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Abstract
One of the unique features of SARS-CoV-2 is its apparent neutral evolution during the early pandemic (before February 
2020). This contrasts with the preceding SARS-CoV epidemics, where viruses evolved adaptively. SARS-CoV-2 may 
exhibit a unique or adaptive feature which deviates from other coronaviruses. Alternatively, the virus may have 
been cryptically circulating in humans for a sufficient time to have acquired adaptive changes before the onset of 
the current pandemic. To test the scenarios above, we analyzed the SARS-CoV-2 sequences from minks (Neovision 
vision) and parental humans. In the early phase of the mink epidemic (April to May 2020), nonsynonymous to syn-
onymous mutation ratio per site in the spike protein is 2.93, indicating a selection process favoring adaptive amino 
acid changes. Mutations in the spike protein were concentrated within its receptor-binding domain and receptor-bind-
ing motif. An excess of high-frequency derived variants produced by genetic hitchhiking was found during the middle 
(June to July 2020) and late phase I (August to September 2020) of the mink epidemic. In contrast, the site frequency 
spectra of early SARS-CoV-2 in humans only show an excess of low-frequency mutations, consistent with the recent 
outbreak of the virus. Strong positive selection in the mink SARS-CoV-2 implies that the virus may not be preadapted 
to a wide range of hosts and illustrates how a virus evolves to establish a continuous infection in a new host. Therefore, 
the lack of positive selection signal during the early pandemic in humans deserves further investigation.
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Introduction
The pandemic coronavirus disease 2019 (COVID-19), first 
recorded in the city of Wuhan, China, is caused by the se-
vere acute respiratory syndrome coronavirus 2 
(SARS-CoV-2) (Wu et al. 2020). SARS-CoV-2 is the seventh 
coronavirus found to infect humans. Among the other six, 
SARS-CoV and MERS-CoV can cause severe respiratory 

illness, whereas seasonal 229E, HKU1, NL63, and OC43 pro-
duce mild symptoms (Corman et al. 2018). SARS-CoV-2 
exhibits 96% similarity to a coronavirus collected in 
Yunnan Province, China, from a bat, Rhinolophus affinis. 
It is, therefore, possible that the virus may have a zoonotic 
origin from bats (Andersen et al. 2020; Zhou et al. 2020).

It is generally believed that for a cross-species transmit-
ted virus to achieve high infectiousness in a new host, 
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multiple changes, each of conferring a selective advantage, 
are necessary (Parrish et al. 2008; Plowright et al. 2017; 
Ruan, Wen, He, et al. 2021). For example, a series of small 
incremental adaptations appear to underlie the emer-
gence of SARS-CoV that infect humans (Chinese SARS 
Molecular Epidemiology Consortium 2004). Both 
SARS-CoV and SARS-CoV-2 use their spike protein to me-
diate entry into host cells. This protein first binds to its 
host receptor, angiotensin converting enzyme 2 (ACE2) 
and subsequently mediates fusion of viral and host mem-
branes. This receptor binding is the first and one of the 
most important steps in viral infection of host cells. 
During the short epidemic in 2002–2003, several rounds 
of adaptive changes have been documented, especially in 
the spike protein, in SARS-CoV genomes (Yeh et al. 
2004; Wu et al. 2012). As a result, SARS-CoV samples iso-
lated from humans during the late phase of the outbreak 
in 2002–2003 exhibited higher affinity for human ACE2 
than their early porgenitors (Cui et al. 2019).

Nevertheless, in the first several months of the current 
pandemic, the evidence of positive selection in 
SARS-CoV-2 was scarce (Chaw et al. 2020; Chiara et al. 
2021; MacLean et al. 2021; Martin et al. 2021). The only 
probable exception is the D614G mutation in the spike 
protein that increases viral transmissibility (Korber et al. 
2020; Plante et al. 2021). Although some ORFs such as 
orf3a and orf8 show Ka/Ks > 1 in the early pandemic 
(Chaw et al. 2020), it was due to co-segregation of both an-
cestral and derived alleles, such as G215V (orf3a) and L84S 
(orf8), at the same time. Since these derived alleles finally 
went extinct, it is unclear if they were, in fact, adaptive.

The lack of a positive selection signature in the early 
SARS-CoV-2 pandemic is in contrast to its predecessors, 
that is, SARS-CoV. It is possible that SARS-CoV-2 exhibits 
a unique feature that distinguishes it from other corona-
viruses (MacLean et al. 2021) and enables its efficient cross- 
transmission to humans and other species without altering 
its genome. Alternatively, there may be a SARS-CoV-2 pro-
genitor or prototype which has been cryptically circulating 
in humans for some time before being noticed (Kumar 
et al. 2021). During that period, the progenitor virus may 
have acquired adaptive changes to become the present 
SARS-CoV-2 and efficiently transmit among humans. 
After adapting to the new host, most RNA viruses exhibit 
strong negative selection (Lin et al. 2019). Therefore, the 
signature of positive selection may have become obscured 
by the time the pandemic took off.

These two scenarios can be tested by examining evolu-
tionary patterns of the virus causing epidemics in other 
species. If SARS-CoV-2 is preadapted for cross-species 
transmission, positive selection should not be expected. 
Otherwise, if a SARS-CoV-2 progenitor has experienced 
adaptive evolution to cause the pandemic in humans, sig-
natures of accelerated adaptation should be revealed 
when the current virus jumps to other species. The trans-
mission of SARS-CoV-2 from humans to minks (Neovision 
vision), thus, provides an excellent opportunity to test 
these scenarios.

The first SARS-CoV-2 infection in minks was reported in 
the Netherlands in April 2020. Three of five initial intro-
ductions of SARS-CoV-2 led to subsequent spread be-
tween mink farms until November 2020. Although the 
modes and mechanisms of most farm-to-farm transmis-
sions remain unknown, a study has found that movement 
of people and distance between farms were statistically sig-
nificant predictors of virus dispersal between farms (Lu 
et al. 2021). In this study, we analyzed the sequences 
from SARS-CoV-2 viruses that infected minks. Our results 
show a strong signature of positive selection during the 
early epidemic, with the signal rapidly diminishing later 
in the outbreak. We also discuss how the virus can have 
circulated within human populations without being no-
ticed while accumulating adaptive changes.

Results
Adaptive Evolution of SARS-CoV-2 in Minks
The phylogeny of SARS-CoV-2 derived from minks and 
their parental human strains is shown in figure 1A. 
Human to mink transmission clearly occurred multiple 
times, the majority of these events failing to trigger an epi-
demic. Because selection has been continuously operating 
in the human hosts, it is reasonable to expect higher infec-
tiousness in humans than in minks (Ruan, Wen, He, et al. 
2021). Among all inter-species transmission events, we ob-
served three clusters of infections (mink-1 to 3, all from the 
Netherlands), suggesting that the emergence of new 
SARS-CoV-2 strains can efficiently infect minks (colored 
clade in fig. 1A). One of the clusters (mink-1, Cluster A 
of Lu et al. (2021)) lasted for more than 6 months 
(fig. 1B), implying that the strain may have acquired new 
mutations to sustain its infection in minks.

Consistent with the above scenario, strong evidence of 
positive selection was detected in the mink-1 clade: the ra-
tio of nonsynonymous (Ka) to synonymous (Ks) changes 
per site at the spike locus is 5.33 (table 1 and 
supplementary table S1, Supplementary Material online). 
In addition to overall Ka/Ks > 1 in the spike, these muta-
tions are concentrated in the domains critical for infection. 
Four of the seven amino acid changes within the spike pro-
tein are in the receptor-binding domain (RBD) (P = 0.013; 
Fisher exact test), and three of these four mutations are in 
the receptor-binding motif (RBM) (P = 0.004) (table 2 and 
supplementary table S2, Supplementary Material online).

To further search for evidence of positive selection, we 
used the fixed effects likelihood (FEL; Kosakovsky Pond 
and Frost 2005) and adaptive branch-site random effects 
likelihood mixed effects models (aBSREL; Smith et al. 
2015) implemented in HyPhy (Pond et al. 2005). We only 
included nonredundant high-quality sequences for these 
analyses (supplementary fig. S1, Supplementary Material
online) (see Materials and Methods). The FEL method 
identified eight codons putatively under positive selection 
(P < 0.05) within the mink-1 clade (fig. 2A). Based on epi-
demiological data, the course of the outbreak in minks was 
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divided into early (April to May), middle (June and July), 
and late (August to November) phases (fig. 1B). The posi-
tively selected lineage identified by the aBSREL method is 
the lineage leading to middle and late phases (fig. 2B). In 
addition, seven putatively selected sites gradually in-
creased in frequency from early on and were finally fixed 
in the late phase (fig. 2B). The above observations demon-
strate that SARS-CoV-2 gradually acquired adaptive 
changes to effectively transmit among minks.

When Ka/Ks was calculated separately, the whole gen-
ome Ka/Ks was highest in the early phase (0.75) and grad-
ually decreased to 0.61 and 0.57 at middle and late phases, 
respectively (table 1). Focusing on individual genes, we 
found that only orf1a and spike in the early phase have 
Ka/Ks > 1. Some short open-reading frames (ORFs) occa-
sionally have Ka/Ks > 1 but that is because their Ks = 0, 
thus the evidence of positive selection on these ORFs is 
in doubt (supplementary table S1, Supplementary 
Material online). Within the spike, three amino acid muta-
tions in the early phase are all in the RBD (P < 0.01) and 
two are in the RBM (P < 0.01) (table 2 and 
supplementary table S3, Supplementary Material online). 
This concentration of mutations within RBD/RBM was 
not seen in the middle or late phases.

In addition to mink-1, signatures of positive selection 
were also detected in two other clusters, mink-2 and -3. 
The Ka/Ks of the spike protein in mink-2 was 2.37 and 
0.51 in mink-3 (table 1 and supplementary table S1, 
Supplementary Material online). Consistently, both 
lineages have mutations concentrated in the RBM of the 

spike protein (P < 0.01; table 2 and supplementary table 
S4, Supplementary Material online). It is noteworthy that 
two mutations within the RBM, Y453F and F486L, prob-
ably optimize spike binding affinity to the mink ACE2 re-
ceptor (fig. 2C; Ren et al. 2021; Welkers et al. 2021) and 
repeatedly occurred on different mink lineages. The con-
vergence of identical mutations from different lineages 
provides strong evidence of positive selection and implies 
adaptation of the virus to its new mink hosts.

Hitchhiking under Positive Selection in Mink 
SARS-CoV-2
We found a strong signature of positive selection on the 
mink-1 lineage. When different phases of the epidemic 
were analyzed separately, evidence of adaptive evolution 
was most prominent during the early phase, but weak in 
the middle and late phases (fig. 2B and table 1). 
Nevertheless, the effect of positive selection can leave a 
trace on linked neutral variation, that is, the linked vari-
ation hitchhikes to either low or high frequencies. 
Although the frequency distribution of variation can be in-
fluenced by several evolutionary processes, an excess of de-
rived variants at high frequency is a unique pattern 
produced by genetic hitchhiking due to positive selection 
(Fay and Wu 2000). We thus constructed site frequency 
spectra (SFSs) of both synonymous and nonsynonymous 
changes to look for evidence of positive selection.

SFSs of both synonymous and nonsynonymous changes 
in mink-1 were skewed toward high-frequency mutations 

FIG. 1. Phylogeny and epidemiology of SARS-CoV-2 that infected minks and humans. (A) The maximum likelihood phylogeny of SARS-CoV-2 
derived from minks (colored sequences) and associated humans as of December 31, 2020. (B) Distribution of case numbers in mink-1.
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(fig. 3A). Assuming that the SARS-CoV-2 population has 
grown exponentially (MacLean et al. 2021; Martin et al. 
2021), the observed SFSs significantly deviated from neu-
tral expectation under this population growth model 
(Durrett 2013), further supporting the idea that the 
SARS-CoV-2 that transferred from human to mink hosts 
experienced strong positive selection.

Analyzing each phase separately, we find no excess of 
high-frequency mutations at either nonsynonymous (P = 
0.23) or synonymous sites (P = 0.27) (fig. 3B) in the early 
phase. That is because the power to detect genetic hitch-
hiking is compromised when the frequency of advanta-
geous mutations is low (Stephan et al. 2006; Zeng et al. 
2006; Cutter and Payseur 2013). As shown in figure 2B, pu-
tative sites under selection were in low frequency, resulting 
in a lack of detectable deviation from neutrality.

When advantageous mutations reach high frequency in a 
population, the SFS reflects a deviation from neutral expect-
ation (Zeng et al. 2006). Consequently, it is reasonable to ex-
pect the excess of high-frequency mutations in the middle 
and late phases of the outbreak as shown in figure 3C,D. If 
we further divide the late phase into late phase I (August 
and September) and late phase II (October and 
November), the hitchhiking effect is most prominent in 

late phase I (supplementary fig. S2A, Supplementary 
Material online) but less so in late phase 2 (supplementary 
fig. S2B, Supplementary Material online), demonstrating a ra-
pid decay in the signature of positive selection.

Evolution of SARS-CoV-2 during the Early Epidemic in 
Humans
Weak signs of adaptive evolution during the early phase of 
the epidemic of SARS-CoV-2 in humans have been observed 
in many studies (Chaw et al. 2020; Tang et al. 2020; MacLean 
et al. 2021; Martin et al. 2021). The Ka/Ks in the whole gen-
ome is 0.43 and the spike protein 0.91 before February 29, 
2020 (table 1). In addition, very few mutations occurred 
in the RBD or RBM of the spike protein (table 2 and 
supplementary table S5, Supplementary Material online).

We next constructed SFSs of both synonymous and 
nonsynonymous changes and found they were skewed to-
ward high frequency, which may suggest a signature 
of positive selection (fig. 4A). However, the pattern should 
be interpreted with caution. The results shown in figure 4A
were based on an outgroup comparison. The divergence at 
synonymous sites between SARS-CoV-2 and RaTG13 was 
17%, approximately three-fold greater than between 

Table 1. Ka, Ks, and Ka/Ks of Different Open-Reading Frames of SARS-CoV-2 in Different Lineages.

All orf1a orf1b Spike

Ka × 104 Ks × 104 Ka × 104 Ks × 104 Ka × 104 Ks × 104 Ka × 104 Ks × 104

Ka/Ks Ka/Ks Ka/Ks Ka/Ks

mink-1 (n= 163) 2.71 5.00 2.27 2.19 0.97 4.84 5.75 1.08
0.54 1.04 0.20 5.33

mink-1 Early Phase (n= 30) 1.86 2.49 2.39 1.00 0.10 2.35 2.55 0.87
0.75 2.39 0.04 2.93

mink-1 Middle Phase (n= 38) 2.33 3.79 2.07 3.57 1.07 2.76 2.44 0
0.61 0.58 0.39 0.64

mink-1 Late Phase (n= 95) 1.11 1.95 1.31 1.83 0.17 3.18 0.35 1.57
0.57 0.72 0.05 0.22

mink-2 (n= 59) 2.14 4.69 0.93 3.64 0.51 4.59 3.71 1.57
0.46 0.26 0.11 2.37

mink-3 (n= 41) 1.92 4.29 1.63 3.01 1.32 2.74 2.86 5.66
0.45 0.54 0.48 0.51

Early-Stage Humana (n= 1,476) 1.76 4.07 1.35 4.66 1.17 3.55 1.93 2.13
0.43 0.29 0.33 0.91

aEarly-stage SARS-CoV-2 are sequences from December 2019–February 2020.

Table 2. The Distribution of Mutation Within Spike in Different Lineages of SARS-CoV-2.

Outside RBDa Outside RBMb Within RBDc Within RBM Fisher exact
(1090 a.a) (1216 a.a) (126 a.a) (69 a.a) P-value (RBD/RBM)

mink-1 3 4 V367F Y453F, F486L, N501T 0.01/<0.01
mink-1 early phase 0 1 V367F F486L, N501T <0.01/<0.01
mink-1 middle phase 2 2 – Y453F 0.39/0.15
mink-1 late phase 2 2 – F486L 0.39/0.15

mink-2 1 1 – L452M, F486L 0.06/<0.01
mink-3 1 1 – Y453F, F486L 0.06/<0.01
Early stage SARS-CoV-2 29 30 V367F V483A 0.30/1.00

aRBD, Receptor-binding domain. 
bRBM, Receptor-binding motif. 
cThe RBM is included within RBD. Thus, the mutations listed within RBM are also in RBD.
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humans and rhesus macaques (Wang et al. 2007). Indeed, 
inference of change directionality via the bat outgroup 
does not appear to be credible (Morel et al. 2020). With 
such high level of divergence, the possibility of multiple sub-
stitutions cannot be ignored (van Dorp, Acman, et al. 2020), 
especially since substitutions in coronavirus genomes are 

strongly biased toward transitions (Matyášek and Kovařík 
2020; van Dorp, Richard, et al. 2020).

Among all mutations in figure 4A, 32.88% of the 
changes were C to T transitions (table 3A), two-fold higher 
than T to C transitions (15.02%), as shown in the previous 
study (Simmonds and Schwemmle 2020). The bias toward 

FIG. 2. Signature of positive selection in the mink-1 lineage. (A) Amino acid sites putatively under positive selection identified by the fixed effects 
likelihood (FEL) method implemented in HyPhy. (B) Phylogeny of sequences from the mink-1 lineage. Only nonredundant sequences are in-
cluded. Red branches are the positively selected lineage identified by the adaptive branch-site random effects likelihood method implemented 
in HyPhy. Sites putatively under positive selection identified by the FEL method are indicated by colored circles along the branches with their 
frequencies in different phases shown. (C ) Mutations within the spike protein across clusters of minks.
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FIG. 3. Site frequency spectra of SARS-CoV-2 in the mink-1 lineage in each epidemic phase. (A) Site frequency spectra (SFSs) of the mink-1 lineage. 
Significant deviation from neutral expectation under exponential population growth was found in both synonymous (P < 10−3) and nonsynon-
ymous mutations (P < 10−5). (B) SFSs of the mink-1 lineage in the early phase. Neither synonymous nor nonsynonymous mutations deviate from 
the neutral expectation. (C ) SFSs of mink-1 in middle phase. Only nonsynonymous mutations are deviated from neutral expectation (P < 10−4). 
(D) SFSs of the mink-1 lineage in the late phase. Significant deviation from neutral expectation is seen in both synonymous (P < 10−5) and non-
synonymous (P < 10−3) mutations.
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C to T changes was probably mediated either through se-
lective pressures by a CpG-targeting mechanism involving 
the Zinc finger Antiviral Protein (ZAP), C to U hypermuta-
tion by APOBEC3 cytidine deaminases, or escape from the 
host immune system (Bishop et al. 2004; Greenbaum et al. 
2008; Takata et al. 2017; Kmiec et al. 2020; Kustin and Stern 
2020; Pollock et al. 2020).

Strikingly, the changes from the common ancestor to 
SARS-CoV-2 and RaTG-13 were strongly biased toward T 
to C, 50% higher than C to T (table 3B). Contrasting patterns 
between divergence and polymorphism imply that many 
nucleotide sites may have changed back and forth during 
evolution, further increasing the complexity of inferring dir-
ectionality of changes using outgroups. For example, the 
earliest available SARS-CoV-2 genome (December 24, 
2019) has the characteristic motif C:C:T at the nucleotide re-
sidues 8,782, 18,060, and 28,144, different from the RaTG13 

T:T:C sequence (supplementary table S6, Supplementary 
Material online). The first mutant strain carrying the T:C: 
C motif, with the bold SNVs matching RaTG13, was found 
on December 30, 2019. At the same time, another 20 gen-
ome sequences carrying the C:C:T motif were recovered in 
Wuhan, China. The first viral strain carrying the T:T:C motif 
was found in the USA on January 19, 2020 and Guangdong 
on January 20, 2020. Therefore, the T:T:C motif, although 
matching RaTG13, is composed of derived instead of ances-
tral nucleotides.

To get round the potential problem of multiple muta-
tions, we cross-referenced phylogeny and date of sampling 
(Chaw et al. 2020). Many T to C changes based on out-
group comparison were inferred as C to T changes (table 
3A), because those T were first recorded outside Wuhan 
and appeared after mid-January 2020 (supplementary 
table S7, Supplementary Material online). As a result, all 

FIG. 4. Site frequency spectra of SARS-CoV-2 during the early epidemic (December 2019–February 2020) in humans. (A) Site frequency spectra 
(SFSs) inferred using RaTG13 as the outgroup. Significant deviation from neutral expectation under exponential population growth was found in 
both synonymous (P < 10−5) and nonsynonymous mutations (P < 10−5). (B) SFSs cross-referenced by the phylogeny and date of sampling (see 
main text for details). Neither synonymous nor nonsynonymous mutations deviate from the neutral expectation.
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mutations listed as high frequency in figure 4A were re- 
assigned to the other side of the frequency spectra (fig. 
4B). The re-estimated SFSs only show an excess of low- 
frequency mutations, consistent with a recent origin of 
SARS-CoV-2 and suggesting that population expansion is 
the major force shaping site frequency spectra during 
the evolution of this virus. However, we did not observe 
a significant deviation from neutral expectation of growing 
populations. Thus, in good agreement with many previous 
studies, we did not detect positive selection during the 
early phase of the SARS-CoV-2 pandemic (Chaw et al. 
2020; MacLean et al. 2021).

Discussion
Adaptation of SARS-CoV-2 in Minks
Using several approaches, we identified signs of adaptive 
evolution in lineages leading to mink-1. Transmission be-
tween humans and minks illustrates how a virus evolves 
to establish a continuous infection in a new host. In the be-
ginning, a virus may invade a new host multiple times but 
fail to trigger an epidemic. Because natural selection is 
working in the original hosts, higher infectiousness of a 
virus in the original than in new hosts is expected (Ruan, 
Wen, He, et al. 2021).

In the case of SARS-CoV-2, while many studies docu-
mented the susceptibility of different animal species to 
the virus, including cats, dogs, tigers, lions, ferrets, and rhe-
sus macaques (Salajegheh Tazerji et al. 2020; Shan et al. 
2020; Shi et al. 2020; Sit et al. 2020), the virus only caused 
outbreaks in minks (Oude Munnink et al. 2021). It is pos-
sible that high population density of farm minks facilitates 
virus spread. However, as shown in figure 1, transmission 
from humans to minks occurred multiple times, the ma-
jority of them failing to trigger an epidemic. Similar phe-
nomenon was also found in free-ranging white-tailed 
deer (Odocoileus virginianus) (Hale et al. 2021). Deer in 
six locations of northeast Ohio (USA) were infected by dif-
ferent SARS-CoV-2 lineages/variants originated from hu-
mans. Evidence of deer-to-deer transmission was 
confirmed only in one location. The above observations 
support previous suggestion that many attempts of 
SARS-CoV-2 to jump cross-species boundaries appeared 
as “spill-over” infections (Pekar et al. 2021).

Occasionally, after many failed attempts, the emergence 
of a new strain can sustain the infection long enough to 
acquire new mutations for further enhancement of infec-
tiousness in the new hosts. A series of putative adaptive 
changes identified in the lineages leading to late phase of 
mink-1 outbreak supports the adaptation of SARS-CoV-2 
in the new host (fig. 2).

Meanwhile, because the virus may travel back and forth 
between old and new hosts (Oude Munnink et al. 2021) 
(supplementary fig. S3, Supplementary Material online), 
evolution may not only be in the recipients, but also in 
the donors. We observed that multiple putatively adaptive 
mutations (Y453F, F486L, and N501T) repeatedly occurred 
in different mink lineages (supplementary tables S3 and S4, 
Supplementary Material online). The introduction of these 
mutations into human populations from minks was docu-
mented (Welkers et al. 2021). Y453F enhances binding to 
the mink ACE2 and other orthologs of Mustela species 
without compromising, and even enhancing, its ability to 
utilize human ACE2 as a receptor for entry (Ren et al. 
2021). Interestingly, in a case report involving a patient re-
ceiving the Regeneron treatment, escape mutations were 
identified in several positions of the S protein, including 
486 and 501 (Choi et al. 2020). Thus, while adaptation of 
SARS-CoV-2 occurred in minks, it is possible that these 
mutants may affect evolution of the virus in humans as 
well.

On the Origin of SARS-CoV-2 in Humans
Similar to previous studies, we did not detect evidence of 
positive selection in the early episode of the SARS-CoV-2 
pandemic (Chaw et al. 2020; MacLean et al. 2021; Martin 
et al. 2021). Virus adaptation to new hosts that is sufficient 
to produce a pandemic often entails a significant adaptive 
challenge and requires the acquisition of the ability to 
(1) bind and enter hosts’ cells, (2) evade host restriction 
factors and immune responses, and (3) transmit effectively 
among hosts. Such adaptation is not likely to have 

Table 3. Directionality of Nucleotide Changes of SARS-CoV-2 in (A) 
Polymorphism (Early Stage (December 2019–February 2020)) and (B) 
Divergence.

(A) Polymorphism

Changes Outgroup comparison Adjusted

# (%) # (%)

C->T 381 32.88 420 36.24
T->C 174 15.02 132 11.39
A->G 147 12.69 134 11.57
G->T 144 12.43 149 12.86
G->A 99 8.55 107 9.24
A->T 46 3.97 43 3.72
T->A 44 3.8 49 4.23
C->A 32 2.77 32 2.77
A->C 31 2.68 30 2.59
T->G 29 2.51 29 2.51
G->C 18 1.56 20 1.73
C->G 14 1.21 14 1.21

(B) Divergence

Changes Ancestor to SARS2 Ancestor to RaTG13

# (%) # (%)

T->C 185 38.07 212 37.53
C->T 112 23.05 137 24.25
A->G 75 15.44 83 14.7
G->A 40 8.24 51 9.03
T->A 26 5.35 26 4.61
A->T 14 2.89 25 4.43
C->A 10 2.06 8 1.42
T->G 7 1.45 8 1.42
A->C 7 1.45 7 1.24
G->T 6 1.24 4 0.71
C->G 3 0.62 3 0.54
G->C 1 0.21 1 0.18
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emerged suddenly but, instead, may have evolved step by 
step with each step favored by natural selection (Parrish 
et al. 2008; Pepin et al. 2010; Plowright et al. 2017; Cui 
et al. 2019; Long et al. 2019; Kang et al. 2021; Ruan, Wen, 
He, et al. 2021). Some viruses may possess the baseline abil-
ities needed to ensure its onward transmission in the new 
host (Geoghegan and Holmes 2017). For instance, EBOV 
has crossed the species barrier from its reservoir hosts to 
humans and caused several localized epidemics since 
1976. Nonetheless, these outbreaks were resolved after at 
most a few hundred cases (Jacob et al. 2020). The 2013– 
2016 Western African EBOV disease outbreak (the largest 
in history), which caused 28,625 infections and 11,325 
deaths, was linked to a series of active adaptive events of 
EBOV to humans (Diehl et al. 2016; Urbanowicz et al. 
2016).

While the history of early adaptation is unknown, the 
RBD of the SARS-CoV-2 spike protein appears to be highly 
specialized to human ACE2 (Delgado Blanco et al. 2020). 
Substitution of eight SARS-CoV-2 RBD residues proximal 
to the ACE2-binding surface with those found in 
RaTG13 is almost universally detrimental to human 
ACE2 receptor usage (Conceicao et al. 2020). Both 
SARS-CoV-2 and RaTG13 bind poorly to R. sinicus ACE2 
(Li et al. 2020). These findings indicate that SARS-CoV-2 
is well adapted to humans. In this study, we observe strong 
signatures of positive selection in the viral strains that suc-
cessfully established continuous infections among minks. 
By analogy, it appears unlikely that a nonhuman progeni-
tor of SARS-CoV-2 would require little or no novel adapta-
tion to successfully infect humans.

We thus hypothesize that the progenitor of 
SARS-CoV-2 may have been cryptically circulating among 
humans before the current outbreak. During the period of 
unawareness, the virus had gradually accumulated adap-
tive changes that enabled it to effectively infect humans 
and finally cause the pandemic (Kumar et al. 2021). For ex-
ample, Kang et al. (2021) showed that a putative adaptive 
nonsynonymous change (A1114G; T372A) within the RBD 
of the spike protein likely contributed to SARS-CoV-2 
emergence from animal reservoirs or enabled sustained 
human-to-human transmission.

Although the exact time the prototype SARS-CoV-2 
jumped to humans is difficult to estimate without further 
information, we may refer to the timing from minks and 
SARS-CoV. After adapting to the new hosts, most RNA 
viruses exhibit strong negative selection (Lin et al. 2019). 
While the signature of positive selection diminished quickly, 
it may still leave a trace on linked neutral variation which 
can be revealed by SFSs if the selection event is relatively re-
cent, as shown in mink-1 (fig. 3). During the short episode of 
the SARS-CoV outbreak in 2002–2003, despite the Ka/Ks ra-
tio of its spike gene being reduced from 1.248 in the early 
phase to 0.219 in the late phase (Chinese SARS Molecular 
Epidemiology Consortium 2004), the SFS still showed evi-
dence of genetic hitchhiking due to positive selection in la-
ter stages (supplementary fig. S4, Supplementary Material
online). However, SFSs of SARS-CoV-2 before February 29, 

2020 only show recent population expansion with no sign 
of genetic hitchhiking. Therefore, it is reasonable to presume 
that the SARS-CoV-2 progenitor may have associated with 
humans unnoticed for longer than the SARS-CoV-2 mink 
infection and the SARS-CoV epidemic episodes (Kang 
et al. 2021; Kumar et al. 2021; Ruan, Wen, Hou, et al. 
2021), perhaps before June 2019.

Alternatively, we cannot rule out the possibility that, 
unlike its precedent SARS-CoV and counterpart in the 
minks, the SARS-CoV-2 exhibits a unique property which 
facilitates successful infection in humans (MacLean et al. 
2021). Therefore, adaptive change in the SARS-CoV-2 gen-
ome may not be necessary and the origin of current pan-
demic may be very close to the first case of SARS-CoV-2 
emerged in Hubei province, China (Pekar et al. 2021). To 
verify these hypotheses, more extensive analysis and ex-
perimental confirmation are required. It is essential to col-
lect archive samples from environments and pneumonia 
patients in the Wuhan area for analysis. These data are 
needed to trace its evolutionary path and/or to reveal crit-
ical steps required for effective spread.

Why and How the Current Pandemic Occurred
It is not uncommon that the origin of virus infection dates 
back before the awareness of the epidemic. For example, 
molecular clock dating suggests the onset of HIV-M and 
-O epidemics occurred at the beginning of the 20th cen-
tury (Korber et al. 2000; Lemey et al. 2004; Worobey 
et al. 2004). The earliest documented HIV-1 infection 
was discovered in a preserved blood sample taken in 
1959 from a man living in what was then Belgian Congo 
(Nahmias et al. 1986; Zhu et al. 1998). However, it was 
not until 1980 that the virus was finally confirmed as the 
causal agent of AIDS (Barre-Sinoussi et al. 1983; Gallo 
et al. 1984; Popovic et al. 1984). After the last reported 
cases of rabies in a human in 1959 and a nonhuman animal 
in 1961, Taiwan was considered free from rabies. However, 
a rabies outbreak occurred among ferret badgers in Taiwan 
in 2012 and 2013. Further field survey confirmed that the 
ferret badger (Melogale moschata) is the sole reservoirs 
species of rabies in Taiwan (Lan et al. 2017), indicating 
that the rabies may have associate with ferret badgers 
for many years without being noticed. Furthermore, phylo-
geographic analyses suggest that the virus has been in 
Taiwan for more than 100 years, demonstrating that 
even the rabies virus can circulate cryptically in the envir-
onment (Chiou et al. 2014).

Even viruses that appear to be well adapted to humans 
may fail to induce an outbreak (Geoghegan and Holmes 
2017). That is because herd immunity can develop in local 
populations and impede epidemic spread while the virus is 
building up its ability to infect humans. Such viruses would 
then be more infectious outside the enzootic area as out-
side populations are immunologically naïve (Ruan, Wen, 
He, et al. 2021). That is why the place of origin is not neces-
sarily the same as the outbreak location, as can be seen in 
the cases of HIV and influenza (Crosby 2003; Barry 2004; 
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Sharp and Hahn 2011). It is also possible for a changing 
ecological environment to impact virus spread. In the 
case of the canine influenza virus (CIV), which jumped 
to dogs in the late 1990s from an equine influenza strain 
prevalent in horses (Crawford et al. 2005), Dalziel et al., 
found that CIV is largely confined to dog shelters in the 
US, where most dogs are infected soon after they arrive. 
But the virus cannot be maintained for long in smaller fa-
cilities or in the companion dog population without input 
from the larger shelters (Dalziel et al. 2014). These hotspot 
dynamics give a clear picture of what can happen in the 
time between the beginning of a host range shift and 
the onset of a possible pandemic.

Materials and Methods
Data Collection
All sequences were downloaded from the Global Initiative on 
Sharing Avian Influenza Data (GISAID, https://www.gisaid. 
org/) on or before February 5, 2021. Only complete and 
high coverage genomes were used. All 796 SARS-CoV-2 gen-
omes labeled as Neovision vision (minks) from Denmark, the 
Netherlands, the USA, Poland, and Canada were included. 
We also retrieved all human SARS-CoV-2 sequences from 
the Netherlands (6,625), Poland (406), and Canada (7,102). 
For Denmark and the USA, due to the sheer amount of 
data available, only sequences collected between dates that 
are 7 days before the first mink sequence and 7 days after 
the last mink sequence were included. As a result, 27,971 
SARS-CoV-2 genomic sequences were used.

For early-stage data, a collection of 1,476 complete and 
high coverage genomic sequences, with the collection 
starting from the earliest sequence to February 
(December 24, 2019–February 29, 2020), were retrieved.

Sequence Analyses and Phylogenetic Reconstruction
All sequences were aligned against the reference genome 
(EPI_ISL_402125) using the default settings in ClustalW 
(Thompson et al. 1994). Phylogenies were constructed 
using IQ-TREE 2.1.2 (Minh et al. 2020). Numbers of nonsy-
nonymous changes per nonsynonymous site (Ka) and syn-
onymous changes per synonymous site (Ks) among 
genomes were estimated based on Li-Wu-Luo’s method 
(Li et al. 1985) implemented in MEGA-X (Kumar et al. 
2018). Kimura’s two-parameter model was used for esti-
mating genetic distances between sequences.

For site frequency spectrum (SFS) construction of 
mink-1, sequence sets that were immediate sister groups 
to target groups were used to infer directionality of 
changes (supplementary fig. S3, Supplementary Material
online). We first used EPI_ISL_422678 to infer changes. 
Several other closely related sequences were also applied 
to identify mutations unique to EPI_ISL_422678. We also 
used different sequences as shown in supplementary 
figure S3, Supplementary Material online to construct 
SFSs and the results were essentially the same. Therefore, 
our SFS construction should be authentic.

For the early-stage SARS-CoV-2 sequences, we first used 
RaTG13 as an outgroup to construct the SFS. We also 
cross-referenced the directionality of changes based on 
phylogeny and date of collection. To test whether the ob-
served SFS deviates from neutral expectation under expo-
nential population growth, a custom R script was utilized 
based on the theorem of Durrett (2013). The method was 
developed to analyze the SFS of cancer genomes, which are 
exponentially growth and largely nonrecombining.

The ancestor sequences of SARS-CoV-2 and RaTG13 
were reconstructed using codeml implemented in PAML 
4 (Yang 2007) under the free ratio model. The sequences 
used in this analysis included Rf1 (DQ412042.1), HKU3-1 
(DQ022305.2), BM48-31 (NC_014470.1), ZC45 
(MG772933.1), and ZXC21 (MG772934.1). The recon-
structed ancestral sequence was used to infer nucleotide 
changes after the divergence of SARS-CoV-2 and RaTG13.

Detection of Positive Selection in SARS-CoV-2
To examine signatures of positive selection in the 
SARS-CoV-2 isolates derived from minks, we included all 
sequences from the Netherlands. In order to facilitate 
our analyses, we only retained sequences derived from hu-
mans with less than 99.9% nucleotide identify. For 
SARS-CoV-2 from minks, sequences with ambiguous nu-
cleotides were removed. The resulting dataset contains 
92 sequences (32 humans and 60 minks). A maximum like-
lihood tree was constructed using MEGA-X.

An array of selection detection methods implemented 
in HyPhy was applied to detect whether the lineage lead-
ing to minks has experienced adaptive evolution (Pond 
et al. 2005). We employed the FEL method (Kosakovsky 
Pond and Frost 2005) to infer amino acid sites under posi-
tive selection within minks. We also searched for evidence 
of positive selection on specific branches using the aBSREL 
method (Smith et al. 2015). Because identical or essentially 
identical sequences do not increase power for codon- 
based methods to detect selection, we set genetic distance 
of 0.001 for the above analyses.

Supplementary Material
Supplementary data are available at Molecular Biology and 
Evolution online.
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