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Abstract

Introduction

With increasing rates of opioid overdoses in the US, a surveillance tool to identify high-risk

patients may help facilitate early intervention.

Objective

To develop an algorithm to predict overdose using routinely-collected healthcare

databases.

Methods

Within a US commercial claims database (2011–2015), patients with�1 opioid prescription

were identified. Patients were randomly allocated into the training (50%), validation (25%),

or test set (25%). For each month of follow-up, pooled logistic regression was used to pre-

dict the odds of incident overdose in the next month based on patient history from the pre-

ceding 3–6 months (time-updated), using elastic net for variable selection. As secondary

analyses, we explored whether using simpler models (few predictors, baseline only) or dif-

ferent analytic methods (random forest, traditional regression) influenced performance.

Results

We identified 5,293,880 individuals prescribed opioids; 2,682 patients (0.05%) had an over-

dose during follow-up (mean: 17.1 months). On average, patients who overdosed were

younger and had more diagnoses and prescriptions. The elastic net model achieved good

performance (c-statistic 0.887, 95% CI 0.872–0.902; sensitivity 80.2, specificity 80.1, PPV

0.21, NPV 99.9 at optimal cutpoint). It outperformed simpler models based on few predictors

(c-statistic 0.825, 95% CI 0.808–0.843) and baseline predictors only (c-statistic 0.806, 95%

CI 0.787–0.26). Different analytic techniques did not substantially influence performance. In
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the final algorithm based on elastic net, the strongest predictors were age 18–25 years (OR:

2.21), prior suicide attempt (OR: 3.68), opioid dependence (OR: 3.14).

Conclusions

We demonstrate that sophisticated algorithms using healthcare databases can be predictive

of overdose, creating opportunities for active monitoring and early intervention.

Introduction

Over the past two decades, the abuse, dependence, and misuse of prescription opioids has

become one of the most widely recognized public health problems in the United States [1–4].

Since 2000, the rate of overdose deaths involving opioids has tripled, with over 70,000 deaths

in 2017 and an accumulation of over 700,000 deaths to date [5–9]. The rate of overdose deaths

involving prescription opioids is now five times higher than it was in 1999, making it a leading

cause of injury-related death in the United States [10–12]. In recent years, the combined eco-

nomic burden of the opioid epidemic has cost the United States over $50 billion annually [13–

16].

Routinely collected healthcare databases, which provide a rich source of longitudinal

patient information on medical diagnoses and procedures, medication prescriptions, and

healthcare utilization [17] could be leveraged as a resource for surveilling and intervening on

patients at high-risk of aberrant opioid-related behaviors. Several automated algorithms to

detect opioid-related adverse events have been proposed [18, 19], including two algorithms

developed to predict overdose [20, 21]. Such claims-based algorithms have already been imple-

mented in practice as tools for routine surveillance. Examples include the Centers for Medicare

and Medicaid Services’ Overutilization Monitoring System in Medicare Part D to help prevent

overutilization of prescription opioid medications [22] and a private company’s platform that

has licensed its algorithm to organizations for use in identifying patients at risk opioid over-

dose [23]. Because overdose is such a potentially catastrophic outcome and there are low cost

interventions that can be directed to at-risk patients (e.g., naloxone), even algorithms with

modest performance may have clinical utility in flagging at-risk patients for intervention.

Previous studies have highlighted that the performance of existing opioid-related algo-

rithms could be improved [18, 24]. Most algorithms currently used in practice are based on

simple models with few predictors and have not fully taken advantage of the rich data available

in healthcare databases. Recently, one study found that machine learning algorithms based on

claims data performed well for risk prediction of opioid overdose in Medicare patients (which

insures elderly patients in the United States) [20]. However, recent reports suggest that over

90% of opioid overdoses occur in patients <65 years old [5, 25], and the performance of more

sophisticated algorithms based on data-driven techniques has not been evaluated in younger

patients. Additionally, machine learning methods for predicting opioid overdose have not

been directly compared to traditional multivariate regression.

In a nationwide healthcare database of commercially-insured patients, we used a data-

driven approach to develop an algorithm to identify patients prescribed opioids who may be at

high-risk of overdose. Specifically, we were interested in developing an approach that could

use routinely collected healthcare utilization data to identify high-risk patients who have

received prescription opioids and may benefit from interventions that can prevent overdose

such as naloxone, a potentially life-saving medication that can be administered to patients
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suspected to have an overdose [26], or medication-assisted treatment (methadone, buprenor-

phine, or naltrexone). Such evidence-based practices can be effective in reducing the risk of

overdose and will play an important role in preventing future overdoses [27]. To develop this

tool, we applied two data-driven approaches and compared their performance to traditional

multivariate regression. First, we utilized elastic net penalized regression to empirically select

strong predictors of opioid overdose [28]. Then, we evaluated whether random forest, a

machine learning method that also automates the identification of interactions between pre-

dictors or nonlinear associations between predictors and the outcome, could enhance predic-

tion [29, 30]. To fully take advantage of the information available in the database, we produced

a time-updating algorithm. Each month, the patient’s recent medical history was re-assessed,

allowing us to capture temporal changes in clinically important risk factors and emulate real-

time safety surveillance.

Materials and methods

Study population

This study used data from the Optum© Clinformatics1 Data Mart, which comprises de-iden-

tified US healthcare claims for beneficiaries of a large, national commercial insurance pro-

vider. At any given time, Optum covers approximately 13 million people in the United States

and reflects a geographically diverse population with beneficiaries from several health plans

that have different benefit structures. The database contains individual-level information on

inpatient and outpatient diagnoses and procedures, as well as records of outpatient prescrip-

tion dispensing. Data from October 2011 to September 2015 were used in the analysis.

We identified a cohort of patients at least 18 years old who filled at least 1 prescription of

the following opioids: buprenorphine, butorphanol, codeine, fentanyl, hydrocodone, hydro-

morphone, levorphanol, methadone, meperidine, morphine, oxycodone, oxymorphone, pen-

tazocine, tapentadol, and tramadol. Both incident and prevalent users were eligible for

inclusion. The date of the first observed dispensing of any prescription opioid was defined as

the index date. Patients with a cancer diagnosis or overdose at any point prior to the index

date were excluded. Patients with a prior overdose were excluded because they are at high-risk

for recurrent overdose and prescription of naloxone or other interventions are clearly indi-

cated. In our approach, we were interested in identifying patients who have not yet overdosed

but could potentially benefit from preventative interventions. To develop our prediction

model, we split the sample into 3 datasets. Patients were randomly allocated into the training

set (50% of cohort), validation set (25%), or test set (25%).

Outcome and candidate predictors

We followed patients until first opioid overdose, which was defined as the presence of an inpa-

tient or outpatient diagnosis code for prescription opioid poisoning (International Classifica-
tion of Diseases, Ninth Revision, Clinical Modification [ICD-9-CM] codes 965.00, 965.02,

965.09) or heroin poisoning (ICD-9-CM code 965.01). A previous validation study showed

that these ICD-9-CM diagnosis codes for opioid overdoses and poisonings accurately identify

opioid overdose events reported in medical records (PPV = 81–84%) [31]. Patients were cen-

sored at the end of insurance enrollment, death, cancer diagnosis, or end of follow-up (Sep-

tember 30, 2015).

Seventy-eight candidate predictors were selected a-priori based on subject matter knowl-

edge. We considered variables related to demographics, medical diagnoses, medication pre-

scriptions, and healthcare utilization. The ICD-9-CM codes (inpatient or outpatient, any

position) used to define the medical diagnoses are displayed in S1 Table. All time-varying

PLOS ONE Predicting opioid overdose in healthcare databases

PLOS ONE | https://doi.org/10.1371/journal.pone.0241083 October 20, 2020 3 / 17

https://doi.org/10.1371/journal.pone.0241083


predictors were updated monthly. Demographic variables were captured on the index date

and modeled categorically. Medical diagnoses were modelled as binary variables. All other

candidate predictors were modelled as continuous variables. For each person-month of fol-

low-up, medical diagnoses were defined during the preceding 6-month period and all other

candidate predictors (medication prescriptions, healthcare utilization) were assessed during

the preceding 3-month period. A longer covariate assessment period was used for medical

diagnoses to allow sufficient time for diagnoses to be captured. However, six months of avail-

able data was not required since the goal was to mimic how active surveillance would be con-

ducted in healthcare databases. If less than 3–6 months of data were available, all obtainable

information was used. Therefore, each patient’s recent medical history was updated for each

month they were enrolled to account for changes in risk factors over time. This study design is

summarized in Fig 1.

Statistical analysis

Model development. Pooled logistic regression models were used to predict the odds of

opioid overdose in the next month, based on patient history from the prior 3–6 months. We

used elastic net regularization, which minimizes overfitting through parameter shrinkage and

variable selection, to create a parsimonious algorithm [28]. Our candidate model contained all

candidate predictors, as well as quadratic transformations of total number, days supplied, and

dose for opioid prescriptions. Inclusion of quadratic transformations was determined a-priori

Fig 1. Study design diagram. Abbreviations: FU = follow up. The covariate assessment period was 3 months for medication dispensings and

healthcare utilization and 6 months for medical diagnoses.

https://doi.org/10.1371/journal.pone.0241083.g001
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to accommodate potential non-linear relationships between key candidate predictors and out-

come. Continuous variables were standardized to improve optimization and convergence of

the models. Extreme outliers (>4 standard deviations of the mean) were imputed as the mean.

To account for time, number of months since first observed opioid dispensing was included as

a covariate. Models were fit using data exclusively from patients in the training set.

Decisions to optimize model performance were made using patient data in the validation

set. Specifically, mean absolute error (MAE) was used for the tuning of λ, which controls the

magnitude of regularization (smaller λ value imposes less penalization). The elastic net proce-

dure generated 72 candidate values for λ from the training set. For each potential λ value,

MAE was assessed by computing the mean difference between observed and predicted proba-

bilities. The λ value that minimized the MAE was used in the final model. While K-fold cross-

validation is typically used to select the optimal tuning parameter, the size of our data pre-

vented use of this procedure (~50 million rows of person-month data in the training set).

However, the differences among validation approaches decreases as sample size increases [32].

For the final model, beta coefficients and odds ratios (OR) were reported. 95% confidence

intervals (95% CI) were not provided because elastic net regularization does not provide an

accurate estimate of precision [33].

Internal validation. Model performance was assessed in the test set. Discrimination was

evaluated using c-statistics, which can be interpreted as the probability that the model correctly

classifies a random patient who experienced an overdose in a given month as higher risk than

a random patient who did not overdose in a given month. Model accuracy was evaluated using

the Brier score, which calculates the squared differences between the actual outcomes and the

model’s predicted probabilities. A lower Brier score suggests better accuracy [34].

Calibration was assessed visually at the person-month level. We compared the mean

observed and predicted probabilities in 29 strata: deciles of predicted probability, with the

highest decile further split into 20 additional strata based on percentiles. The highest decile of

predicted probability included patients at both high and moderate risk, so further stratification

allowed closer examination of patients at the highest risk of overdose and ensured comparable

risks for patients within the same strata [34]. A perfectly calibrated model would form a diago-

nal line, suggesting that the observed incidence of the outcome is equal to the predicted risk of

the outcome.

Predicted probabilities from the final elastic net model were used to classify patients into

high and low risk groups using several potential thresholds, ranging from 0.0015% to 0.15%

probability of having an overdose in the next month. Our time-updating approach means that

each patient’s risk of overdose may change each month. However, we anticipate that for most

clinical applications, interest will be in intervening at the patient level when high-risk individu-

als are flagged, as opposed to identifying high-risk person-months. In the primary analysis,

sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV)

were computed at the person-level, instead of the person-month level, for each threshold. A

person was therefore classified as high-risk if at least 1 follow up month was flagged as high-

risk and classified as a true positive if an overdose occurred at any point during follow up. As

an additional analysis, we estimated potential classification at the person-month level, where

person-months were considered high-risk if that month was flagged and were considered a

true positive if an overdose event occurred in the next month. This classification considers risk

for each month separately.

Subgroup and secondary analyses. To evaluate the robustness of our primary results, the

final elastic net model was validated across subgroups of age (18–25, 26–35, 36–50, 50–65,>65

years) and gender (male, female).
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As secondary analyses, we evaluated whether use of different analytic approaches may alter

performance. First, we used random forest, a non-parametric data-mining technique, to con-

sider prediction models with all possible variable transformations (polynomials, logarithms,

etc.) and interaction terms [35]. Briefly, random forest is a supervised classification method

that builds many decision trees to predict the outcome. At each split in a tree, a random sample

of predictors is chosen. The overall prediction is comprised of the proportion of trees predict-

ing overdose. Then, to consider the potential gain in using data-driven approaches, we used

traditional logistic regression. The random forest and traditional regression models were fit in

the training set using the same set of candidate predictors as the elastic net model, and perfor-

mance was evaluated in the test set. The validation set was not used because there were no

hyper-parameters that required tuning, as there were in elastic net.

Additionally, we evaluated whether inclusion of many time-updated predictors outper-

formed simpler models. First, to examine the potential gain in updating predictors over time,

we fit a traditional logistic model using baseline predictors only (measured during the period

prior to first opioid prescription) to predict overdose at any point during follow up. Then, to

assess whether including many predictors improved performance, we fit a traditional logistic

model comprised of only the top 10 most important predictors (updated over time). These

predictors were identified based on variable importance (largest mean decrease in accuracy)

from the random forest model. They include age, gender, region, back and neck pain, opioid

dependence, psychosis, depression, anxiety disorder, number of prescribers for non-opioids,

and neuropathic pain.

Elastic net and random forest analyses were performed in R version 3.4.3 using the pack-

ages “glmnet” version 2.0–16 and “randomforest” version 4.6–14, respectively [36, 37].

Results

We identified 5,293,880 individuals who were prescribed opioids, of which 2,682 patients

(0.05%) had an observed opioid overdose during follow-up (S1 Fig). Patients were followed

for a total of 99,174,018 person-months (0.003% of person-months with an overdose) and an

average of 12.9 months among patients with an overdose and 17.1 months among patients

without an overdose.

For each candidate predictor, descriptive statistics are displayed in Table 1. Each individu-

al’s characteristics are updated each month, so the statistics shown reflect measurements dur-

ing the 3–6 month window prior to overdose or a censorship event (final covariate assessment

period). Patients who overdosed were younger than those who did not overdose (25.4% in 18–

25 years among overdose vs. 12.6% among no overdose), but other demographic characteris-

tics were relatively similar between groups. Compared to those who did not overdose, patients

who overdosed were more likely to have at least 1 diagnosis of opioid dependence (16.6% vs.

0.7%) and opioid abuse without dependence (5.4% vs. 0.1%) during the 6 months prior to

overdose or censoring. Additionally, compared to those who did not overdose, patients who

overdosed had a higher number of total opioid dispensings (mean [sd], 2.42 [2.61] vs. 0.48

[1.11]), total dose for opioid prescriptions in oral morphine equivalents (mean [sd], 763.95

[1753.85] vs. 96.83 [596.06]), number of unique prescribers of opioids (mean [sd], 1.15 [1.11]

vs. 0.32 [0.61]), and number of unique pharmacies for opioid dispensings (mean [sd], 1.05

[0.98] vs. 0.30 [0.55]) during the 3 months prior to censoring. Descriptive statistics at the per-

son-month level are shown in S2 Table.

The elastic net model had strong discrimination, with a c-statistic of 0.888 (95% CI: 0.872–

0.902), and good accuracy (Brier score: 2.662 x 10−5; Table 2). Performance of the elastic net

model was largely consistent across age and gender subgroups. Using different analytic
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Table 1. Characteristics during the window prior to censoring for patients who have filled at least 1 opioid prescription between October 2011 to September 2015.

Candidate Predictors Overdose (n = 2,682) No Overdose (n = 5,291,198)

Categorical variables N % N %

Age

18–25 yrs 681 25.4 665,428 12.6

26–35 yrs 411 15.3 1,125,043 21.3

36–50 yrs 804 30.0 1,805,509 34.1

51–65 yrs 708 26.4 1,530,798 28.9

>65 yrs 78 2.9 164,420 3.1

Gender

Female 1488 55.5 2,915,392 55.1

Male 1192 44.4 2,375,409 44.9

Undefined 2 0.1 397 0.0

Geographic Region

Northeast 204 7.6 409,205 7.7

Midwest 739 27.5 1,329,590 25.1

South 1222 45.5 2,603,343 49.2

West 516 19.2 946,587 17.9

Unknown 1 0.0 2,473 0.0

Opioid dependence 444 16.6 36,230 0.7

Opioid abuse without dependence 145 5.4 4,273 0.1

Back and neck pain 1,321 49.3 1,057,841 20.0

Neuropathic pain and fibromyalgia 834 31.1 543,041 10.3

Chronic pancreatitis 28 1.0 4,558 0.1

Sickle cell disease 2 0.0 1,277 0.0

Migraine 233 8.7 149,317 2.8

Other headache syndromes 57 2.1 35,673 0.7

Peripheral neuropathy 7 0.2 5,831 0.1

Abdominal pain 603 22.5 459,929 8.7

Renal calculus 77 2.9 92,200 1.7

Dental pain 26 1.0 25,324 0.5

Other paina 687 25.6 231,167 4.4

Mild and musculoskeletal injury (sprains & strains) 356 13.3 354,030 6.7

Severe musculoskeletal injury (dislocations, tears, ruptures) 120 4.5 147,708 2.8

Fractures 202 7.5 128,293 2.4

Marijuana use 99 3.7 10,295 0.2

Cocaine use 72 2.7 3,467 0.1

Candidate Predictors Overdose (n = 2,682) No Overdose (n = 5,291,363)

Categorical variables N % N %

Alcohol abuse 283 10.6 46,057 0.9

Tobacco use 549 20.5 288,261 5.5

Other substance useb 422 15.7 28,554 0.5

ADHD 151 5.6 118,477 2.2

Depression 1,005 37.5 429,718 8.1

Bipolar disorder 286 10.7 56,286 1.1

Psychosis/schizophrenia 788 29.4 211,477 4.0

Personality disorder 51 1.9 7,034 0.1

Anxiety disorder 849 31.7 407,246 7.7

Other psychiatric disorders c 138 5.2 9,209 0.2

(Continued)
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Table 1. (Continued)

Suicide attempt 84 3.1 1,881 0.0

Hepatic disease 191 7.1 134,306 2.5

Renal insufficiency 24 0.9 9,185 0.2

Endocarditis 7 0.3 893 0.0

HIV 20 0.8 14,398 0.3

Continuous Variables Mean SD Mean SD

Total opioid dispensings 2.42 2.61 0.48 1.11

Number of extended-release opioid prescriptions dispensed 0.46 1.07 0.03 0.29

Total number of days supplied for all opioid prescriptions dispensed 46.91 58.67 7.22 22.76

Total dose (in oral morphine equivalents) for opioid prescriptions dispensed 763.95 1753.85 96.83 596.06

Number of unique prescribers of opioids 1.15 1.11 0.32 0.61

Number of unique pharmacies for opioid dispensings 1.05 0.98 0.30 0.55

Total number of non-opioid prescriptions dispensed 11.38 10.74 4.36 5.75

Number of unique non-opioid generics dispensed 9.84 9.31 3.82 5.06

Number of unique prescribers for non-opioid medications 2.69 2.18 1.34 1.35

Number of unique pharmacies for non-opioid medications 1.73 1.27 0.97 0.88

Number of outpatient visits 10.64 14.07 3.61 14.07

Number of emergency department visits 0.14 0.81 0.09 0.81

Number of hospitalizations 0.27 0.69 0.03 0.69

Candidate Predictors Overdose (n = 2,682) No Overdose (n = 5,291,363)

Continuous Variables Mean SD Mean SD

Number of unique providers seen 6.15 6.47 2.47 3.28

Number of urine drug screens 0.18 1.37 0.00 0.14

Number of opioid dispensings

Buprenorphine 0.13 0.61 0.01 0.23

Butorphanol 0.00 0.12 0.00 0.06

Codeine 0.00 0.09 0.00 0.06

Fentanyl 0.12 0.65 0.01 0.14

Hydrocodone 0.79 1.43 0.23 0.69

Hydromorphone 0.10 0.54 0.01 0.12

Levorphanol 0.00 0.08 0.00 0.01

Meperidine 0.01 0.12 0.00 0.04

Methadone 0.06 0.41 0.00 0.11

Morphine 0.16 0.71 0.01 0.18

Oxycodone 0.83 1.67 0.10 0.53

Oxymorphone 0.04 0.40 0.00 0.09

Pentazocine 0.00 0.10 0.00 0.03

Tapentadol 0.02 0.21 0.00 0.08

Tramadol 0.23 0.77 0.07 0.40

Number of non-opioid dispensings

Antidepressants 1.30 1.87 0.35 0.98

Antipsychotics 0.27 0.85 0.02 0.26

Barbituates 0.01 0.12 0.00 0.09

Benzodiazepines 1.14 1.66 0.17 0.64

CNS stimulants 0.13 0.59 0.06 0.42

Gabapentanoids 0.44 1.04 0.06 0.36

Mood stabilizers 0.25 0.82 0.05 0.37

Muscle relaxants 0.58 1.18 0.10 0.44

(Continued)
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approaches had little influence on model discrimination (traditional logistic regression c-sta-

tistic: 0.881, 95% CI: 0.866–0.896; random forest c-statistic: 0.862, 95% CI: 0.845–0.878). How-

ever, simpler models based on baseline predictors only (c-statistic: 0.806, 95% CI: 0.787–0.826)

and the top 10 predictors only (c-statistic: 0.825, 95% CI: 0.808–0.843) had weaker

performance.

The elastic net model’s predicted probability of opioid overdose in the next month provided

close, but slightly underestimated predictions of the observed risk (Fig 2). However, the pre-

dicted probabilities were higher than the true risk of overdose in patients in the highest percen-

tile of risk (>99.99th percentile). Random forest was slightly better calibrated compared to

elastic net and traditional regression, particularly for patients with the highest predicted proba-

bilities of opioid overdose (Fig 2).

The final elastic net model identified 40 predictors for opioid overdose in the next month

based on the previous 3–6 months of medical history (Table 3). All identified predictors were

Table 1. (Continued)

NSAIDs 0.31 0.76 0.15 0.51

Other hypnotics 0.40 1.07 0.08 0.43

Triptans 0.10 0.76 0.03 0.39

Window prior to censoring (opioid overdose or censorship event) was 6 months for time-varying categorical variables and 3 months for continuous variables.
aOther pain: Pain not elsewhere classified, generalized pain, pain disorders related to psychological factors.
bOther substance use: Dependence on or non-dependent abuse of sedatives, psychostimulants, hallucinogens, other drugs, or combinations of drugs; Drug dependence

complicating pregnancy.
cOther psychiatric disorders: Dissociative disorders, neurasthenia, depersonalization disorder, hypochondriasis, somatoform disorders, unspecified nonpsychotic

mental disorder, overanxious disorder.

https://doi.org/10.1371/journal.pone.0241083.t001

Table 2. Comparative performance of models and validation in subgroups in the test set.

Model c-statistic (95% CI) Brier Score

Comparison of Models
Traditional logistic regression 1: Baseline only 0.806 (0.787–0.826) 49.740 x 10−5

Traditional logistic regression 2: Top 10 predictors only (time-updated)a 0.825 (0.808–0.843) 2.641 x 10−5

Traditional logistic regression 3: All baseline and time-updating 0.881 (0.866–0.896) 2.671 x 10−5

Elastic net (baseline and time-updating)–Primary Analysis 0.887 (0.872–0.902)b 2.662 x 10−5

Random forest (baseline and time-updating) 0.862 (0.845–0.878) 2.640 x 10−5 b

Validation in Subgroups–Elastic net model
Age 18–25 years 0.849 (0.808–0.890) 5.304 x 10−5

Age 26–35 years 0.861 (0.816–0.907) 2.154 x 10−5

Age 36–50 years 0.877 (0.847–0.906) 2.393 x 10−5

Age 50–65 years 0.912 (0.890–0.935) 2.355 x 10−5

Age >65 years 0.934 (0.901–0.967) 1.820 x 10−5

Males 0.882 (0.857–0.907) 2.617 x 10−5

Females 0.891 (0.873–0.909) 2.699 x 10−5

aTop 10 predictors include age, gender, region, back and neck pain, opioid dependence, psychosis, depression,

anxiety disorder, number of prescribers for non-opioids, and neuropathic pain. The 10 most important variables

were identified based on variable importance (largest mean decrease in accuracy) from the random forest model.
bIn comparison of models, indicates best performance with respect to the metric (lowest Brier score, highest c-

statistic).

https://doi.org/10.1371/journal.pone.0241083.t002
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associated with increased odds of opioid overdose. Based on model coefficients, the strongest

predictors for opioid overdose were age 18–25 years old at first opioid prescription (OR = 2.21

compared to age 26+ years) and at least 1 diagnosis of the following conditions during the 6

months prior to overdose: suicide attempt (OR = 3.68), opioid dependence (OR = 3.14), opioid

abuse without dependence (OR = 2.63), and other substance use (OR = 2.58). Prescriptions for

6 types of opioids during the 3 months prior to overdose (compared to no prescriptions of the

opioid type during the prior 3 months) were identified as predictors of overdose: fentanyl

(OR = 1.14), hydrocodone (OR = 1.10), hydromorphone (OR = 1.20), methadone (OR = 1.16),

morphine (OR = 1.14), and oxycodone (OR = 1.15). Prescriptions for five non-opioid medica-

tions during the 3 months prior to overdose were identified as predictors, including benzodi-

azepines (OR = 1.18) and gabapentanoids (OR = 1.11). Several indicators of healthcare

utilization were also identified as predictors, including number of unique pharmacies for opi-

oid dispensings (OR = 1.18) and number of hospitalizations (OR = 1.16). Elastic net does not

provide an accurate estimate of precision [33], so for reference, we provided ORs and 95% CIs

for the conventional logistic regression that was estimated prior to implementing elastic net

(Table 3).

At the person-level, several cut points based on predicted probabilities could be used to

dichotomize patients into high and low risk groups (Table 4 and S3). Among all potential cut

points our algorithm had a high NPV (99.9% for all cut point), and a low PPV, ranging from

0.06% to 3.66%, which was driven by the very low incidence of opioid overdose. Diagnostics at

Fig 2. Calibration plot for models predicting opioid overdose in the next month: Comparison of analytic approaches. All models based on baseline and

time-updated predictors.

https://doi.org/10.1371/journal.pone.0241083.g002
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Table 3. Model coefficients for the traditional multivariate logistic regression model and the elastic net model.

Predictor Traditional Multivariate Logistic Regression Elastic Net

Odds Ratio 95% Confidence Interval Odds Ratiob

Categorical variables
Age

18–25 yrs 3.73 3.20, 4.35 2.21

26–35 yrs 1.14 0.96, 1.35 ref

36–50 yrs ref ref ref

51–65 yrs 1.00 0.87, 1.16 ref

>65 yrs 1.09 0.78, 1.53 ref

Gender

Female 0.86 0.77, 0.97 -

Male ref ref -

Unknown 12.14 1.67, 88.33 -

Geographic Region

Northeast 1.12 0.91, 1.37 -

Midwest 1.17 1.03, 1.33 -

South ref ref -

West 1.03 0.89, 1.19 -

Unknown <0.001 <0.001, >999.99 -

Opioid dependence 2.92 2.41, 3.55 3.14

Opioid abuse without dependence 2.49 1.89, 3.30 2.63

Back and neck pain 1.25 1.09, 1.43 1.15

Neuropathic pain and fibromyalgia 1.15 0.99, 1.32 1.07

Chronic pancreatitis 1.36 0.78, 2.37 1.01

Sickle cell disease 1.31 0.19, 9.36 -

Migraine 1.01 0.81, 1.26 -

Other headache syndromes 0.97 0.63, 1.48 -

Peripheral neuropathy 0.72 0.40, 1.29 -

Abdominal pain 1.24 1.07, 1.44 1.04

Renal calculus 0.86 0.62, 1.20 -

Dental pain 0.78 0.44, 1.40 -

Other paina 1.20 1.03, 1.40 1.29

Mild and musculoskeletal injury (sprains & strains) 1.05 0.89, 1.24 -

Severe musculoskeletal injury (dislocations, tears, ruptures) 1.06 0.83, 1.37 -

Fractures 1.27 1.02, 1.57 -

Marijuana use 0.81 0.57, 1.14 -

Cocaine use 1.28 0.86, 1.91 1.16

Alcohol abuse 1.86 1.50, 2.31 1.80

Tobacco use 1.42 1.22, 1.65 1.28

Other substance useb 2.37 1.93, 2.91 2.58

ADHD 0.88 0.67, 1.16 -

Depression 1.63 1.39, 1.91 1.49

Bipolar disorder 1.26 1.00, 1.58 1.15

Psychosis/schizophrenia 1.70 1.42, 2.05 1.77

Personality disorder 0.67 0.43, 1.04 -

Anxiety disorder 1.25 1.08, 1.45 1.17

Other psychiatric disorders c 1.36 1.00, 1.84 1.28

Suicide attempt 3.85 2.64, 5.62 3.68

(Continued)
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Table 3. (Continued)

Predictor Traditional Multivariate Logistic Regression Elastic Net

Odds Ratio 95% Confidence Interval Odds Ratiob

Hepatic disease 1.49 1.19, 1.87 1.15

Renal insufficiency 0.90 0.50, 1.65 -

Endocarditis 0.79 0.18, 3.48 -

HIV 1.36 0.67, 2.76 -

Continuous Variables
Total opioid dispensings 1.13 1.01, 1.27 -

Number of extended-release opioid prescriptions dispensed 1.19 1.09, 1.29 1.10

Total number of days supplied for all opioid prescriptions dispensed, for 30-days supplied 1.38 1.19, 1.58 1.09

Total dose (in oral morphine equivalents) for opioid prescriptions dispensed, per 1,000 MME 1.38 1.23, 1.54 1.11

Number of unique prescribers of opioids 1.10 1.00, 1.20 1.10

Number of unique pharmacies for opioid dispensings 1.14 1.03, 1.26 1.18

Total number of non-opioid prescriptions dispensed 1.03 1.01, 1.06 1.00

Number of unique non-opioid generics dispensed 0.97 0.94, 0.99 -

Number of unique prescribers for non-opioid medications 0.98 0.94, 1.02 -

Number of unique pharmacies for non-opioid medications 1.02 0.96, 1.08 -

Number of outpatient visits 0.99 0.99, 1.00 -

Number of emergency department visits 0.99 0.93, 1.05 -

Number of hospitalizations 1.16 1.07, 1.25 1.16

Number of unique providers seen 1.01 0.99, 1.03 1.01

Number of urine drug screens 1.05 1.02, 1.08 1.04

Number of opioid dispensings

Buprenorphine 0.89 0.80, 0.98 -

Butorphanol 1.15 0.80, 1.64 -

Codeine 1.07 0.46, 2.49 -

Fentanyl 1.25 1.14, 1.38 1.14

Hydrocodone 1.17 1.11, 1.22 1.10

Hydromorphone 1.25 1.16, 1.35 1.20

Levorphanol <0.001 <0.001, >999.99 -

Meperidine 1.37 0.85, 2.19 -

Methadone 1.22 1.08, 1.39 1.16

Morphine 1.22 1.12, 1.33 1.14

Oxycodone 1.20 1.15, 1.25 1.15

Oxymorphone 1.08 0.92, 1.27 -

Pentazocine 1.22 0.70, 2.12 -

Tapentadol 1.09 0.88, 1.35 -

Tramadol 0.99 0.90, 1.08 -

Number of non-opioid dispensings

Antidepressants 1.07 1.03, 1.11 1.04

Antipsychotics 0.98 0.91, 1.05 -

Barbituates 0.82 0.47, 1.43 -

Benzodiazepines 1.19 1.15, 1.23 1.18

CNS stimulants 0.87 0.78, 0.97 -

Gabapentanoids 1.11 1.05, 1.17 -

Mood stabilizers 1.03 0.96, 1.10 1.11

Muscle relaxants 1.10 1.05, 1.16 -

NSAIDs 0.98 0.91, 1.05 1.09

(Continued)
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the person-month level performed similarly, with a high NPV and low PPV (S3 Table). How-

ever, the PPV was much smaller, ranging from 0.003% to 0.26%, as the risk of opioid overdose

in each month (0.003%) is much lower than the risk of overdose at any point during follow up

(0.05%).

Discussion

Using data-driven methods and a time-updating approach, we developed a prediction model

for opioid overdose using data routinely collected in healthcare utilization claims. The final

algorithm based on elastic net had strong performance with respect to discrimination and was

well calibrated. Use of different analytic techniques (elastic net vs. traditional regression vs.

random forest) had a relatively small impact on model performance, whereas inclusion of

many time-updating predictors substantially improved prediction in the traditional regression.

The final algorithm identified 40 characteristics from a patient’s previous 3–6 month medical

history that were predictive of opioid overdose in the next month. These findings suggest that

high-dimensional algorithms for opioid overdose based on many time-updated predictors

could be used by health systems or payers to monitor patients and help identify those at high-

risk for opioid overdose and then target them for interventions, including naloxone

prescribing.

Table 3. (Continued)

Predictor Traditional Multivariate Logistic Regression Elastic Net

Odds Ratio 95% Confidence Interval Odds Ratiob

Other hypnotics 1.10 1.04, 1.16 1.05

Triptans 0.97 0.90, 1.06 -

Quadratic Transformations
Total opioid dispensings 0.97 0.96, 0.98 0.99

Total number of days supplied for all opioid prescriptions dispensed, for 30-days supplied 0.96 0.94, 0.97 -

Total dose (in oral morphine equivalents) for opioid prescriptions dispensed, per 1,000 MME 0.97 0.95, 0.98 -

aElastic net regularization does not provide an accurate measure of precision, so only odds ratios were provided. Predictors that were dropped after variable selection are

indicated with a “-“.

https://doi.org/10.1371/journal.pone.0241083.t003

Table 4. Performance of elastic net model predictions for classifying patients into high-risk and low-risk groups.

Performance Metric Optimal Cut point (Maximizes Sensitivity-Specificity

Tradeoff)

Cut point Maximizing

Sensitivity

Cut point Maximizing

Specificity

Predicted probability cut point (%) 0.004 0.0015 0.55

Patients classified as high-risk (%) 20.0 82.4 0.1

No. (%) events in high-risk group 522 (0.21) 645 (0.06) 33 (3.66)

No. (%) nonevents in high-risk

group

252,970 (99.79) 1,090,309 (99.94) 868 (96.33)

Sensitivity (%) 80.2 98.5 5.0

Specificity (%) 80.1 17.6 99.9

PPV (%) 0.21 0.06 3.66

NPV (%) 99.9 99.9 99.9

LRpositive 4.0 1.2 76.8

LRnegative 0.3 0.1 0.95

Abbreviations: LR = Likelihood ratio; NPV = Negative predictive value; PPV = Positive predictive value.

https://doi.org/10.1371/journal.pone.0241083.t004
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Implementation could provide an opportunity for real-time surveillance and early interven-

tion. Details on how to calculate the predicted probability of opioid overdose in the next

month for an example patient are shown in S4 Table. The predicted probability could be used

to determine whether the patient is at high-risk of overdose. This process could be automated

and repeated each month to ensure active surveillance. Thus, this algorithm could be used to

monitor patients or automate the detection of high-risk individuals, whose risk factors are

already being routinely collected. As a result, this may facilitate early intervention to mitigate

the risk of overdose through prescription of naloxone or other clinical strategies, such as opi-

oid tapering or substance abuse treatment referral.

We proposed several potential cut points for classifying high-risk patients, allowing those

who implement the algorithm to determine the optimal thresholds for their intervention of

interest. Patients could have been flagged as high-risk during multiple months. However, clini-

cal intervention happens at the patient level, so we considered patients as high-risk if any of

their person-months were flagged as high-risk. The selection of the cut point inevitability

results in a tradeoff between sensitivity and specificity. For example, the optimal cut point of

0.004% would provide a sensitivity of 80.2% and specificity of 80.1%., while a cut point of

0.15% would maximize specificity (99.8%) at the expense of decreasing sensitivity (13.1%).

Since the incidence of overdose is low, the PPV was relatively low among all potential thresh-

olds (PPV<3.66%). A highly specific cut point could be used to maximize the PPV, although

most of the patients flagged as high-risk would not go on to have an observed opioid overdose

event. However, given the seriousness of the outcome of overdose and the availability of low-

cost and low-risk interventions for overdose, a low PPV may still have clinical utility. Over an

average 17-month follow up, the risk of overdose was 0.05% among the general population of

patients with at least 1 opioid prescription, which is much lower than the risk of overdose

among patients flagged as high-risk by our algorithm (0.20% using the optimal cut point,

3.66% when maximizing specificity).

Our algorithm builds on previously proposed algorithms for identifying patients at high-

risk of opioid overdose in claims data [20]. In addition to considering baseline factors, we con-

structed our algorithm to accommodate a large number of time-updating predictors in a setup

that closely resembles active safety surveillance and to provide information on the predicted

probability of overdose over time with monthly updates. Including a large number of time-

updated predictors enhanced algorithm performance. Further, we utilized machine learning

approaches to address the issue of overfitting that is routinely encountered in prediction mod-

els. Recently, an algorithm to predict opioid overdose in Medicare patients was published [21].

Using similar methods, this study found that machine learning algorithms performed well

with respect to risk prediction and stratification of overdose. We demonstrate that data-driven

algorithms using administrative data are predictive of overdose not only in the elderly, pub-

licly-insured population, but also in commercially-insured populations, where this surveillance

tool can be applied to a broader range of patients who may be at higher risk of overdose and

may have slightly different risk factors for overdose.

Our study has several limitations. First, opioid overdose events may be under-recorded in

claims data [38]. We only detect overdoses that result in presentation to an emergency depart-

ment or inpatient admissions. Fatal opioid overdoses may also be under captured since death

is not a billable event, but the proportion of fatal overdoses is likely small relative to nonfatal

overdoses [39, 40]. The underestimated incidence of overdose suggests that our model’s PPV

may be underestimated. Second, our study focuses on a population who are dispensed pre-

scription opioids. Many individuals may receive opioids from nonmedical settings, such as

family and friends [41]. These exposures are not well captured in claims data. Future work will

be needed to determine if information available in claims may be useful for evaluating the risk
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of overdose in patients who use opioids illicitly. Third, our study consisted of patients who

received prescription opioids, including buprenorphine or methadone. This study population

may have captured different types of patients (e.g., those who are doctor shopping and those

who are receiving treatment for opioid use disorder) who may benefit from different interven-

tions. Additionally, the data were left-censored at October 2011. Although we used an all-avail-

able lookback window to exclude patients with a prior overdose, do not know whether the

patients in our study population had a diagnosed overdose prior to October 2011. Another

limitation is that the list of candidate predictors does not encompass all of the important risk

factors of overdose, such as behavioral health and criminal justice variables that are poorly cap-

tured in claims data [42]. Predictors were also measured during the previous 3–6 months, and

we did not assess whether a longer covariate assessment period could have resulted in better

prediction. Despite the potential incomplete capture all relevant predictors, we highlight that

high-dimensional time-updated algorithms can outperform simpler models based on a few

predictors, and such methodology can be extended to other data sources. Future work will

need to explore whether future expanding the range of predictors improves model perfor-

mance. Next, internal validation was used to assess model performance. Generalizability to

other populations, such as those insured by Medicaid, will need to be assessed in future studies.

Finally, we defined medical conditions using ICD-9-CM codes, but the US recently transi-

tioned to International Classification of Diseases, Tenth Revision, Clinical Modification (ICD-

10-CM) [43]. Our goal was to capture the relevant medical conditions, as opposed to the spe-

cific codes, that predict overdose. Therefore, our algorithm can be implemented in ICD-

10-CM through mapping the ICD-9-CM codes to ICD-10-CM.

In conclusion, this study suggests that sophisticated algorithms using data routinely col-

lected in healthcare utilization claims can be predictive of opioid overdose. It highlights the

feasibility of using high-dimensional algorithms by payers to create monitoring programs to

prospectively identify high-risk patients and create an opportunity for intervention, such as

administering naloxone, before an overdose occurs.
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