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Abstract Intrinsically disordered proteins, proteins that do
not have a well-defined three-dimensional structure, make
up a significant proportion of our proteome and are par-
ticularly prevalent in signaling and regulation. Although
their importance has been realized for two decades, there
is a lack of high-resolution experimental data. Molecular
dynamics simulations have been crucial in reaching our cur-
rent understanding of the dynamical structural ensemble
sampled by intrinsically disordered proteins. In this review,
we discuss enhanced sampling simulation methods that are
particularly suitable to characterize the structural ensemble,
along with examples of applications and limitations. The
dynamics within the ensemble can be rigorously analyzed
using Markov state models. We discuss recent develop-
ments that make Markov state modeling a viable approach
for studying intrinsically disordered proteins. Finally, we
briefly discuss challenges and future directions when apply-
ing molecular dynamics simulations to study intrinsically
disordered proteins.
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Introduction

For roughly a century, the central dogma of structural biol-
ogy has been that proteins need to fold into a well-defined
three-dimensional structure in order to function (Fisher
1894). However, over the past two decades, it has become
clear that many proteins contain long disordered regions
or are completely disordered under physiological condi-
tions (Wright and Dyson 2015; Dyson and Wright 2005;
Tompa 2005; Dunker et al. 2002; Uversky 2002; Tompa
2011). Such intrinsically disordered proteins (IDPs) and
intrinsically disordered regions (IDRs) are found across all
four kingdoms but are particularly abundant in eukaryotes,
where they play crucial roles in processes like signaling
and regulation (Dyson and Wright 2005). For example, the
majority of eukaryotic transcription factors fall in this cate-
gory and as such it is not surprising that they play a major
role in human disease, including neurodegenerative diseases
and many cancers (Uversky et al. 2008; Iakoucheva et al.
2002). For the remainder of this review, we will use the term
IDP to refer to either a fully intrinsically disordered protein
or a disordered region studied on its own.

Rather than encoding for a well-defined, energetically
stable three-dimensional structure, the free-energy land-
scapes of IDPs are comparatively flat, allowing the protein
to sample many different conformations (Fig. 1) (Jensen
et al. 2014). Perhaps counterintuitively, many IDPs are
promiscuous binders that are able to interact with high
specificity, but low affinity, with multiple biological targets
(Kovacs et al. 2013; Wright and Dyson 2015; Boehr et al.
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Fig. 1 Free-energy landscapes of folded and intrinsically disordered
proteins. a The free-energy landscape of folded proteins typically
has a funnel-like shape with the overall minimum corresponding to
the folded structure. b In contrast, intrinsically disordered proteins
have rough free-energy landscapes with many local minima and no
dominant overall minimum

2009). In order to understand how the primary sequence
encodes the diverse mechanisms characteristic for this class
of proteins, it is essential to obtain atomic resolution
descriptions, which capture both structures and dynamics of
IDPs in their free and complexed states.

Since classical methods in structural biology, particularly
crystallography, have been developed to study the dominant,
stably-folded conformation, they are inherently unsuitable
to study IDPs. However, solution-state NMR (see Jensen
et al. 2014) for an excellent review of recent developments
in NMR spectroscopy) and molecular dynamics simula-
tions hold great potential to characterize the conformational
ensemble of IDPs. Computer power, quality of protein force
fields, and simulation code have all increased significantly
in recent years. As such, atomistic molecular dynamics
(MD) simulations have become an established technique
for studying protein folding and the underlying free-energy
landscapes.

In this review, we will discuss recent developments in
advanced MD simulation methodologies and their applica-
tion to IDPs. We will first discuss popular methods, origi-
nally developed to study folding of ordered proteins, which
have been successfully applied to characterize the structural
ensemble of IDPs, along with some recent applications.

As dynamics within the conformational ensemble is another
key characteristic of IDPs, a substantial part of this review
deals with rigorous analysis strategies to obtain this infor-
mation from molecular dynamics simulations. Finally, we
will briefly discuss current limitations in using simulations
to characterize IDPs and outline promising developments
for future studies.

Characterizing the structural ensemble of IDPs

Even with current computer power and improved molecu-
lar simulation codes, obtaining adequate sampling remains
an issue in atomistic simulations in explicit solvent. This
is particularly true for IDPs, with their high conforma-
tional heterogeneity. Several methods have been developed
to overcome this sampling issue and these methods can be
divided into two groups: unbiased (e.g., temperature replica
exchange, solute tempering) and biased (e.g., umbrella sam-
pling, metadynamics) enhanced sampling simulations. The
ensemble of conformations generated with these methods is
typically analyzed by clustering the data based on structural
similarities or calculating the probability of observables.
Here we will discuss the strengths and weaknesses of sev-
eral replica exchange and metadynamics-based implemen-
tations, which have been used extensively to characterize
ordered proteins, when applied to IDPs. The application of
another enhanced sampling method, multicanonical ensem-
bleMD, to study IDPs has recently been reviewed elsewhere
(Ikebe et al. 2016).
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Fig. 2 Schematic of replica exchange simulations. Multiple copies
(replicas) of the system are simulated in parallel at different
temperatures. Crossing free-energy barriers is facilitated at higher
temperature and hence many different conformations are explored.
At set time intervals, exchanges between neighboring replicas are
attempted. If the exchange is accepted, the higher temperature con-
formation cannot equilibrate at a lower temperature. This cycle of
simulating and exchanging is repeated many times, such that replicas
move up and down in temperature several times, ultimately leading to
an equilibrated conformational ensemble at the temperature of interest
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Replica exchange

In a temperature replica exchange MD (tREMD) simulation
(Sugita and Okamoto 1999), multiple copies (replicas) of
the system are simulated in parallel, all at different temper-
atures (see Fig. 2). At least one of the replicas should be
at the temperature of interest and at least one should be at
a temperature high enough to rapidly overcome free-energy
barriers between metastable states. The high-temperature
replica allows for fast sampling of conformational space
and, as exchanges between replicas adjacent in temperature
take place, the conformational ensemble at the temperature
of interest can be built. The exchanges are governed by a
Monte Carlo scheme and detailed balance is ensured by
applying the Metropolis rule:

P(acc) = min(1, exp(δβδE)),

where δβ is the difference in inverse temperature and δE is
the difference in potential energy between the replicas.

The tREMD method is routinely available in popu-
lar biomolecular simulation packages, including NAMD
(Phillips et al. 2005), AMBER (Salomon-Ferrer et al. 2013),
and GROMACS (Abraham et al. 2015). tREMD simulations
are particularly useful as an explorative tool to efficiently
sample the free-energy landscape and as such have seen
much use in characterizing the conformational ensemble of
IDPs. So far, tREMD simulations have primarily been used
to characterize the conformational ensemble of IDPs in the
unbound state.

One of the first applications of tREMD to study IDPs
highlighted the importance of transient formation of sec-
ondary structure in the Aβ40 and Aβ42 peptides (Sgourakis
et al. 2007). These peptides both form amyloid fibrils found
in plaques in the brains of patients with Alzheimer’s disease.
Aβ42 is far more aggregation-prone and neurotoxic than
Aβ40. The extensive sampling provided by the tREMD sim-
ulations shows that the conformational ensemble of Aβ42
is much more diverse and, contrary to Aβ40, transient sec-
ondary structure formationis largely found in the C-terminus
of the peptide, emphasizing the importance of the two extra
C-terminal residues. Similarly, transient formation of sec-
ondary structure elements has also been demonstrated for
the highly flexible N- or C-terminal protrusions of histone
proteins, where states with high secondary structure content
may be important for interaction with linker DNA (Potoyan
and Papoian 2011). In this latter study, 50–54 replicas,
depending on system size, spanning a temperature range of
300-450 K, were simulated for 55–60 ns/replica.

As many IDPs are structured when bound to their inter-
action partners, the observation of transient secondary struc-
ture formation raises the question of whether the binding
partner selects and stabilizes a conformation transiently

sampled by the IDP in isolation. Support for this mecha-
nism of binding came from extensive tREMD simulations
of the NCBD protein in implicit (Zhang et al. 2012) and
explicit (Knott and Best 2012) solvent. This nuclear coac-
tivator binding domain of the transcriptional coactivater
CBP is disordered in solution but folds into a triple helix
when bound to its binding partner ACTR. The more accu-
rate explicit solvent simulations used 48 replicas to span
a temperature range of 304–424 K with a simulation time
of 250 ns/replica. In agreement with experimental data,
a large proportion of residual helical structure was found
in the unbound ensemble, particularly in the two terminal
helices. The middle helix is observed less frequently and
not in conjunction with the terminal two helices, pointing to
a mechanism that is part conformational selection and part
induced folding upon interaction with ACTR.

However, the residual structure observed in tREMD
simulations does not always coincide with the structure
observed in the bound conformation. Miller et al. stud-
ied the conformational ensemble of several IAPP variants
using 40 replicas to span a temperature range of 300–575
K with a simulation time of 200 ns/replica (Miller et al.
2013). The human IAPP peptide (hIAPP) forms β-sheet-
rich amyloid fibrils but in solution tREMD simulations, a
relatively high α-helical content was noted. Notably, the
degree of residual helical structure observed for variants
of the peptide correlated with the aggregation propensity,
with less aggregation-prone variants having more structural
flexibility (Miller et al. 2013).

The flexible nature of IDPs makes them highly amenable
to regulation via post-translational modifications, including
phosphorylation and glycosylation (Babu et al. 2011; Xie
et al. 2007). tREMD simulations have been used to inves-
tigate how such modifications affect the conformational
ensemble of IDPs. Zerze and Mittal studied the effect of
O-linked glycosylation on the conformational ensemble of
the tau174−183 fragment and the hIAPP peptide (Zerze et al.
2015). For the tau peptide, 24 replicas in the temperature
range of 300–545 K were simulated for 100 ns/replica. For
the larger hIAPP peptide, a total of 40 replicas were used
to cover the 300–500 K temperature range (150 ns/replica).
This study found only a mild effect of glycosylation on the
conformational ensemble of the tau174−183 fragment and the
hIAPP peptide (Zerze et al. 2015). In contrast, phosphory-
lation of Ser133 of the KID peptide leads to a significant
redistribution of helical substates and is likely to affect
recognition of its binding partner KIX (Ganguly et al. 2009).
This implicit solvent simulation study employed 12 replicas
in the range of 270–500 K with a simulation time of 200
ns/replica.

Although tREMD has proven very useful in analyzing
protein conformational space, and there are many vari-
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ants of tREMD as discussed in a recent review (Ostermeir
and Zacharias 2013), a major limitation is its poor scal-
ing with system size as the number of replicas needed
increases as O(f 1/2), where f is the system’s total num-
ber of degrees of freedom. The reason for this poor scaling
can be understood directly from the probability of accept-
ing exchanges exp(δβδE) between adjacent replicas. As
systems get larger, this rule dictates smaller spacing in tem-
perature in order to ensure viable acceptance probabilities
and thus more replicas are needed to cover the same temper-
ature range. Several methods have been developed to over-
come this limitation. Here, wewill briefly discussHamiltonian
replica exchange (hREMD) (Fukunishi et al. 2002) and
solute tempering (Liu et al. 2005; Wang et al. 2011).

Hamiltonian replica exchange

Although tREMD is the most commonly used implemen-
tation, other replica coordinates can be used to modify the
underlying energy surface. In principle, any coordinate can
be used as long as detailed balance is obeyed by employing
the metropolis acceptance criterion. The replica coordinate
can be coupled to the Hamiltonian, or force field, of the sys-
tem in a scheme that is generally referred to as Hamiltonian
replica exchange MD (hREMD) (Fukunishi et al. 2002).
Suitable replica coordinates facilitate backbone structural
transitions by scaling the strength of, for instance, hydro-
gen bonds or hydrophobic interactions. The scaling is done
such that the interactions are weaker for consecutive repli-
cas, such that refolding transitions are fast at the most
downscaled replica. Typically, fewer replicas are needed in
hREMD than in tREMD to obtain similar conformational
sampling.

Solute tempering

Another method developed to overcome poor scaling with
system size in conventional tREMD simulation is the replica
exchange with solute tempering (REST) method (Liu et al.
2005). In a REST simulation, the system is divided into two
parts, with one acting as a bath and remaining at the tem-
perature of interest and the other part (usually the whole
protein, although part of the protein, or the protein and sol-
vation shell waters, could be used instead) is effectively
heated up. As only energy differences arising from protein
and protein–water interaction but not water–water interac-
tions, contribute to the acceptance probability, the number
of replicas needed to cover a certain temperature range is
significantly reduced. However, REST does not perform
well for large systems involving sizable conformational
changes (Huang et al. 2007).

Several groups have independently combined the core
concept of REST, dividing the system into a cold and a

hot part, with the idea of scaling Hamiltonians of hREMD
(Moors et al. 2011; Terakawa et al. 2011; Wang et al. 2011).
For the hot part of the system, the electrostatic, Lennard–
Jones and proper dihedral terms (the force-field parameters
contributing to energy barriers) are scaled such that the
interactions inside this part are kept at an effective temper-
ature of T/λ. Interactions within the cold part are kept at
temperature T and interactions between the cold and hot
parts are kept at an intermediate temperature T/

√
λ. This

method, often referred to as REST2, has been implemented
in GROMACS (Terakawa et al. 2011; Bussi 2014).

The improved efficiency of REST2 makes this an attrac-
tive tool for studying the conformational ensemble sampled
by IDPs. A recent application of this method to the dis-
ordered N-terminal fragment of the nacre protein allowed
a reduction of almost a factor of six in the number of
replicas needed to span the required temperature range com-
pared to conventional tREMD (Brown et al. 2014). The
n16 nacre protein is a framework protein associated with
biogenic mineral stabilization in the Japanese pearl oyster.
Its 30 residue N-terminus (n16N) is essential for the stabi-
lization of the mineral component in nacre and is largely
disordered. REST2 simulations of n16N in its apo- and
Ca2+-complexed forms, using 16 replicas to span a tem-
perature range of 300–500 K, support the hypothesis that
the peptide can be divided into three subdomains. The N-
terminal subdomain and the central amyloid-like domain
(SD1 and SD2) feature stabilization through intrapeptide
aromatic contacts. The C-terminal subdomain (SD3) has a
higher charge density and shows more structural flexibil-
ity. This domain is likely to play a crucial role in capturing
Ca2+, whereas SD1 and SD2 are essential for the formation
of interpeptide contacts and hence multipeptide complexes
(Brown et al. 2014). REST2 was also used to character-
ize the conformational space of Helicobacter pylori UreG
(Musiani et al. 2013), a class of intrinsically disordered
enzymes involved in the maturation of the urease virulence
factor in bacterial pathogens. The same protocol was applied
to HypB, a protein from Methanocaldococcus jannaschii
that is closely related in sequence and function but has not
been classed as an IDP. A total of 24 replicas were needed
to span a temperature range of 300 to 450 K, compared
to an estimated 100 replicas if conventional tREMD had
been used. The authors found that the regions involved in
catalysis show substantial structural rigidity. In contrast to
HypB, the regions in UreG that are involved in interaction
with metallochaperones to form multiprotein complexes are
more unfolded (Musiani et al. 2013).

It should be noted that although the hREMD method is
powerful in enhancing backbone transitions (Ostermeir and
Zacharias 2013), to the best of our knowledge, non-REST2
flavors of hREMD have not yet been successfully applied
to characterize IDPs. We do, however, believe that these
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will prove useful in future work in this field, particularly in
analyzing binding and unbinding effects of IDPs and bind-
ing partners as protein–protein interactions can be used as
replica coordinates.

Metadynamics

Enhanced sampling methods that employ a biasing poten-
tial are often considerably cheaper in terms of computer
time than replica exchange-based approaches. Out of the
biased enhanced sampling methods, metadynamics-based
approaches appear the most suitable for exploring the con-
formational ensembles sampled by IDPs. Similar to, for
instance, conformational flooding (Grubmüller 1995) and
local elevation methods (Huber et al. 1994), in a meta-
dynamics simulation the system is discouraged from vis-
iting previously explored regions by a biasing potential
(Laio and Parrinello 2002). This history-dependent bias-
ing potential is built by periodically depositing Gaussians
along the trajectory of the collective variable (CV) (see
Fig. 3)

VG(s(r), t) = w
∑

t ′=τG,2τG,...t ′<t

exp
(s(r) − s(t ′))2

2σ 2
s

, (1)

where s(r) is the CV as a function of the atomic coordi-
nates,w and σ are the height and width of the Gaussians and
τG is the rate at which they are deposited. Ultimately, when
the simulation reaches equilibrium, the biasing potential
should exactly compensate the unbiased free-energy profile
along the chosen CV. Assuming a perfect choice of CV, the
accuracy of the method depends wholly on the height and
width of the Gaussians and the frequency at which these are
deposited.

A major advantage of metadynamics over methods such
as umbrella sampling (Torrie and Valleau 1977) and steered
MD (Park and Schulten 2003) is that no a priori knowledge of
the end states is required and that multiple CVs can be used.
However, the efficiency of metadynamics scales poorly with
the number of CVs used and in practice is limited to three
CVs. Moreover, in practical applications, the free-energy
profile does not converge to a definite value but rather fluc-
tuates around the correct result. There is also a significant
risk of pushing the system into physically irrelevant regions
of phase space. Hence, several adaptations to the scheme
have been proposed. Here, we will discuss the popular well-
tempered (Barducci et al. 2008; Bonomi et al. 2009) and
bias-exchange methods (Piana et al. 2007). All of these ver-
sionsof metadynamics are available in the PLUMED plug-in
(Tribello et al. 2014), which interfaces with many popular
simulation packages.
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Fig. 3 Metadynamics simulations. a A simulation is started in one of
the free-energy minima along the chosen collective variable. b After
a set time, τ , during which the system explores locally, a Gaussian is
deposited to discourage revisiting this area. c After some time N ∗ τ ,
the local minimum has been filled with Gaussians, and a new region of
phase space is explored by the simulation. Ultimately, this region will
also be filled and the higher barrier will be crossed

Well-tempered metadynamics

Well-tempered metadynamics (WTM) was developed to
address issues of poor convergence and risk of sampling
outside the physically relevant phase space in standard
metadynamics simulations. In this method, the height of the
Gaussians is not fixed but scaled, ensuring dampening of the
biasing potential towards the exact result in the limit of long
simulations.

WTM has been applied to characterize binding of the
IDPs PTMA and NRF2 to the Kelch domain of Keap1 (Do
et al. 2015). Interaction with NRF2 is crucial for the reg-
ulation of cellular responses to oxidative stress. Although
there is a high degree of sequence similarity between the
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Kelch binding domains of PTMA and NRF2, the affinity of
PTMA is approximately 100 times weaker. Two 3 μs well-
tempered metadynamics simulations using three CVs were
run with either PTMA or NRF2 and the Kelch domain. Mul-
tiple binding and unbinding events were observed for both
systems. NRF2’s higher affinity for the Kelch domain may
be explained by the observation that PTMA is much more
disordered than NRF2 (Do et al. 2015). In its unbound state,
NRF2 has a tendency to form short hairpin structures, sup-
porting the hypothesis of coupled folding and binding for
the NRF2-Kelch complex.

Bias-exchange metadynamics

Bias-exchange metadynamics combines the strengths of
metadynamics and replica exchange (Piana et al. 2007).
In this method, several metadynamics simulations of the
system are run in parallel, all being biased in indepen-
dent CVs. It is crucial here to include one ’neutral’ replica,
which does not experience a biasing potential. Exchanges
between the systems are attempted periodically in a replica
exchange-type fashion.

This method has successfully been applied to investi-
gate the mechanisms by which the oncoprotein c-Myc is
inhibited by a small drug molecule (Michel and Cuchillo
2012). Seven biased replicas (with different CVs) and one
neutral replica were simulated for 120 ns (per replica) to
generate the unbound (Apo) ensemble. It should be noted
that the CVs used here were general, rather than optimized
specifically for this system. One more replica was added for
the bound (Holo) state biased in a CV accounting for lig-
and interaction. The authors show that the ligand-binding
domain of c-Myc can bind the ligand in multiple distinct
conformations. Interestingly, many of these conformations are
also wholly or partially present in the unbound ensemble,
providing support for a conformational selection mecha-
nism (Michel and Cuchillo 2012).

Comparing sampling efficiencies of metadynamics-based
approaches

The sampling efficiencies of unbiased MD, bias-exchange
metadynamics and well-tempered metadynamics simula-
tions have recently been compared for a 20-residue dis-
ordered peptide derived from the Neh2 domain of the
Nuclear factor erythroid 2-related factor 2 (Nrf2) protein
(Do et al. 2014). The authors compared conformational
ensembles obtained from 3 μs unbiased MD simulation,
3 μs well-tempered metadynamics simulation using two
CVs and a 460-ns bias exchange metadynamics simulation
with eight replicas (seven biased and one neutral) and vali-
dated their results against X-ray crystallography and NMR
spectroscopy data. Although both metadynamics protocols

significantly enhance sampling, the bias-exchange scheme
proved far more effective than well-tempered metadynam-
ics (Do et al. 2014). General CVs, like β-sheet content
and number of hydrogen bonds, were used and uniformly
applied to all Neh2 residues. As such, no prior knowl-
edge of experimentally observed structures is necessary
and they do not bias towards a limited set of predefined
structures.

Similarly, the sampling efficiency of temperature replica
exchange MD and bias-exchange metadynamics simula-
tions have been assessed for the IDP hIAPP (Zerze et al.
2015). Forty replicas, spanning the 300–575 K tempera-
ture interval, were used for the tREMD simulation, with
a simulation time of 200 ns/replica (8μs cumulative sim-
ulation time). The bias-exchange metadynamics simulation
employed seven biased replicas and a neutral replica with
a simulation time per replica of 650 ns (5.2 μs cumulative
simulation time). The free-energy profiles and secondary
structures populated in the two ensembles obtained with the
two approaches are very similar. However, bias-exchange
metadynamics explores larger regions of conformational
space with less (cumulative) simulation time, suggesting
that this method is computationally more efficient. The
authors do note that bias-exchange metadynamics simula-
tions are less straightforward to set up as the choice of CVs
needs to be validated (Zerze et al. 2015).

Understanding dynamics within the structural
ensemble

So far, we have focused on methods to characterize the
structural ensemble of IDPs. It would, however, be desirable
to not just know which structures can be adopted by a partic-
ular IDP but also to analyze how these structures intercon-
vert. This sort of information will be particularly valuable
when assessing the effect of post-translational modifica-
tions and small molecule binding. Over the past 15 years,
Markov state models (MSM) have become increasingly
popular for rigorously analyzing biomolecular simulation
data with the aim of understanding long time-scale dynam-
ics. MSMs have been used extensively to study protein
folding. One of the earliest examples looked at β-hairpin
formation in the Trp zipper (Singhal et al. 2004). Since
then, MSMs have been used to gain insight into the folding
pathways of larger systems including PinWW (Noé et al.
2009), MR121-GSGS-W peptide (Noé et al. 2011), fold-
ing of FiP35 WW domain, GTT, NTL9, and protein G
(Beauchamp et al. 2012). More recently, more complicated
processes like allostery (Malmstrom et al. 2015), protein
ligand binding (Plattner and Noé 2016; Doerr and Fabritiis
2014), and amyloid fibril formation (Schor et al. 2015) have
all been studied with the help of MSMs.
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The recently developed transition-based reweighting
analysis method (TRAM) is likely to greatly enhance the
use of MSMs to analyze the structural dynamics of IDPs.
As discussed in “Characterizing the structural ensemble of
IDPs”, one often has to rely on enhanced sampling meth-
ods to achieve the required sampling. While these methods
are very useful in speeding up estimations of equilibrium
properties, information on the unbiased, room-temperature
dynamics are lost. However, it has recently been shown
that it is in fact possible to combine data from various dif-
ferent enhanced sampling methods (Wu et al. 2016), such
as replica exchange or umbrella sampling with non-biased
trajectories to improve accuracy in the estimation of both
thermodynamic and dynamic properties. A family of these
estimators has been discussed in the literature (Mey et al.
2014; Wu et al. 2014; Wu and Noé 2014; Wu et al. 2016)
and TRAM is the most general version. It is statistically
optimal and does not rely on binning of energies, cf. bin-
ning energies in the weighted histogram analysis method
(WHAM) for stationary properties. Instead, it estimates a
multi-ensemble Markov model that allows the extraction of
full thermodynamic and kinetic information from all ther-
modynamic ensembles (Wu et al. 2016). The choice of
thermodynamic ensemble would be open to the simulator
but could for example be the different temperatures of a
tREMD simulation. The advantage of using TRAM is that
it does not rely on rate models, and only uses the fact that
it is possible to reweight configurations between ensembles
while adhering to detailed balance. TRAM has been imple-
mented in the MSM analysis package pyEMMA (Scherer
et al. 2015).

Background of Markov state modeling

MSMs assume that the dynamics of e.g., a protein or
protein ligand complex can be seen mathematically as a
stochastic process. There are two assumptions made, (a)
it is possible to find a low-dimensional discrete projection
onto a set of coordinates, often referred to as clustering
and (b) the dynamics coming from a Markov jump pro-
cess between these discrete states capture features of the
high-dimensional protein dynamics well. The mathematical
object that describes the jump process is a transition matrix
T(τ ) ∈ R

N×N that contains the conditional probabilities of
going between N discrete states, or microstates, i and j . In
other words, Tij contains the probability of being in a state
i at time t and jumping to state j at t + τ .

Tij (τ ) = P(xt+τ = j, xt = i). (2)

The lagtime τ dictates at what time interval the transition
matrix is constructed from the discretized trajectory data
and needs to be adjusted to ensure a memoryless jump

process between the microstates. By definition, the tran-
sition matrix is a stochastic matrix that can be used to
extract both stationary and dynamic properties of the sys-
tem, described by the eigenvalues and eigenvectors. The
stationary probability of each of the microstates is contained
in the eigenvector of the transition matrix that corresponds
to eigenvalue λ1 = 1, given by:

πT T = πT . (3)

In contrast, timescales and associated processes are asso-
ciated with all other eigenvalues and eigenvectors of the
transition matrix.

Tψi = ψiλi, (4)

where ψi is the ith right eigenvector of the transition matrix.
Equally, a set of left eigenvectors φi can be defined. It is usu-
ally possible to observe a gap in the eigenvalue spectrum,
revealing dominant slow processes in the system of interest.
The associated timescale to these slow processes is related
to the eigenvalues and a relaxation timescale or implied time
scale, ti can be defined as:

ti = −τ

ln |λi | . (5)

The inverse of the implied timescale can be seen as a tran-
sition rate for the given process. Various older (Prinz et al.
2011; Pande et al. 2010) and more recent reviews (Chodera
and Noé 2014) and a book (Bowman et al. 2013) discuss
the theoretical aspects of MSMs in great detail. To facilitate
the construction of MSMs, different software is available
to go from the raw MD trajectory data to a comprehensive
MSM description, such as EMMA/pyEMMA (Senne et al.
2012; Scherer et al. 2015) and MSMBuilder (Beauchamp
et al. 2011). Typically, a few steps have to be taken to
be able to construct an MSM with either of the available
software packages. A pictorial summary of these steps can
be found in Fig. 4a, which involves clustering the data,
followed by estimating a transition matrix from the clus-
tered data and then analyzing this transition matrix, which
forms the heart of the MSM. There are different ways to
analyze the transition matrix, but usually a mixture of fur-
ther coarse graining the states to get a transition network
on a coarse set of states or using transition path theory
for computing most likely fluxes in the transition network
defined by the transition matrix are common approaches.
A typical analysis is shown in summary in Fig. 4b–f for
a four-well toy potential (b). Using a Brownian dynamics
simulation, a single particle is used to sample the toy poten-
tial. The corresponding stationary distribution is shown in
(c), directly computed from the potential. The trajectory is
discretized into 100 bins, as indicated by the x-axis tick
labels and a transition matrix is computed from the dis-
crete trajectories. Figure 4d and e show the second left
and right eigenvectors of the transition matrix, respectively,
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and it becomes obvious that the slowest process of the
system is crossing the barrier at bin 50, as seen by the
sign change in the eigenvectors. Furthermore, it can be
observed that the left eigenvector is the right eigenvector
simply weighted by the stationary distribution. The asso-
ciated timescale ti , often called the implied or relaxation
timescale, stemming from the Brownian dynamics and com-
puted according to Eq. 5, is shown in Fig. 4f for different
lag times. In an ideal situation, the implied timescale does
not depend on the lagtime unless the process has already
decayed. In real systems, such a flat implied timescale
is only achieved when increasing the lagtime (Fig. 4h).
For the final estimation of the transition matrix, usually a
lagtime for which the dominant slow processes are lagtime-
independent is chosen and a Bayesian MSM estimation is
the preferred option, as this also allows the estimation of
error bars on observables of interest (Trendelkamp-Schroer
et al. 2015). For the four-well potential, a coarse graining
into four macrostates would be the preferred coarse rep-
resentation of the system, but was omitted here. Figure 4

g and h show the implied timescales for the MSM of
deca-alanine and the resulting coarse-grained two-state
model using the hidden Markov Model approach as imple-
mented in pyEMMA (Scherer et al. 2015; Noé et al. 2013).
Details of the simulation using the CHARMM27 forcefield
can be found in reference (Vitalini et al. 2015).

Application of MSMs to IDPs

As MSMs give insight into both the structural ensem-
ble and the conformational kinetics, they are particularly
useful when comparing the effect of, for instance, post-
translational modifications. Comparison of MSMs built for
the IDP kinase-inducible domain (KID) and its phospho-
rylated form (pKID) has identified a metastable, partially
ordered state with at least a 60-fold decrease in the rate of
conformational exchange in the phosphorylated case (Stanley
et al. 2014). As such, phosphorylation kinetically locks a
region of the peptide, in this case the region that interacts
with the binding partner. Kinetic locking of binding regions
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deca-alanine simulated with the CHARMM27 force field. h Coarse-
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model approach. Structures shown are the extrema of the left eigen-
vectors of the microstate MSM. MSM estimation was done using the
software pyEMMA (Scherer et al. 2015)
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would have a major effect on the affinity of an IDP for its
partner.

Given their success in the field of protein folding, MSMs
have so far seen surprisingly few applications in the field of
IDPs. A major reason for this is that the first step in con-
structing an MSM is to define a good set of microstates
through clustering of the data, and this is challenging for
IDPs. It is critical that the clustering reflects structures
that are kinetically separated. Traditionally, backbone root-
mean- square deviation (RMSD) has been used for cluster-
ing. Although this tends to give reasonable results for many
folded-protein systems, RMSD-based clustering is not suit-
able for IDPs, as in these highly flexible systems states
that have a high RMSD may rapidly interconvert, and con-
versely, states that have a low RMSD may be kinetically
separated. Recently, two approaches have been developed to
solve this issue, time-lagged independent component anal-
ysis (TICA) (Pérez-Hernn̈dez et al. 2013; McGibbon and
Pande 2013; Noé and Clementi 2015) and the variational
approach (Nüske et al. 2014; Noé and Nüske 2013).

Time-lagged independent component analysis (TICA)

The TICA approach is similar in nature to principle com-
ponent analysis (PCA) in that it uses linear combinations of
sets of coordinates to achieve a dimensional reduction of the
original high-dimensional MD trajectory (Pérez-Hernn̈dez
et al. 2013; McGibbon and Pande 2013; Noé and Clementi
2015). Here, not only spatial variance in the coordinates is
taken into account but also the kinetic distance, trying to
maximize kinetic distance in order to capture the slowest
process of the system the best. This means that typically
a dimensional reduction using TICA is done first on a set
of relevant coordinates, such as distances. This is then fol-
lowed by clustering on these reduced coordinates, at which
point the usual route for MSM construction and analysis can
be continued.

This method has been shown to be very effective at
capturing relevant kinetics in the 30 residue intrinsically dis-
ordered peptide derived from the kinase-inducible domain
(KID) in its phosphorylated state (Pérez-Hernn̈dez et al.
2013). Clustering the data based on the ten dominant TICA
coordinates enabled the authors to reveal five dominant
transitions in the system, three of which could already be
resolved using just four TICA coordinates. TICA-based
clustering also enabled MSM building for the C-terminal,
cytoplasmic tail of the human cluster determinant 4 (CD4)
protein, which interacts with two viral accessory proteins of
the HIV-1 virus (Ahalawat et al. 2015). TICA was used to
project the high-dimensional simulation data onto five dom-
inant dimensions. Analysis of the resulting MSM indicated
that the peptide has an almost flat free-energy landscape

with transiently populated secondary structures and rapidly
interconverting metastable states.

Variational approach to conformation dynamics

A downside of the TICA-based clustering approach is that
it is fairly ad hoc and depends heavily on the order param-
eters fed into the TICA algorithm. Another recent approach
borrows ideas from quantum chemistry in order to avoid a
discrete clustering, as done in the MSM, all together. This
is a variational approach that tries to approximate the eigen-
functions of the dynamic process describing the protein
dynamics directly by using the method of linear variation,
in which a Roothan–Hall-type generalized eigenvalue prob-
lem can be formulated to optimally describe the eigenvalues
and eigenvectors of the propagator1 of the dynamics (Nüske
et al. 2014; Noé and Nüske 2013). The advantage is that
the user can now choose an appropriate basis set, mak-
ing the discretization a data-driven process, which can lead
to fewer basis functions needed than when using a crisp
MSM discretization. In fact, an MSM discretization can be
seen as a special case of the variational approach, where
the basis functions are step functions. Furthermore, if basis
functions are chosen with a certain chemical intuition, the
interpretation of the estimation of the eigenfunction is much
easier than in the case of the MSM. The drawback is that
if the protein system is large, the possible combination
of basis functions becomes prohibitively large. Recently, a
way of identifying a good way of combining basis func-
tions has been proposed (Nüske et al. 2016). This uses a
sparse tensor product approach that allows description of
high-dimensional eigenfunctions with a small set of eigen-
functions, making it possible to also tackle larger molecular
systems.

While this method has yet to be applied to IDPs, it is
likely that this systematic way to discretize the simulation
data will greatly help in future applications.

Challenges and future

Ongoing developments in enhanced sampling simulation
methodologies and analysis methods, along with better
hardware, mean that MD simulations have been recognized
as a powerful tool for characterizing structural ensembles
of IDPs. However, the fact that we can now reach the
required time- and length scales has highlighted some issues

1The propagator is simply the transpose of the non-discrete version
of the transition matrix, i.e., the transfer operator, and has the same
eigenfunctions as the transfer operator.
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with commonly used biomolecular force fields (Best et al.
2014; Piana et al. 2015; Rauscher et al. 2015; Vitalini et al.
2015). Particular issues are that certain force fields oversta-
bilize secondary structure elements, potentially leading to
overrepresentation of certain conformations in the unbound
ensemble, and many produce structural ensembles that are
on average too compact (Best et al. 2014; Fluitt and de
Pablo 2015; Hoffmann et al. 2015; Pantelopulos et al. 2015;
Piana et al. 2015; Rauscher et al. 2015). This is perhaps
not surprising, as current force fields have primarily been
developed to capture the structure and dynamics of folded
proteins. As more and more experimental data comes avail-
able for IDPs, significant strides are being made to improve
and validate biomolecular force fields in order to capture
both folded and disordered proteins (Best et al. 2014; Piana
et al. 2015).

In this review, we have focused on simulation strate-
gies that generate structural ensembles de novo. Many of
the studies highlighted here compared simulated ensem-
bles to NMR data. Several methods have been developed
recently that can use experimental data to guide the sim-
ulations. Two metadynamics-based approaches use NMR
chemical shifts to this end. In replica-averaged metady-
namics (RAM) simulations, the underlying force field is
modified in a system-dependent manner, based on compari-
son of back-calculated experimental observables and actual
experimental data (Camilloni et al. 2013; Camilloni and
Vendruscolo 2014). As such, the experimental data are used
to constrain the replica average. Another approach uses the
chemical shifts as collective variables in a bias-exchange
metadynamics setup (Gratana et al. 2013). Although NMR
chemical shifts were used in both of these examples, it
should be noted that it is in principle possible to use other
experimental observables provided they can be accurately
back-calculated from the simulations. As NMR is a very
powerful experimental tool to study IDPs, these methods
are expected to find extensive use in characterizing struc-
tural ensembles as well as aid force-field optimization for
this class of proteins.
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E (2015) SoftwareX 19:1–2

Ahalawat N, Arora S, Murarka RK (2015) J Phys Chem B 119:11229
Babu MM, van der Lee R, de Groot NS, Gsponer J (2011) Curr Opin

Struct Biol 21:432
Barducci A, Bussi G, Parrinello M (2008) Phys Rev Lett 020603:

100
Beauchamp KA, Bowman GR, Lane TJ, Maibaum L, Haque IS, Pande

VS (2011) J Chem Theory Comput 7:3412
Beauchamp KA, McGibbon R, Lin YS, Pande VS (2012) Proc Natl

Acad Sci 109:17807
Best RB, an WZ, Mittal J (2014) J Chem Theory Comput 10:5113
Boehr DD, Nussinov R, Wright PE (2009) Nature Chem Biol 5:789
Bonomi M, Barducci A, Parrinello M (2009) J Comput Chem 30:1615
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Chem Theory Comput 10:1739
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