrices. The first matrix contains the various omics
measurements as rows and factors as columns, with cells
referring to the contribution of each omics measurement to a
factor. Here, factors represent biological information such as
signalling pathways or metabolomic circuits. The second
matrix is composed of samples as columns and factors as
rows, with cells referring to each factor’s value for a sample.
Each factor can be traced back to the input measurements
whether they are genomics, transcriptomics or metagenomic
inputs. This can be used to uncover hidden interactions
between various modalities of measurements. Clustering the
samples based on the factors helps to reduce the noise that
naturally arises when combining disparate data types. This
approach was shown to identify major causes of disease
heterogeneity in chronic lymphocytic leukaemia (Argelaguet
et al., 2018). Late data integration methods have also revealed
important insights into disease pathogenesis. An example is the
COSMOS tool, in which multiple networks generated from
different omics data are integrated using causal reasoning
(Dugourd et al., 2021). In this paper, the investigators
demonstrated the capability of COSMOS to integrate PPI,
GRN and two different metabolic networks from
transcriptomics, phosphoproteomics, and metabolomics data
in clear cell renal cell carcinoma. Similar non-matrix-based
omics methods were used in bacteria such as the MORA
approach, which integrates various layers of omics data
(transcriptomic, proteomics, metabolomics, genomics) to
identify the affected pathways (Bardozzo et al., 2018). This
method used mutual synchronisation of binarised omics
measurements rather than a matrix deconvolution approach to
identify affected pathways.

Recently, Malod-Dognin et al described the application of a
novel multi-omics data integration and analysis framework in
four different cancer types based on amachine learning technique
called non-negative matrix tri-factorisation (NMTF) (Malod-
Dognin et al., 2019). For each cancer type, using this approach
they were able to integrate three different types of omics tissue-
specific molecular interaction networks (i.e., PPI, GCN and gene
interaction network) into a single, unified representation of a
tissue-specific cell, which they termed “iCell.” The NMTF
algorithm is an intermediate data integration method i.e., it
integrates the information from the various models (networks)
and source data (gene expression) giving back valuable
information such as clustering of genes or local rewiring of
various genes in many networks. It uses an already filtered
network for this purpose. The method deconvolutes the
adjacency matrices of networks into three smaller matrices per

network. Two of the matrices are the same in the various
networks and they are transpose of each other that capture
sample-specific features, whilst the third matrix displays
network-specific features. This was shown to overcome the
problems associated with early data integration and late data
integration approaches that have been used previously, leading to
more accurate predictions. To further analyse these integrated
networks, they then utilised graphlets as a more sensitive method
for evaluating network topology (Przulj, 2007; Yaveroğlu et al.,
2014). The distribution of graphlets can act as a fingerprint for a
network, allowing comparisons to be made between networks
(Sarajlić et al., 2016). Overall, this innovative integrative and
analytical approach was shown to better detect the functional
organisation of cancer cells than from a single omics layer and it
identified 63 new cancer-related genes.

CONCLUSION

Network biology approaches have provided unique insights into
the pathogenesis of IBD which could not have been ascertained
through simple evaluation of molecular data. With the recent
establishment of several large biorepositories for IBD and the
advent of next-generation sequencing, we will soon be able to
access high-quality omics patient data with sufficient power to
tackle some of the key unanswered questions in the field. It is
important that this data is complemented with other relevant
data sources, especially reliable clinical metadata. Network
biology will be critical for integrating the resulting
multifaceted datasets to generate clinically translatable end-
points. In recent years, multi-omics integrative methods have
been developed and then applied successfully in the field of
cancer, but have been limited in IBD and other complex
diseases. Further research is required to develop more robust
integrative and analytical network biology approaches for
various types of omics data. Such efforts will allow us to fully
harness the potential of multi-omic patient datasets to provide
deeper insights into the pathogenesis of IBD and achieve the
goal of precision medicine in this complex disease.

NETWORK BIOLOGY GLOSSARY

Node/vertex: A point in a network. In biological networks it is
usually a gene or protein.

Link/edge: The interaction between nodes. In network
biology, it can be a physical interaction such as an enzymatic
reaction or similarity e.g. correlation between the expression of
two genes.

Directed network: The network’s edges are directed meaning
from node “v” to node “u” is not the same as from node “u” to
node “v”.

Weighted network: The edges of the network have weight. In
network biology, weights often represent the number of
interactions between cells or the strength of the interaction
between proteins which can depend on the concentration or
measured amount of the proteins (in case of proteomic analysis)
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or the amount of the genes encoding the protein (in case of
transcriptomics analysis).

Signed interaction: It is a type of weight of the network, which
informs whether the interaction is positive or negative. A negative
sign means the interaction is inhibitory, whereas a positive sign
means it is excitatory.

Degree: The number of neighbouring nodes that a particular
node connects to in a network.

Hub: A node with high degree.
Path: The set of edges connecting any two nodes.
Shortest path: The path between two nodes which involves

the least number of edges.
Betweenness centrality: The number of shortest paths which

go through a given node or edge. It is often normalised by the
number of all possible shortest paths between all nodes.

Bottleneck: A node with high betweenness centrality but low
degree. These are critical nodes in the network because a high
amount of information goes through them.

Module/community: A set of nodes in a network which are
interacting with each other more strongly than with other nodes
outside the module.

Scale free network: A network which has a degree (k)
distribution of P(k) � k−γ. In practice it means that the
network has a low number of high degree nodes whilst most
of the nodes have a really low degree. Most biological networks
closely resemble a scale free distribution.

Adjacency matrix: A matrix which models the network where
columns and rows represent nodes and each value is an edge. If the
network is undirected, then the adjacency matrix is symmetric,
whereas in directed networks the adjacency matrix is asymmetric. If
the network is not weighted then the values in the adjacency matrix
are 1. However, in a weighted network the values are the weights.

Gene interaction network: A network where the edges
represent whether the mutations of the genes together
influence a phenotype e.g. synthetic lethality.

Matrix deconvolution: Representing the matrix with multiple
smaller order matrices.

Causal reasoning: Finding the best possible path in a network
where the signs match with the output of the network.

Graphlet: A local unique (non-isomorphic) structure of a
network.

Network motif: An overrepresented local structure of a
network (for instance a common graphlet).

AUTHOR CONTRIBUTIONS

JT and DM wrote and reviewed/edited the article before
submission. JB-W and TK made substantial contributions to
the discussion of content and reviewed/edited the article
before submission.

FUNDING

JT is an Academic Clinical Fellow supported by the National
Institute of Health Research (NIHR) and has been awarded
funding through the Health Education England (HEE)
Genomics Education Programme. DM and TK are supported
by the Earlham Institute (Norwich, United Kingdom) in
partnership with the Quadram Institute (Norwich,
United Kingdom) and strategically supported by a
United Kingdom Research and Innovation (UKRI)
Biotechnological and Biosciences Research Council (BBSRC)
Core Strategic Programme Grant for Genomes to Food
Security (BB/CSP1720/1) and its constituent work packages,
BBS/E/T/000PR9819 and BBS/E/T/000PR9817, as well as a
BBSRC ISP grant for Gut Microbes and Health (BB/R012490/
1) and its constituent projects, BBS/E/F/000PR10353 and BBS/E/
F/000PR10355.

REFERENCES

Ahmed, Z. (2020). Practicing Precision Medicine with Intelligently Integrative
Clinical and Multi-Omics Data Analysis. Hum. Genomics 14, 35. doi:10.1186/
s40246-020-00287-z

Ahn, A. C., Tewari, M., Poon, C.-S., and Phillips, R. S. (2006). The Limits of
Reductionism in Medicine: Could Systems Biology Offer an Alternative? Plos
Med. 3, e208. doi:10.1371/journal.pmed.0030208

Altaf-Ul-Amin, M., Wada, M., and Kanaya, S. (2012). Partitioning a PPI
Network into Overlapping Modules Constrained by High-Density and
Periphery Tracking. ISRN Biomathematics 2012, 1–11. doi:10.5402/2012/
726429

Anand, S., Mukherjee, K., and Padmanabhan, P. (2020). An Insight to Flux-Balance
Analysis for Biochemical Networks. Biotechnol. Genet. Eng. Rev. 36, 32–55.
doi:10.1080/02648725.2020.1847440

Angione, C., Conway, M., and Lió, P. (2016). Multiplex Methods Provide Effective
Integration of Multi-Omic Data in Genome-Scale Models. BMC Bioinformatics
17, 83. doi:10.1186/s12859-016-0912-1

Argelaguet, R., Velten, B., Arnol, D., Dietrich, S., Zenz, T., Marioni, J. C., et al.
(2018). Multi-Omics Factor Analysis-A Framework for Unsupervised
Integration of Multi-omics Data Sets. Mol. Syst. Biol. 14, e8124.
doi:10.15252/msb.20178124

Armingol, E., Officer, A., Harismendy, O., and Lewis, N. E. (2021). Deciphering
Cell-Cell Interactions and Communication from Gene Expression. Nat. Rev.
Genet. 22, 71–88. doi:10.1038/s41576-020-00292-x

Aschenbrenner, D., Quaranta, M., Banerjee, S., Ilott, N., Jansen, J., Steere, B., et al.
(2021). Deconvolution of Monocyte Responses in Inflammatory Bowel Disease
Reveals an IL-1 Cytokine Network that Regulates IL-23 in Genetic and
Acquired IL-10 Resistance. Gut 70, 1023–1036. doi:10.1136/gutjnl-2020-
321731

Barabási, A.-L., and Oltvai, Z. N. (2004). Network Biology: Understanding the
Cell’s Functional Organization. Nat. Rev. Genet. 5, 101–113. doi:10.1038/
nrg1272

Bardozzo, F., Lió, P., and Tagliaferri, R. (2018). A Study on Multi-Omic
Oscillations in Escherichia coli Metabolic Networks. BMC Bioinformatics 19,
194. doi:10.1186/s12859-018-2175-5

Baumgart, D. C., and Carding, S. R. (2007). Inflammatory Bowel Disease: Cause
and Immunobiology. Lancet 369, 1627–1640. doi:10.1016/S0140-6736(07)
60750-8

Bayes, T. (1763). LII. An Essay towards Solving a Problem in the Doctrine of
Chances. By the Late Rev. Mr. Bayes, F. R. S. Communicated by Mr. Price, in a
Letter to John Canton, A. M. F. R. S. Phil. Trans. R. Soc. 53, 370–418.
doi:10.1098/rstl.1763.0053

Becht, E., de Reyniès, A., Giraldo, N. A., Pilati, C., Buttard, B., Lacroix, L., et al.
(2016). Immune and Stromal Classification of Colorectal Cancer Is Associated

Frontiers in Genetics | www.frontiersin.org October 2021 | Volume 12 | Article 76050114

Thomas et al. Network Biology Approaches in IBD

https://doi.org/10.1186/s40246-020-00287-z
https://doi.org/10.1186/s40246-020-00287-z
https://doi.org/10.1371/journal.pmed.0030208
https://doi.org/10.5402/2012/726429
https://doi.org/10.5402/2012/726429
https://doi.org/10.1080/02648725.2020.1847440
https://doi.org/10.1186/s12859-016-0912-1
https://doi.org/10.15252/msb.20178124
https://doi.org/10.1038/s41576-020-00292-x
https://doi.org/10.1136/gutjnl-2020-321731
https://doi.org/10.1136/gutjnl-2020-321731
https://doi.org/10.1038/nrg1272
https://doi.org/10.1038/nrg1272
https://doi.org/10.1186/s12859-018-2175-5
https://doi.org/10.1016/S0140-6736(07)60750-8
https://doi.org/10.1016/S0140-6736(07)60750-8
https://doi.org/10.1098/rstl.1763.0053
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


with Molecular Subtypes and Relevant for Precision Immunotherapy. Clin.
Cancer Res. 22, 4057–4066. doi:10.1158/1078-0432.CCR-15-2879

Biasci, D., Lee, J. C., Noor, N. M., Pombal, D. R., Hou, M., Lewis, N., et al. (2019). A
Blood-Based Prognostic Biomarker in IBD. Gut 68, 1386–1395. doi:10.1136/
gutjnl-2019-318343

Borg-Bartolo, S. P., Boyapati, R. K., Satsangi, J., and Kalla, R. (2020). Precision
Medicine in Inflammatory Bowel Disease: Concept, Progress and Challenges.
F1000Res 9, 54. doi:10.12688/f1000research.20928.1

Breitling, R. (2010). What Is Systems Biology. Front. Physio. 1, 9. doi:10.3389/
fphys.2010.00009

Brooks, J., Modos, D., Sudhakar, P., Fazekas, D., Zoufir, A., Kapuy, O., et al.
(2019). A Systems Genomics Approach to Uncover Patient-specific
Pathogenic Pathways and Proteins in a Complex Disease. BioRxiv.
doi:10.1101/692269

Cader, M. Z., and Kaser, A. (2013). Recent Advances in Inflammatory Bowel
Disease: Mucosal Immune Cells in Intestinal Inflammation.Gut 62, 1653–1664.
doi:10.1136/gutjnl-2012-303955

Charitou, T., Bryan, K., and Lynn, D. J. (2016). Using Biological Networks to
Integrate, Visualize and Analyze Genomics Data. Genet. Sel. Evol. 48, 27.
doi:10.1186/s12711-016-0205-1

Chatr-Aryamontri, A., Breitkreutz, B.-J., Oughtred, R., Boucher, L., Heinicke, S.,
Chen, D., et al. (2015). The BioGRID Interaction Database: 2015 Update.
Nucleic Acids Res. 43, D470–D478. doi:10.1093/nar/gku1204

Chen, J., Mamidipalli, S., and Huan, T. (2009). HAPPI: an Online Database of
Comprehensive Human Annotated and Predicted Protein Interactions. BMC
Genomics 10, S16. doi:10.1186/1471-2164-10-S1-S16

Chen, J. Y., Pandey, R., and Nguyen, T. M. (2017). HAPPI-2: a Comprehensive and
High-Quality Map of Human Annotated and Predicted Protein Interactions.
BMC Genomics 18, 182. doi:10.1186/s12864-017-3512-1

Cosnes, J., Gower–Rousseau, C., Seksik, P., and Cortot, A. (2011). Epidemiology
and Natural History of Inflammatory Bowel Diseases. Gastroenterology 140,
1785–1794. doi:10.1053/j.gastro.2011.01.055

Cowen, L., Ideker, T., Raphael, B. J., and Sharan, R. (2017). Network Propagation: a
Universal Amplifier of Genetic Associations. Nat. Rev. Genet. 18, 551–562.
doi:10.1038/nrg.2017.38

Csermely, P., Korcsmáros, T., Kiss, H. J. M., London, G., and Nussinov, R. (2013).
Structure and Dynamics of Molecular Networks: A Novel Paradigm of Drug
Discovery. Pharmacol. Ther. 138, 333–408. doi:10.1016/
j.pharmthera.2013.01.016

Denson, L. A., Curran, M., McGovern, D. P. B., Koltun, W. A., Duerr, R. H., Kim, S.
C., et al. (2019). Challenges in IBD Research: Precision Medicine. Inflamm.
Bowel Dis. 25, S31–S39. doi:10.1093/ibd/izz078

Du, W., and Elemento, O. (2015). Cancer Systems Biology: Embracing Complexity
to Develop Better Anticancer Therapeutic Strategies. Oncogene 34, 3215–3225.
doi:10.1038/onc.2014.291

Duboc, H., Rajca, S., Rainteau, D., Benarous, D., Maubert, M.-A., Quervain, E., et al.
(2013). Connecting Dysbiosis, Bile-Acid Dysmetabolism and Gut
Inflammation in Inflammatory Bowel Diseases. Gut 62, 531–539.
doi:10.1136/gutjnl-2012-302578

Duerr, R. H., Taylor, K. D., Brant, S. R., Rioux, J. D., Silverberg, M. S., Daly, M. J.,
et al. (2006). A Genome-wide Association Study Identifies IL23R as an
Inflammatory Bowel Disease Gene. Science 314, 1461–1463. doi:10.1126/
science.1135245

Dugourd, A., Kuppe, C., Sciacovelli, M., Gjerga, E., Gabor, A., Emdal, K. B., et al.
(2021). Causal Integration of Multi-omics Data with Prior Knowledge to
Generate Mechanistic Hypotheses. Mol. Syst. Biol. 17, e9730. doi:10.15252/
msb.20209730

Efremova, M., Vento-Tormo, M., Teichmann, S. A., and Vento-Tormo, R. (2020).
CellPhoneDB: Inferring Cell-Cell Communication from Combined Expression
of Multi-Subunit Ligand-Receptor Complexes. Nat. Protoc. 15, 1484–1506.
doi:10.1038/s41596-020-0292-x

Eguchi, R., Karim, M. B., Hu, P., Sato, T., Ono, N., Kanaya, S., et al. (2018). An
Integrative Network-Based Approach to Identify Novel Disease Genes and
Pathways: a Case Study in the Context of Inflammatory Bowel Disease. BMC
Bioinformatics 19, 264. doi:10.1186/s12859-018-2251-x

Fazekas, D., Koltai, M., Türei, D., Módos, D., Pálfy, M., Dúl, Z., et al. (2013).
SignaLink 2 - a Signaling Pathway Resource with Multi-Layered Regulatory
Networks. BMC Syst. Biol. 7, 7. doi:10.1186/1752-0509-7-7

Fiocchi, C., and Iliopoulos, D. (2021). IBD Systems Biology Is Here to Stay.
Inflamm. Bowel Dis. 27, 760–770. doi:10.1093/ibd/izaa343

Fridman, W. H., Pagès, F., Sautès-Fridman, C., and Galon, J. (2012). The Immune
Contexture in Human Tumours: Impact on Clinical Outcome.Nat. Rev. Cancer
12, 298–306. doi:10.1038/nrc3245

Friedman, N., Linial, M., Nachman, I., and Pe’er, D. (2000). Using Bayesian
Networks to Analyze Expression Data. J. Comput. Biol. 7, 601–620. doi:10.1089/
106652700750050961

Friedrich, M., Pohin, M., Jackson, M. A., Korsunsky, I., Bullers, S., Rue-Albrecht,
K., et al. (2021). IL-1-driven Stromal-Neutrophil Interaction in Deep Ulcers
Defines a Pathotype of Therapy Non-responsive Inflammatory Bowel Disease.
BioRxiv. doi:10.1101/2021.02.05.429804

Galon, J., Costes, A., Sanchez-Cabo, F., Kirilovsky, A., Mlecnik, B., Lagorce-Pagès,
C., et al. (2006). Type, Density, and Location of Immune Cells within Human
Colorectal Tumors Predict Clinical Outcome. Science 313, 1960–1964.
doi:10.1126/science.1129139

García, M. J., Pascual, M., Del Pozo, C., Díaz-González, A., Castro, B., Rasines, L.,
et al. (2020). Impact of Immune-Mediated Diseases in Inflammatory Bowel
Disease and Implications in Therapeutic Approach. Sci. Rep. 10, 10731.
doi:10.1038/s41598-020-67710-2

Garcia-Alonso, L., Iorio, F., Matchan, A., Fonseca, N., Jaaks, P., Peat, G., et al.
(2018). Transcription Factor Activities Enhance Markers of Drug Sensitivity in
Cancer. Cancer Res. 78, 769–780. doi:10.1158/0008-5472.CAN-17-1679

GBD 2017 Inflammatory Bowel Disease Collaborators (2020). The Global,
Regional, and National burden of Inflammatory Bowel Disease in 195
Countries and Territories, 1990-2017: a Systematic Analysis for the Global
Burden of Disease Study 2017. Lancet Gastroenterol. Hepatol. 5, 17–30.
doi:10.1016/S2468-1253(19)30333-4

Green, S., Şerban, M., Scholl, R., Jones, N., Brigandt, I., and Bechtel, W. (2017).
Network Analyses in Systems Biology: New Strategies for Dealing with
Biological Complexity. Synthese 195, 1751–1777. doi:10.1007/s11229-016-
1307-6

Hammoud, Z., and Kramer, F. (2020). Multilayer Networks: Aspects,
Implementations, and Application in Biomedicine. Big Data Anal. 5, 2.
doi:10.1186/s41044-020-00046-0

Han, H., Shim, H., Shin, D., Shim, J. E., Ko, Y., Shin, J., et al. (2015). TRRUST: a
Reference Database of Human Transcriptional Regulatory Interactions. Sci.
Rep. 5, 11432. doi:10.1038/srep11432

Han, S., Van Treuren, W., Fischer, C. R., Merrill, B. D., DeFelice, B. C., Sanchez,
J. M., et al. (2021). A Metabolomics Pipeline for the Mechanistic Interrogation
of the Gut Microbiome. Nature 595, 415–420. doi:10.1038/s41586-021-03707-9

Hang, S., Paik, D., Yao, L., Kim, E., Trinath, J., Lu, J., et al. (2019). Bile Acid
Metabolites Control TH17 and Treg Cell Differentiation. Nature 576, 143–148.
doi:10.1038/s41586-019-1785-z

Heinken, A., Hertel, J., and Thiele, I. (2021). Metabolic Modelling Reveals Broad
Changes in Gut Microbial Metabolism in Inflammatory Bowel Disease Patients
with Dysbiosis. NPJ Syst. Biol. Appl. 7, 19. doi:10.1038/s41540-021-00178-6

Heinken, A., Ravcheev, D. A., Baldini, F., Heirendt, L., Fleming, R. M. T., and
Thiele, I. (2019). Systematic Assessment of Secondary Bile Acid Metabolism in
Gut Microbes Reveals Distinct Metabolic Capabilities in Inflammatory Bowel
Disease. Microbiome 7, 75. doi:10.1186/s40168-019-0689-3

Heirendt, L., Arreckx, S., Pfau, T., Mendoza, S. N., Richelle, A., Heinken, A., et al.
(2019). Creation and Analysis of Biochemical Constraint-Based Models Using
the COBRA Toolbox v.3.0. Nat. Protoc. 14, 639–702. doi:10.1038/s41596-018-
0098-2

Hermjakob, H., Montecchi-Palazzi, L., Lewington, C., Mudali, S., Kerrien, S.,
Orchard, S., et al. (2004). IntAct: an Open Source Molecular Interaction
Database. Nucleic Acids Res. 32, 452D–455D. doi:10.1093/nar/gkh052

Hong, J., Brandt, N., Abdul-Rahman, F., Yang, A., Hughes, T., and Gresham, D.
(2018). An Incoherent Feedforward Loop Facilitates Adaptive Tuning of Gene
Expression. eLife 7, e32323. doi:10.7554/eLife.32323

Huang, J. K., Carlin, D. E., Yu, M. K., Zhang, W., Kreisberg, J. F., Tamayo, P., et al.
(2018). Systematic Evaluation of Molecular Networks for Discovery of Disease
Genes. Cel Syst. 6, 484–495. doi:10.1016/j.cels.2018.03.001

Huttlin, E. L., Bruckner, R. J., Navarrete-Perea, J., Cannon, J. R., Baltier, K.,
Gebreab, F., et al. (2021). Dual Proteome-Scale Networks Reveal Cell-specific
Remodeling of the Human Interactome. Cell 184, 3022–3040. doi:10.1016/
j.cell.2021.04.011

Frontiers in Genetics | www.frontiersin.org October 2021 | Volume 12 | Article 76050115

Thomas et al. Network Biology Approaches in IBD

https://doi.org/10.1158/1078-0432.CCR-15-2879
https://doi.org/10.1136/gutjnl-2019-318343
https://doi.org/10.1136/gutjnl-2019-318343
https://doi.org/10.12688/f1000research.20928.1
https://doi.org/10.3389/fphys.2010.00009
https://doi.org/10.3389/fphys.2010.00009
https://doi.org/10.1101/692269
https://doi.org/10.1136/gutjnl-2012-303955
https://doi.org/10.1186/s12711-016-0205-1
https://doi.org/10.1093/nar/gku1204
https://doi.org/10.1186/1471-2164-10-S1-S16
https://doi.org/10.1186/s12864-017-3512-1
https://doi.org/10.1053/j.gastro.2011.01.055
https://doi.org/10.1038/nrg.2017.38
https://doi.org/10.1016/j.pharmthera.2013.01.016
https://doi.org/10.1016/j.pharmthera.2013.01.016
https://doi.org/10.1093/ibd/izz078
https://doi.org/10.1038/onc.2014.291
https://doi.org/10.1136/gutjnl-2012-302578
https://doi.org/10.1126/science.1135245
https://doi.org/10.1126/science.1135245
https://doi.org/10.15252/msb.20209730
https://doi.org/10.15252/msb.20209730
https://doi.org/10.1038/s41596-020-0292-x
https://doi.org/10.1186/s12859-018-2251-x
https://doi.org/10.1186/1752-0509-7-7
https://doi.org/10.1093/ibd/izaa343
https://doi.org/10.1038/nrc3245
https://doi.org/10.1089/106652700750050961
https://doi.org/10.1089/106652700750050961
https://doi.org/10.1101/2021.02.05.429804
https://doi.org/10.1126/science.1129139
https://doi.org/10.1038/s41598-020-67710-2
https://doi.org/10.1158/0008-5472.CAN-17-1679
https://doi.org/10.1016/S2468-1253(19)30333-4
https://doi.org/10.1007/s11229-016-1307-6
https://doi.org/10.1007/s11229-016-1307-6
https://doi.org/10.1186/s41044-020-00046-0
https://doi.org/10.1038/srep11432
https://doi.org/10.1038/s41586-021-03707-9
https://doi.org/10.1038/s41586-019-1785-z
https://doi.org/10.1038/s41540-021-00178-6
https://doi.org/10.1186/s40168-019-0689-3
https://doi.org/10.1038/s41596-018-0098-2
https://doi.org/10.1038/s41596-018-0098-2
https://doi.org/10.1093/nar/gkh052
https://doi.org/10.7554/eLife.32323
https://doi.org/10.1016/j.cels.2018.03.001
https://doi.org/10.1016/j.cell.2021.04.011
https://doi.org/10.1016/j.cell.2021.04.011
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Imhann, F., Van der Velde, K. J., Barbieri, R., Alberts, R., Voskuil, M. D., Vich Vila,
A., et al. (2019). The 1000IBD Project: Multi-Omics Data of 1000 Inflammatory
Bowel Disease Patients; Data Release 1. BMC Gastroenterol. 19, 5. doi:10.1186/
s12876-018-0917-5

Jansma, J., and El Aidy, S. (2021). Understanding the Host-Microbe Interactions
Using Metabolic Modeling.Microbiome 9, 16. doi:10.1186/s40168-020-00955-1

Jassal, B., Matthews, L., Viteri, G., Gong, C., Lorente, P., Fabregat, A., et al. (2020).
The Reactome Pathway Knowledgebase. Nucleic Acids Res. 48, D498–D503.
doi:10.1093/nar/gkz1031

Jostins, L., Ripke, S., Weersma, R. K., Duerr, R. H., McGovern, D. P., Hui, K. Y.,
et al. (2012). Host-microbe Interactions Have Shaped the Genetic Architecture
of Inflammatory Bowel Disease.Nature 491, 119–124. doi:10.1038/nature11582

Kamburov, A., Pentchev, K., Galicka, H., Wierling, C., Lehrach, H., and Herwig, R.
(2011). ConsensusPathDB: toward a More Complete Picture of Cell Biology.
Nucleic Acids Res. 39, D712–D717. doi:10.1093/nar/gkq1156

Kerrien, S., Aranda, B., Breuza, L., Bridge, A., Broackes-Carter, F., Chen, C., et al.
(2012). The IntAct Molecular Interaction Database in 2012. Nucleic Acids Res.
40, D841–D846. doi:10.1093/nar/gkr1088

Kirouac, D. C., Du, J. Y., Lahdenranta, J., Overland, R., Yarar, D., Paragas, V., et al.
(2013). Computational Modeling of ERBB2 -Amplified Breast Cancer Identifies
Combined ErbB2/3 Blockade as Superior to the Combination of MEK and AKT
Inhibitors. Sci. Signal. 6, ra68. doi:10.1126/scisignal.2004008

Knecht, C., Fretter, C., Rosenstiel, P., Krawczak, M., and Hütt, M.-T. (2016).
Distinct Metabolic Network States Manifest in the Gene Expression Profiles of
Pediatric Inflammatory Bowel Disease Patients and Controls. Sci. Rep. 6, 32584.
doi:10.1038/srep32584

König, M., Bulik, S., and Holzhütter, H.-G. (2012). Quantifying the Contribution of
the Liver to Glucose Homeostasis: a Detailed Kinetic Model of Human Hepatic
Glucose Metabolism. Plos Comput. Biol. 8, e1002577. doi:10.1371/
journal.pcbi.1002577

Korcsmaros, T., Schneider, M. V., and Superti-Furga, G. (2017). Next Generation
of Network Medicine: Interdisciplinary Signaling Approaches. Integr. Biol.
(Camb) 9, 97–108. doi:10.1039/c6ib00215c

Kosti, I., Jain, N., Aran, D., Butte, A. J., and Sirota, M. (2016). Cross-tissue Analysis
of Gene and Protein Expression in Normal and Cancer Tissues. Sci. Rep. 6,
24799. doi:10.1038/srep24799

Koutrouli, M., Karatzas, E., Paez-Espino, D., and Pavlopoulos, G. A. (2020). A
Guide to Conquer the Biological Network Era Using Graph Theory. Front.
Bioeng. Biotechnol. 8, 34. doi:10.3389/fbioe.2020.00034

Kutmon, M., Riutta, A., Nunes, N., Hanspers, K., Willighagen, E. L., Bohler, A.,
et al. (2016). WikiPathways: Capturing the Full Diversity of Pathway
Knowledge. Nucleic Acids Res. 44, D488–D494. doi:10.1093/nar/gkv1024

Langfelder, P., and Horvath, S. (2008). WGCNA: an R Package for Weighted
Correlation Network Analysis. BMC Bioinformatics 9, 559. doi:10.1186/1471-
2105-9-559

Lee, M. J., Ye, A. S., Gardino, A. K., Heijink, A. M., Sorger, P. K., MacBeath, G., et al.
(2012). Sequential Application of Anticancer Drugs Enhances Cell Death by
Rewiring Apoptotic Signaling Networks. Cell 149, 780–794. doi:10.1016/
j.cell.2012.03.031

Lennard-Jones, J. E. (1989). Classification of Inflammatory Bowel Disease. Scand.
J. Gastroenterol. 24, 2–6. doi:10.3109/00365528909091339

Lepoivre, C., Bergon, A., Lopez, F., Perumal, N. B., Nguyen, C., Imbert, J., et al.
(2012). TranscriptomeBrowser 3.0: Introducing a New Compendium of
Molecular Interactions and a New Visualization Tool for the Study of Gene
Regulatory Networks. BMC Bioinformatics 13, 19. doi:10.1186/1471-2105-
13-19

Licata, L., Lo Surdo, P., Iannuccelli, M., Palma, A., Micarelli, E., Perfetto, L., et al.
(2020). SIGNOR 2.0, the SIGnaling Network Open Resource 2.0: 2019 Update.
Nucleic Acids Res. 48, D504–D510. doi:10.1093/nar/gkz949

Luck, K., Kim, D.-K., Lambourne, L., Spirohn, K., Begg, B. E., Bian,W., et al. (2020).
A Reference Map of the Human Binary Protein Interactome. Nature 580,
402–408. doi:10.1038/s41586-020-2188-x

Lukassen, S., Chua, R. L., Trefzer, T., Kahn, N. C., Schneider, M. A., Muley, T., et al.
(2020). SARS-CoV-2 Receptor ACE2 and TMPRSS2 Are Primarily Expressed
in Bronchial Transient Secretory Cells. EMBO J. 39, e105114. doi:10.15252/
embj.2010511410.15252/embj.2020105114

Magnúsdóttir, S., Heinken, A., Kutt, L., Ravcheev, D. A., Bauer, E., Noronha, A.,
et al. (2017). Generation of Genome-Scale Metabolic Reconstructions for 773

Members of the Human Gut Microbiota. Nat. Biotechnol. 35, 81–89.
doi:10.1038/nbt.3703

Malod-Dognin, N., Petschnigg, J., Windels, S. F. L., Povh, J., Hemingway, H.,
Ketteler, R., et al. (2019). Towards a Data-Integrated Cell. Nat. Commun. 10,
805. doi:10.1038/s41467-019-08797-8

Maloy, K. J., and Kullberg, M. C. (2008). IL-23 and Th17 Cytokines in Intestinal
Homeostasis. Mucosal Immunol. 1, 339–349. doi:10.1038/mi.2008.28

Martens, M., Ammar, A., Riutta, A., Waagmeester, A., Slenter, D. N., Hanspers, K.,
et al. (2021). WikiPathways: Connecting Communities. Nucleic Acids Res. 49,
D613–D621. doi:10.1093/nar/gkaa1024

Martin, J. C., Chang, C., Boschetti, G., Ungaro, R., Giri, M., Grout, J. A., et al.
(2019). Single-Cell Analysis of Crohn’s Disease Lesions Identifies a Pathogenic
Cellular Module Associated with Resistance to Anti-TNF Therapy. Cell 178,
1493–1508. doi:10.1016/j.cell.2019.08.008

Massimino, L., Lamparelli, L. A., Houshyar, Y., D’Alessio, S., Peyrin-Biroulet, L.,
Vetrano, S., et al. (2021). The Inflammatory Bowel Disease Transcriptome and
Metatranscriptome Meta-Analysis (IBD TaMMA) Framework. Nat. Comput.
Sci. 1, 511–515. doi:10.1038/s43588-021-00114-y

Meskó, B., and Görög, M. (2020). A Short Guide for Medical Professionals in the
Era of Artificial Intelligence. Npj Digit. Med. 3, 126. doi:10.1038/s41746-020-
00333-z

Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., and Alon, U.
(2002). Network Motifs: Simple Building Blocks of Complex Networks. Science
298, 824–827. doi:10.1126/science.298.5594.824

Módos, D., Bulusu, K. C., Fazekas, D., Kubisch, J., Brooks, J., Marczell, I., et al.
(2017). Neighbours of Cancer-Related Proteins Have Key Influence on
Pathogenesis and Could Increase the Drug Target Space for Anticancer
Therapies. NPJ Syst. Biol. Appl. 3, 2. doi:10.1038/s41540-017-0003-6

Modos, D., Thomas, J. P., and Korcsmaros, T. (2021). A HandyMeta-Analysis Tool
for IBD Research. Nat. Comput. Sci. 1, 571–572. doi:10.1038/s43588-021-
00124-w

Moni, M. A., and Liò, P. (2015). How to Build Personalized Multi-Omics
Comorbidity Profiles. Front. Cel Dev. Biol. 3, 28. doi:10.3389/fcell.2015.00028

Noor, N. M., Verstockt, B., Parkes, M., and Lee, J. C. (2020). Personalised Medicine
in Crohn’s Disease. Lancet Gastroenterol. Hepatol. 5, 80–92. doi:10.1016/S2468-
1253(19)30340-1

Olivera, P., Danese, S., Jay, N., Natoli, G., and Peyrin-Biroulet, L. (2019). Big Data
in IBD: a Look into the Future. Nat. Rev. Gastroenterol. Hepatol. 16, 312–321.
doi:10.1038/s41575-019-0102-5

Olsen, J., Gerds, T. A., Seidelin, J. B., Csillag, C., Bjerrum, J. T., Troelsen, J. T., et al.
(2009). Diagnosis of Ulcerative Colitis before Onset of Inflammation by
Multivariate Modeling of Genome-wide Gene Expression Data. Inflamm.
Bowel Dis. 15, 1032–1038. doi:10.1002/ibd.20879

Orth, J. D., Thiele, I., and Palsson, B. Ø. (2010). What Is Flux Balance Analysis?
Nat. Biotechnol. 28, 245–248. doi:10.1038/nbt.1614

Parkes, M.IBD BioResource Investigators (2019). IBD BioResource: an Open-
Access Platform of 25 000 Patients to Accelerate Research in Crohn’s and
Colitis. Gut 68, 1537–1540. doi:10.1136/gutjnl-2019-318835

Pavlopoulos, G. A., Secrier, M., Moschopoulos, C. N., Soldatos, T. G., Kossida, S.,
Aerts, J., et al. (2011). Using Graph Theory to Analyze Biological Networks.
BioData Mining 4, 10. doi:10.1186/1756-0381-4-10

Peters, L. A., Perrigoue, J., Mortha, A., Iuga, A., Song, W.-M., Neiman, E. M., et al.
(2017). A Functional Genomics Predictive NetworkModel Identifies Regulators
of Inflammatory Bowel Disease. Nat. Genet. 49, 1437–1449. doi:10.1038/
ng.3947

Pinchuk, I. V., Beswick, E. J., Saada, J. I., Boya, G., Schmitt, D., Raju, G. S., et al.
(2011). Human Colonic Myofibroblasts Promote Expansion of CD4+
CD25high Foxp3+ Regulatory T Cells. Gastroenterology 140, 2019–2030.
doi:10.1053/j.gastro.2011.02.059

Piñero, J., Bravo, À., Queralt-Rosinach, N., Gutiérrez-Sacristán, A., Deu-Pons, J.,
Centeno, E., et al. (2017). DisGeNET: a Comprehensive Platform Integrating
Information on Human Disease-Associated Genes and Variants. Nucleic Acids
Res. 45, D833–D839. doi:10.1093/nar/gkw943

Przulj, N. (2007). Biological Network Comparison Using Graphlet Degree
Distribution. Bioinformatics 23, e177–e183. doi:10.1093/bioinformatics/btl301

Przulj, N., Corneil, D. G., and Jurisica, I. (2006). Efficient Estimation of Graphlet
Frequency Distributions in Protein-Protein Interaction Networks.
Bioinformatics 22, 974–980. doi:10.1093/bioinformatics/btl030

Frontiers in Genetics | www.frontiersin.org October 2021 | Volume 12 | Article 76050116

Thomas et al. Network Biology Approaches in IBD

https://doi.org/10.1186/s12876-018-0917-5
https://doi.org/10.1186/s12876-018-0917-5
https://doi.org/10.1186/s40168-020-00955-1
https://doi.org/10.1093/nar/gkz1031
https://doi.org/10.1038/nature11582
https://doi.org/10.1093/nar/gkq1156
https://doi.org/10.1093/nar/gkr1088
https://doi.org/10.1126/scisignal.2004008
https://doi.org/10.1038/srep32584
https://doi.org/10.1371/journal.pcbi.1002577
https://doi.org/10.1371/journal.pcbi.1002577
https://doi.org/10.1039/c6ib00215c
https://doi.org/10.1038/srep24799
https://doi.org/10.3389/fbioe.2020.00034
https://doi.org/10.1093/nar/gkv1024
https://doi.org/10.1186/1471-2105-9-559
https://doi.org/10.1186/1471-2105-9-559
https://doi.org/10.1016/j.cell.2012.03.031
https://doi.org/10.1016/j.cell.2012.03.031
https://doi.org/10.3109/00365528909091339
https://doi.org/10.1186/1471-2105-13-19
https://doi.org/10.1186/1471-2105-13-19
https://doi.org/10.1093/nar/gkz949
https://doi.org/10.1038/s41586-020-2188-x
https://doi.org/10.15252/embj.2010511410.15252/embj.2020105114
https://doi.org/10.15252/embj.2010511410.15252/embj.2020105114
https://doi.org/10.1038/nbt.3703
https://doi.org/10.1038/s41467-019-08797-8
https://doi.org/10.1038/mi.2008.28
https://doi.org/10.1093/nar/gkaa1024
https://doi.org/10.1016/j.cell.2019.08.008
https://doi.org/10.1038/s43588-021-00114-y
https://doi.org/10.1038/s41746-020-00333-z
https://doi.org/10.1038/s41746-020-00333-z
https://doi.org/10.1126/science.298.5594.824
https://doi.org/10.1038/s41540-017-0003-6
https://doi.org/10.1038/s43588-021-00124-w
https://doi.org/10.1038/s43588-021-00124-w
https://doi.org/10.3389/fcell.2015.00028
https://doi.org/10.1016/S2468-1253(19)30340-1
https://doi.org/10.1016/S2468-1253(19)30340-1
https://doi.org/10.1038/s41575-019-0102-5
https://doi.org/10.1002/ibd.20879
https://doi.org/10.1038/nbt.1614
https://doi.org/10.1136/gutjnl-2019-318835
https://doi.org/10.1186/1756-0381-4-10
https://doi.org/10.1038/ng.3947
https://doi.org/10.1038/ng.3947
https://doi.org/10.1053/j.gastro.2011.02.059
https://doi.org/10.1093/nar/gkw943
https://doi.org/10.1093/bioinformatics/btl301
https://doi.org/10.1093/bioinformatics/btl030
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Przulj, N., Corneil, D. G., and Jurisica, I. (2004). Modeling Interactome: Scale-free
or Geometric? Bioinformatics 20, 3508–3515. doi:10.1093/bioinformatics/
bth436

Ramilowski, J. A., Goldberg, T., Harshbarger, J., Kloppmann, E., Lizio, M.,
Satagopam, V. P., et al. (2015). A Draft Network of Ligand-Receptor-
Mediated Multicellular Signalling in Human. Nat. Commun. 6, 7866.
doi:10.1038/ncomms8866

Santra, T., Kolch, W., and Kholodenko, B. N. (2014). Navigating the Multilayered
Organization of Eukaryotic Signaling: a New Trend in Data Integration. Plos
Comput. Biol. 10, e1003385. doi:10.1371/journal.pcbi.1003385

Sarajlić, A., Malod-Dognin, N., Yaveroğlu, Ö. N., and Pržulj, N. (2016). Graphlet-
based Characterization of Directed Networks. Sci. Rep. 6, 35098. doi:10.1038/
srep35098

Schett, G., McInnes, I. B., and Neurath, M. F. (2021). Reframing Immune-Mediated
Inflammatory Diseases through Signature Cytokine Hubs. N. Engl. J. Med. 385,
628–639. doi:10.1056/NEJMra1909094

Schlitt, T., and Brazma, A. (2007). Current Approaches to Gene Regulatory
Network Modelling. BMC Bioinformatics 8, S9. doi:10.1186/1471-2105-8-S6-S9

Sevilla, J. L., Segura, V., Podhorski, A., Guruceaga, E., Mato, J. M., Martínez-Cruz,
L. A., et al. (2005). Correlation between Gene Expression and GO Semantic
Similarity. IEEE/ACM Trans. Comput. Biol. Bioinf. 2, 330–338. doi:10.1109/
TCBB.2005.50

Seyed Tabib, N. S., Madgwick, M., Sudhakar, P., Verstockt, B., Korcsmaros, T., and
Vermeire, S. (2020). Big Data in IBD: Big Progress for Clinical Practice. Gut 69,
1520–1532. doi:10.1136/gutjnl-2019-320065

Shen, R., Olshen, A. B., and Ladanyi, M. (2009). Integrative Clustering of Multiple
Genomic Data Types Using a Joint Latent Variable Model with Application to
Breast and Lung Cancer Subtype Analysis. Bioinformatics 25, 2906–2912.
doi:10.1093/bioinformatics/btp543

Sinha, S. R., Haileselassie, Y., Nguyen, L. P., Tropini, C., Wang, M., Becker, L. S.,
et al. (2020). Dysbiosis-Induced Secondary Bile Acid Deficiency Promotes
Intestinal Inflammation. Cell Host Microbe 27, 659–670. doi:10.1016/
j.chom.2020.01.021

Smillie, C. S., Biton, M., Ordovas-Montanes, J., Sullivan, K.M., Burgin, G., Graham,
D. B., et al. (2019). Intra and Inter-cellular Rewiring of the Human Colon
during Ulcerative Colitis. Cell 178, 714–730. doi:10.1016/j.cell.2019.06.029

Snider, J., Kotlyar, M., Saraon, P., Yao, Z., Jurisica, I., and Stagljar, I. (2015).
Fundamentals of Protein Interaction NetworkMapping.Mol. Syst. Biol. 11, 848.
doi:10.15252/msb.20156351

Sonawane, A. R., Weiss, S. T., Glass, K., and Sharma, A. (2019). Network Medicine
in the Age of Biomedical Big Data. Front. Genet. 10, 294. doi:10.3389/
fgene.2019.00294

Song, X., Sun, X., Oh, S. F., Wu, M., Zhang, Y., Zheng, W., et al. (2020). Microbial
Bile Acid Metabolites Modulate Gut RORγ+ Regulatory T Cell Homeostasis.
Nature 577, 410–415. doi:10.1038/s41586-019-1865-0

Spekhorst, L. M., Imhann, F., Festen, E. A., Bodegraven, A. A. v., Boer, N. K. d.,
Bouma, G., et al. (2017). Cohort Profile: Design and First Results of the Dutch
IBD Biobank: a Prospective, Nationwide Biobank of Patients with
Inflammatory Bowel Disease. BMJ Open 7, e016695. doi:10.1136/bmjopen-
2017-016695

Stark, C., Breitkreutz, B.-J., Reguly, T., Boucher, L., Breitkreutz, A., and Tyers, M.
(2006). BioGRID: a General Repository for Interaction Datasets. Nucleic Acids
Res. 34, D535–D539. doi:10.1093/nar/gkj109

Sudhakar, P., Machiels, K., Verstockt, B., Korcsmaros, T., and Vermeire, S. (2021).
Computational Biology and Machine Learning Approaches to Understand
Mechanistic Microbiome-Host Interactions. Front. Microbiol. 12, 618856.
doi:10.3389/fmicb.2021.618856

Szklarczyk, D., Gable, A. L., Lyon, D., Junge, A., Wyder, S., Huerta-Cepas, J., et al.
(2019). STRING V11: Protein-Protein Association Networks with Increased
Coverage, Supporting Functional Discovery in Genome-wide Experimental
Datasets. Nucleic Acids Res. 47, D607–D613. doi:10.1093/nar/gky1131

Thiele, I., Swainston, N., Fleming, R. M. T., Hoppe, A., Sahoo, S., Aurich, M. K.,
et al. (2013). A Community-Driven Global Reconstruction of Human
Metabolism. Nat. Biotechnol. 31, 419–425. doi:10.1038/nbt.2488

Thomas, J. P., Divekar, D., Brooks, J., and Watson, A. J. M. (2019). Gut Microbes
Drive T-Cell Infiltration into Colorectal Cancers and Influence Prognosis.
Gastroenterology 156, 1926–1928. doi:10.1053/j.gastro.2019.03.035

Türei, D., Valdeolivas, A., Gul, L., Palacio-Escat, N., Klein, M., Ivanova, O., et al.
(2021). Integrated Intra- and Intercellular Signaling Knowledge for
Multicellular Omics Analysis. Mol. Syst. Biol. 17, e9923. doi:10.15252/
msb.20209923

van Dam, S., Võsa, U., van der Graaf, A., Franke, L., and de Magalhães, J. P.
(2018). Gene Co-expression Analysis for Functional Classification and
Gene-Disease Predictions. Brief Bioinform. 19, bbw139–592.
doi:10.1093/bib/bbw139

Verstockt, B., Noor, N.M., Marigorta, U. M., Pavlidis, P., Deepak, P., Ungaro, R. C.,
et al. (2021). Results of the Seventh Scientific Workshop of ECCO: Precision
Medicine in IBD-Disease Outcome and Response to Therapy. J. Crohns Colitis
15, 1431–1442. doi:10.1093/ecco-jcc/jjab050

Verstockt, S., De Hertogh, G., Van der Goten, J., Verstockt, B., Vancamelbeke, M.,
Machiels, K., et al. (2019). Gene and Mirna Regulatory Networks during
Different Stages of Crohn’s Disease. J. Crohns Colitis 13, 916–930.
doi:10.1093/ecco-jcc/jjz007

Vidal, M., Cusick, M. E., and Barabási, A.-L. (2011). Interactome Networks and
Human Disease. Cell 144, 986–998. doi:10.1016/j.cell.2011.02.016

Wang, B., Mezlini, A. M., Demir, F., Fiume, M., Tu, Z., Brudno, M., et al. (2014).
Similarity Network Fusion for Aggregating Data Types on a Genomic Scale.
Nat. Methods 11, 333–337. doi:10.1038/nmeth.2810

Warren, L. R., Clarke, J., Arora, S., and Darzi, A. (2019). Improving Data
Sharing between Acute Hospitals in England: an Overview of Health
Record System Distribution and Retrospective Observational Analysis of
Inter-hospital Transitions of Care. BMJ Open 9, e031637. doi:10.1136/
bmjopen-2019-031637

West, N. R., Hegazy, A. N., Hegazy, A. N., Owens, B. M. J., Bullers, S. J.,
Linggi, B., et al. (2017). Oncostatin M Drives Intestinal Inflammation and
Predicts Response to Tumor Necrosis Factor-Neutralizing Therapy in
Patients with Inflammatory Bowel Disease. Nat. Med. 23, 579–589.
doi:10.1038/nm.4307

Whitcomb, D. C. (2019). Primer on Precision Medicine for Complex Chronic
Disorders. Clin. Transl. Gastroenterol. 10, e00067. doi:10.14309/
ctg.0000000000000067

Xavier, R. J., and Podolsky, D. K. (2007). Unravelling the Pathogenesis of
Inflammatory Bowel Disease. Nature 448, 427–434. doi:10.1038/nature06005

Xiao, H., Bartoszek, K., and Lio’, P. (2018). Multi-omic Analysis of Signalling
Factors in Inflammatory Comorbidities. BMC Bioinformatics 19, 439.
doi:10.1186/s12859-018-2413-x

Yan, W., Xue, W., Chen, J., and Hu, G. (2016). Biological Networks for Cancer
Candidate Biomarkers Discovery. Cancer Inform. 15s3, CIN.S39458.
doi:10.4137/CIN.S39458

Yaveroğlu, Ö. N., Malod-Dognin, N., Davis, D., Levnajic, Z., Janjic, V., Karapandza,
R., et al. (2014). Revealing the Hidden Language of Complex Networks. Sci. Rep.
4, 4547. doi:10.1038/srep04547

Yeh, C.-S., Wang, Z., Miao, F., Ma, H., Kao, C.-T., Hsu, T.-S., et al. (2019). A Novel
Synthetic-Genetic-Array-Based Yeast One-Hybrid System for High Discovery
Rate and Short Processing Time. Genome Res. 29, 1343–1351. doi:10.1101/
gr.245951.118

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Thomas, Modos, Korcsmaros and Brooks-Warburton. This is an
open-access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply
with these terms.

Frontiers in Genetics | www.frontiersin.org October 2021 | Volume 12 | Article 76050117

Thomas et al. Network Biology Approaches in IBD

https://doi.org/10.1093/bioinformatics/bth436
https://doi.org/10.1093/bioinformatics/bth436
https://doi.org/10.1038/ncomms8866
https://doi.org/10.1371/journal.pcbi.1003385
https://doi.org/10.1038/srep35098
https://doi.org/10.1038/srep35098
https://doi.org/10.1056/NEJMra1909094
https://doi.org/10.1186/1471-2105-8-S6-S9
https://doi.org/10.1109/TCBB.2005.50
https://doi.org/10.1109/TCBB.2005.50
https://doi.org/10.1136/gutjnl-2019-320065
https://doi.org/10.1093/bioinformatics/btp543
https://doi.org/10.1016/j.chom.2020.01.021
https://doi.org/10.1016/j.chom.2020.01.021
https://doi.org/10.1016/j.cell.2019.06.029
https://doi.org/10.15252/msb.20156351
https://doi.org/10.3389/fgene.2019.00294
https://doi.org/10.3389/fgene.2019.00294
https://doi.org/10.1038/s41586-019-1865-0
https://doi.org/10.1136/bmjopen-2017-016695
https://doi.org/10.1136/bmjopen-2017-016695
https://doi.org/10.1093/nar/gkj109
https://doi.org/10.3389/fmicb.2021.618856
https://doi.org/10.1093/nar/gky1131
https://doi.org/10.1038/nbt.2488
https://doi.org/10.1053/j.gastro.2019.03.035
https://doi.org/10.15252/msb.20209923
https://doi.org/10.15252/msb.20209923
https://doi.org/10.1093/bib/bbw139
https://doi.org/10.1093/ecco-jcc/jjab050
https://doi.org/10.1093/ecco-jcc/jjz007
https://doi.org/10.1016/j.cell.2011.02.016
https://doi.org/10.1038/nmeth.2810
https://doi.org/10.1136/bmjopen-2019-031637
https://doi.org/10.1136/bmjopen-2019-031637
https://doi.org/10.1038/nm.4307
https://doi.org/10.14309/ctg.0000000000000067
https://doi.org/10.14309/ctg.0000000000000067
https://doi.org/10.1038/nature06005
https://doi.org/10.1186/s12859-018-2413-x
https://doi.org/10.4137/CIN.S39458
https://doi.org/10.1038/srep04547
https://doi.org/10.1101/gr.245951.118
https://doi.org/10.1101/gr.245951.118
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

	Network Biology Approaches to Achieve Precision Medicine in Inflammatory Bowel Disease
	Introduction
	Key Principles of Network Biology
	Use of Network Biology Approaches in IBD
	Protein-Protein Interaction Networks
	Metabolic Networks
	Gene Regulatory Networks and Gene Co-expression Networks
	Multi-Layered Network Approaches

	Future Challenges and Potential Mitigating Strategies to Develop Network Biology Approaches for Precision Medicine
	Conclusion
	Network Biology Glossary
	Author Contributions
	Funding
	References


