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The current model of replication-dependent (RD) histone biosyn-
thesis posits that RD histone gene expression is coupled to DNA
replication, occurring only in S phase of the cell cycle once DNA syn-
thesis has begun. However, several key factors in the RD histone
biosynthesis pathway are up-regulated by E2F or phosphorylated
by CDK2, suggesting these processes may instead begin much ear-
lier, at the point of cell-cycle commitment. In this study, we use both
fixed- and live-cell imaging of human cells to address this question,
revealing a hybrid model in which RD histone biosynthesis is first
initiated in G1, followed by a strong increase in histone production in
S phase of the cell cycle. This suggests a mechanism by which cells
that have committed to the cell cycle build up an initial small pool of
RD histones to be available for the start of DNA replication, before
producing most of the necessary histones required in S phase. Thus,
a clear distinction exists at completion of mitosis between cells that
are born with the intention of proceeding through the cell cycle and
replicating their DNA and cells that have chosen to exit the cell cycle
and have no immediate need for histone synthesis.
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To accommodate DNA replication in S phase of the cell cycle,
histone proteins, the building blocks of the nucleosome, must

double in number to maintain the proper compaction and orga-
nization of genomic DNA. Ensuring the correct cell-cycle timing of
histone protein synthesis is vital to cellular health and preventing
genomic instability, which can lead to age-related pathologies (1–3).
Up-regulation of these cell-cycle–dependent canonical histones,
otherwise known as replication-dependent (RD) histones, is thought
to be intrinsically linked to S phase entry and initiation of DNA
replication (4).
Transcription and translation of RD histone genes is a unique

process that requires the coordination of several key factors. The
nucleosome consists of four core histones, histone proteins H2A,
H2B, H3, and H4, that come together as a 2:2:2:2 octamer, as well
as one copy of linker histone protein H1 that binds at the DNA
entry and exit sites (5, 6). To provide the histones necessary to
stabilize the newly replicated DNA, the cell must produce ∼400
million histone proteins in S phase, which lasts ∼8 h in cultured hu-
man cells, to avoid leaving the DNA exposed to genomic instability
and deregulation of gene expression (4, 7, 8).
To accomplish this burst of histone production, metazoan RD

histone genes are found in evolutionarily conserved clusters con-
taining several copies of each histone gene type, around which a
nuclear body can assemble and concentrate the necessary tran-
scription and pre–messenger RNA (mRNA) processing factors
(4, 9–12). In humans, this nuclear body, called the histone locus
body (HLB), is found at two gene clusters: HIST1, found on chro-
mosome 6, and a smaller cluster HIST2, found on chromosome 1
(13–15). The HLB is dependent on the scaffolding protein, nuclear
protein at the ATM locus (NPAT), that seeds formation of the
HLB (10, 12, 16–18). Mature RD histone mRNA is not poly-
adenylated but instead ends in a 3′ stem loop that binds to the
stem-loop–binding protein (SLBP), which is necessary for proper
processing, nuclear export, and translation (19–23). SLBP is then

degraded at the end of S phase to block unnecessary RD histone
production once DNA replication is complete (24–27).
Historically, studies have shown that RD histone biosynthesis

is linked to DNA replication, beginning at the start of S phase and
continuing until the S/G2 boundary (28–30). However, these studies
often relied on bulk analysis of synchronized cells—methods which
obscure cell-to-cell heterogeneity and disrupt the natural timing of
cell-cycle events—with only a few studies suggesting the presence of
RD histone mRNA in early G1 (31–34), making it worthwhile to
revisit the RD histone biosynthesis pathway with updated cell-cycle
tools. Moreover, recent discoveries about the timing of cell-cycle
commitment and the link between several key factors of RD histone
biosynthesis and the point of cell-cycle commitment suggest that
RD histone up-regulation may be coupled to cell-cycle commitment
(29, 35–40).
The point at which cells commit to completing their current cell

cycle is defined as the restriction point (41–43) and in recent cell-
cycle models is viewed as marking the start of G1 phase of the cell
cycle (44, 45). The restriction point is followed several hours
later by the point at which cells commit to initiating DNA rep-
lication, shortly before S phase entry, defined by inactivation of
the anaphase-promoting complex (APC) (46). Passage through
the restriction point begins with phosphorylation of retinoblas-
toma protein (Rb) by cyclin-dependent kinase 4 and 6 (CDK4/6),
causing the release of the cell-cycle master transcription factor
E2F, which up-regulates Cyclin E to activate cyclin-dependent ki-
nase 2 (CDK2), leading to hyperphosphorylation of Rb and com-
plete release of E2F (41, 42). E2F1 drives the up-regulation of cell-
cycle genes, including two key RD histone biosynthesis factors,
NPAT and SLBP (35). NPAT localization to the HLB, as well as
phosphorylation of NPAT by Cyclin E/CDK2, are required for
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RD histone gene expression (29, 35–40). The presence of NPAT
and SLBP allows for the recruitment of necessary factors to the
HLB, transcription of RD histone mRNA, and processing and
translation of that mRNA (Fig. 1A).
Recent work in the cell-cycle field has shown that a majority of

naturally cycling cells are born committed to the cell cycle, with
residual and increasing CDK2 activity and hyperphosphorylated
Rb (designated “CDK2inc cells”), while a subset of cells enters a
transient quiescence (designated “CDK2low cells”) (44, 45). Thus,
in the CDK2inc cells born committed to the cell cycle, RD histone
biosynthesis could hypothetically begin upon completion of mi-
tosis due to the presence of residual CDK2 activity and liberated
E2F (Model 2, Fig. 1B), rather than be linked to the start of DNA
replication (Model 1, Fig. 1B) when observed in asynchronously
cycling single cells.
A fresh evaluation of RD histone biosynthesis relative to DNA

replication is therefore warranted to better understand when and
how cells born committed to the cell cycle prepare for S phase in
order to minimize the risk of insufficient histone production in
early S phase while also avoiding premature production of 400
million histone proteins.
In this study, we examine several stages of the RD histone

biosynthesis pathway at a single-cell level in a variety of non-
transformed human cells. We find that the RD histone biosyn-
thesis machinery and histone mRNA are up-regulated prior to S
phase entry in cells born committed to the cell cycle (CDK2inc

cells) relative to cells born into a transient quiescence (CDK2low

cells), challenging the longstanding idea that RD histone bio-
synthesis begins at the start of S phase. However, we also confirm
a further burst of histone biosynthesis at the start of S phase. We
conclude that the most appropriate model for histone biosyn-
thesis is a hybrid model, wherein synthesis of histone protein is
initiated at the point of cell-cycle commitment prior to the onset

of S phase, followed by a substantial increase in the rate of histone
synthesis at the point of S phase entry.

Results
Histone Biosynthesis Is Initiated in G1 before S Phase Entry. We first
analyzed the expression of RD histone genes in our previously
published RNA sequencing dataset of newly born CDK2inc versus
CDK2low cells and found significant down-regulation of RD histone
mRNA in newly born CDK2low cells relative to newly born CDK2inc

cells (Fig. 1C), consistent with NPAT being a CDK2 substrate and
E2F target gene (36, 47). To test whether RD histone biosynthesis
is in fact initiated at the point of cell-cycle commitment rather than
the start of S phase, we examined the levels of several RD histone
biosynthesis factors across the cell cycle in MCF10A mammary
epithelial cells, RPE-hTERT retinal epithelial cells, and Hs68 pri-
mary neonatal foreskin fibroblasts.
Asynchronously growing cells were fixed and stained for DNA

content, phospho-Rb (to indicate cell-cycle commitment), and
EdU (to mark cells in S phase). Multiplexing these biomarkers
allowed individual cells to then be classified into cell-cycle pha-
ses using cutoffs (SI Appendix, Fig. S1) for DNA content, hyper-
or hypophosphorylated Rb, and EdU positive or negative, as done
previously (Fig. 2A) (48). Cell-cycle phases are defined as: G0, cells
that have exited the cell cycle (i.e., CDK2low cells; 2N DNA con-
tent, hypo-pRb, EdU−), G1, cells that have crossed the restriction
point (2N DNA content, hyper-pRb, EdU−), S, where cells syn-
thesize a copy of their DNA (hyper-pRb, EdU+ cells), and G2/M,
cells completing interphase and entering mitosis (4N DNA content,
hyper-pRb, EdU−).
In addition to cell-cycle phase markers, cells were stained for

either NPAT or SLBP by immunofluorescence (IF) (validated by
small interfering RNA (siRNA) knockdown, SI Appendix, Fig. S2)
or for H1.1, H3.1, or H4.2 histone mRNA by RNA fluorescence
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Fig. 1. Connection of RD histone biosynthesis to cell-cycle progression. (A) Schematic of the influence of cell-cycle entry on RD histone biosynthesis. Cells in
the presence of mitogens will up-regulate Cyclin D/CDK4/CDK6 activity, leading to an initial phosphorylation of Rb, release of E2F, and up-regulation of Cyclin
E/CDK2 that will further phosphorylate Rb and push cells through the restriction point (the point of cell-cycle commitment). Liberated E2F causes tran-
scriptional up-regulation (red arrows) of two key factors in RD histone mRNA biosynthesis, NPAT and SLBP, responsible for RD histone mRNA transcription and
stability, respectively. CDK2/Cyclin E also phosphorylates NPAT to promote the activation of RD histone transcription. (B) Two hypothetical models of RD
histone biosynthesis during cell-cycle progression. The canonical model of RD histone biosynthesis has histone production solely coupled to DNA replication in
S phase. An alternative model is that in cells born committed to the cell cycle (CDK2inc cells), RD histone production is already high at birth. (C) Log2 fold
change of RD histone mRNA (red) in CDK2low versus CDK2inc cells, versus all mRNAs measured (black); RNA sequencing data obtained from ref. 47. With only a
twofold down-regulation of RD histone mRNAs in CDK2low versus CDK2inc cells, these data do not support either model presented in B, but rather imply an
intermediate model.
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in situ hybridization (FISH) (Fig. 2B). Histone mRNA probes
likely detect all mRNA of each core histone type given the high
level of identity between gene copies (13, 14). While several of the
histone synthesis factors have been previously described as being
up-regulated only in S phase of the cell cycle (49), we observed
that H1.1, H3.1, and H4.2 mRNAs are, for the most part, subtly
but significantly up-regulated in newly born CDK2inc (G1) versus
CDK2low (G0) MCF10A cells (Fig. 2C). Histone mRNA expression
peaked in S phase and returned to a low level in G2/M (Fig. 2C).
HLB total intensity also increased from G0 to G1 and G1 to S
phase (Fig. 2C). Given that Cyclin E begins to rise by 2 h after
anaphase in CDK2inc cells (48), it is likely that NPAT is phosphor-
ylated in cells that have crossed the restriction point and therefore
that reassembly of the HLB after mitosis is the step required for
NPAT “activation” and RD histone gene expression. HLB total
intensity decreased slightly in G2/M cells, but the HLB did not fully
dissipate, indicating that the HLB may remain stable following the
end of S phase until it is disassembled in mitosis (50). SLBP
levels increased from G0 to G1 and again from G1 to S phase

before experiencing a sharp decrease in G2/M, as would be expected
with the degradation of SLBP at the S/G2 boundary (Fig. 2C) (49).
Similar results were observed in RPE-hTERT (SI Appendix, Fig. S3)
and Hs68 (SI Appendix, Fig. S4) cells, albeit with smaller differences
between G0 and G1 in histone mRNA levels, likely due to weaker
histone RNA FISH signal in these cells. We conclude that while RD
histone protein production peaks in S phase, it is already initiated in
G1 phase of the cell cycle.

Two-Tiered Up-Regulation of Histone Biosynthesis. To understand
the timing of RD histone up-regulation with fine-grained temporal
resolution, we utilized a previously published method to map the
EdU and mRNA or protein levels of various RD histone factors
to each cell’s cell-cycle history (44, 47, 48).
We transduced MCF10A and RPE-hTERT cells with fluores-

cent histone 2B (H2B) as a nuclear marker, as well as a fluores-
cent fragment of DNA helicase B (DHB) as a sensor of CDK2
activity (Fig. 3A) (45, 51). CDK2 activity was monitored as the
cytoplasmic to nuclear ratio of DHB, and cell-cycle progression
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was tracked via timelapse imaging (Fig. 3A) followed by staining
for RD histone biosynthesis factors and EdU incorporation. Cells
were aligned to the time of anaphase and categorized as either
CDK2inc or CDK2low (Materials and Methods). CDK2inc cells were
then further categorized as G1 (2N DNA content, EdU−), S
(EdU+), or G2 (4N DNA content, EdU−) (SI Appendix, Fig. S5).
In MCF10A and RPE-hTERT, total HLB intensity in G1 cells is

elevated compared to G0 cells, albeit not significantly so (Fig. 3 B–C).
Total HLB intensity rises steadily through S phase, before gradually
declining throughout the duration of G2 and mitosis (Fig. 3 B–C)
when the HLB fully disassembles (12, 40). This is in contrast to total
HLB size, which reflects the formation of the HLB rather than the
concentration of NPAT at the HLB, which in G1 versus G0 cells is
statistically significantly higher in MCF10A (SI Appendix, Fig. S6).
SLBP levels in G1 cells are significantly higher than in G0 cells as
soon as 2 h into the cell cycle and increase through G1, where they
then remain high throughout the duration of S phase, before de-
clining rapidly in G2 cells (Fig. 3 B–C).
Histone H1.1, histone H3.1, and histone H4.2 mRNA levels

are already divergent in G1 versus G0 cells 2 h after mitosis in
MCF10A cells (Fig. 3B). Newly born G1 cells have low but el-
evated levels of histone mRNAs, whereas histone mRNA bio-
synthesis remains off in G0 cells throughout the time spent out of
the cell cycle. Thus, there is a clear distinction between CDK2inc

cells that were born with the intention of proceeding through the
cell cycle and replicating their DNA and CDK2low cells that have
chosen to exit the cell-cycle and have no immediate need for his-
tone synthesis. This distinction grows even larger in S-phase cells as
histone mRNA levels continue to rise and peak in early-to-mid S
phase before declining (SI Appendix, Fig. S7).
Due to the lower levels of histone mRNA FISH signal in RPE-

hTERT cells, the difference in signal between G1 and G0 cells
following mitosis is less obvious than in MCF10A cells (Fig. 3C).
For H4.2 mRNA, the difference between G1 and G0 cells is nev-
ertheless statistically significant at the majority of timepoints in G1,
as well as S phase, whereas H1.1 and H3.1 only have significantly
elevated levels of mRNA in S phase (Fig. 3C). Both FISH and IF
signals were generally lower in RPE-hTERT cells compared to
MCF10A cells (Fig. 3 B–C), indicating that histone mRNA levels may
be near the detection limit when levels are low as they are in G1 cells.

Peak Histone Biosynthesis Occurs in Early-to-Mid S Phase. Since cells
aligned to anaphase will be partially out of alignment by the time
they reach S phase, we further probed the timing of RD histone
biosynthesis relative to S phase entry using time lapse microscopy
of a previously published geminin sensor (52) to align the cells to
the start of S phase, followed by mapping of mRNA, protein, and
EdU levels back to each cell’s cell-cycle history (46). (Fig. 4A and
SI Appendix, Fig. S8; Materials and Methods). The geminin sensor
is degraded by the APC in G0 and G1 phases and begins rising at
the start of S phase (46). In cells aligned to the geminin rise time,
EdU levels are already elevated by 0.8 h after the rise of geminin
and fall to baseline 6 h later, marking the end of S phase (Fig. 4B).
Total HLB intensity rises in early-mid S phase, is sustained through
late S phase, and persists for about 1.5 h in G2 phase before de-
clining. SLBP levels also rise in early-mid S phase but begin de-
clining sooner in late S phase. Both H1.1 and H3.1 histone mRNA
peak in early-to-mid S phase, as soon as 1.5 h after geminin rise,
before declining through the remainder of mid- and late-S phase
(Fig. 4 B–C). H4.2 mRNA levels peak slightly later at 2.2 h after
geminin rise before declining in late S phase (Fig. 4 B–C). These
results are consistent with those from Fig. 3, where cells were aligned
to the time of anaphase. Consistent with previous work done in bulk
cultures (26), these data suggest that histone mRNA degradation is
reflective of the decline in DNA replication more so than it is linked
to the loss of SLBP or the localization of NPAT to the HLB
(Fig. 4C).

Discussion
Based on the results presented herein, neither Model 1 nor Model
2 from Fig. 1B is appropriate. Instead, the data support a two-
tiered increase in histone mRNA levels, with levels being elevated
above baseline in newly born cells committed to the cell cycle,
followed by a sharp increase in mRNA levels at the G1/S phase
boundary. Data from some previous studies are consistent with
this model (31–34), but this result has never been shown at a single-
cell level with the temporal resolution presented in this work. We
thus propose an alternative model wherein RD histone biosynthesis
is coupled to both cell-cycle entry and DNA replication (Fig. 4D).
RD histone protein synthesis is a core part of maintaining

genomic integrity. Expression of these proteins has long been
seen as intrinsically coupled to DNA replication since they are
required to stabilize the newly synthesized DNA and have a well-
documented increase in expression at the start of S phase (4). Log-
ically, however, this does not appear to be a sound strategy for
safeguarding the genome against the risk of underproduction of
histones. If cells begin the production of RD histones in tandem
with the initiation of DNA synthesis, cells risk leaving newly
replicated DNA exposed to potential genomic instability through
loss of chromatin organization, as well as vulnerability to repli-
cation stress and potential loss of epigenetic information through
defects in chromosome segregation (3, 53, 54).
We propose that cells safeguard against this risk by initiating

RD histone gene expression at the point of cell-cycle commit-
ment, rather than the point of S phase entry, to build up a small
pool of available histones before DNA replication begins. By having
a two-tiered expression of RD histone proteins as shown in Fig. 4D,
newly born CDK2inc cells show clear intent to proceed through
DNA replication while also containing the burst of RD histone
production to S phase when the production of nucleosomes is
needed. By contrast, newly born CDK2low cells have essentially
no histone mRNA production and thus show no intent to enter S
phase, consistent with their quiescent status. Thus, there is sub-
stantial heterogeneity in histone production rates that reflects the
intended trajectories of newly born cells.
The proposed two-tiered model of histone production suggests

a coupling to the two key events of G1, the restriction point, when
cells commit to their current cell cycle, and APC inactivation,
when cells proceed to DNA replication. Our data open questions
about how RD histone gene expression is regulated beyond the
formation of the HLB and expression of SLBP. Other factors may
also influence RD histone mRNA levels, including HLB-specific
factors like flice-associated huge protein (FLASH) or U7 small
nuclear ribonucleoprotein (snRNP) (9, 55–59). How these factors
could potentially coordinate the timing of the burst of RD histone
gene expression remains unknown.
In summary, our data support a combined model in which RD

histone biosynthesis is coupled to both cell-cycle entry and DNA
replication. Understanding the dynamics and control of histone
expression is essential for understanding the dynamic organization
of the genome across metazoans. The buildup of histones well
before the start of S phase may be an important step in protecting
the cell from DNA damage and preserving genomic integrity.

Materials and Methods
Cell Culture and Maintenance. MCF10A (ATCC CRL-10317) were cultured in
Dulbecco’s Modified Eagle Medium/Nutrient Mixture F12 (DMEM/F12) sup-
plemented with 5% horse serum, 100 ng/mL cholera toxin, 20 ng/mL epi-
dermal growth factor (EGF), 10 μg/mL insulin, 0.5 μg/mL hydrocortisone, and
100 μg/mL both penicillin and streptomycin. RPE-hTERT (ATCC CRL-4000)
were cultured in DMEM/F12 supplemented with 10% Fetal Bovine Serum
(FBS), 1× Glutamax, and 100 μg/mL of both penicillin and streptomycin. Hs68
(ATCC CRL-1635) were cultured in DMEM supplemented with 10% FBS and
100 μg/mL of both penicillin and streptomycin. Cells were grown in a hu-
midified incubator at 5% CO2 and 37 °C. Live-cell imaging of MCF10A and
RPE-hTERT cells was done in a phenol-red free version of the growth
media (Gibco).
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EdU Incorporation with Immunofluorescence and RNA FISH. Cells were seeded
onto 96-well glass-bottom plate (Cellvis Cat. No. P96-1.5H-N) coated with
collagen at a 1:50 dilution in water (Advanced BioMatrix, No. 5005) 48 h

prior to fixation, at a cell density of 2,000 cells per well for MCF10A, 3,000
cells per well for RPE-hTERT, and 4,500 cells per well for Hs68 cells. EdU was
added at 10 μM 15 min before fixation with 4% paraformaldehyde for
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Fig. 3. Dynamics of RD histone biosynthesis during cell-cycle progression. (A) Schematic of CDK2 sensor and live-cell tracking (45). (B–C) Representative
scatter of indicated IF or RNA FISH signal in MCF10A (B) or RPE-hTERT (C) cells following timelapse imaging of CDK2 activity of an asynchronously cycling
population. Cells were treated with EdU in the final 12 min of imaging to further segment cells by cell-cycle phase: G0 (CDK2low, EdU–; gray); G1 (CDK2inc,
EdU–; dark blue); S (CDK2inc, EdU+; green); and G2 (CDK2inc, EdU–; light blue). Column 1: Raw single-cell data. Column 2: Average protein or mRNA signals and
95% CIs as a function of time since anaphase for populations classified in Column 1 with the fraction of EdU-positive cells at each timepoint indicated by the
blue-green gradient. Column 3: Alternative visualization of the data in Column 2 wherein G1 cells (dark blue) are defined as those between anaphase and the
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50% of cells are EdU negative; and G2 cells (light blue) as those from the timepoint where 50% of cells are EdU negative until the end of the cell cycle. Axes
were determined by maximum and minimum signal for each protein and mRNA. Non-overlapping shading of 95% confidence intervals (CIs) indicates sta-
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statistically significantly higher than in G0 cells. Cell counts can be found in SI Appendix.
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Fig. 4. RD histone biosynthesis relative to S phase entry. (A) Schematic of geminin sensor and live-cell tracking (52). (B) Scatter of EdU, IF, or RNA FISH signal
in MCF10A cells aligned to the rise of geminin following timelapse imaging (Left column). Average protein or mRNA signal as well as 95% CIs as shaded
bands; EdU incorporation was used to estimate the start and end of late S phase (dashed lines; Right column). Axes were determined by maximum and
minimum signal for each protein and mRNA. (C) Overlay of average and 95% CI for H1.1 (red), H3.1 (orange), and H4.2 (pink) histone mRNA with either EdU
(dark blue), HLB intensity (light blue), or SLBP (green) aligned to geminin rise. (D) An updated model based on data herein, in which RD histone biosynthesis is
coupled to both cell-cycle entry and DNA replication. Cell counts can be found in SI Appendix.

6 of 8 | PNAS Armstrong and Spencer
https://doi.org/10.1073/pnas.2100178118 Replication-dependent histone biosynthesis is coupled to cell-cycle commitment

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2100178118/-/DCSupplemental
https://doi.org/10.1073/pnas.2100178118


15 min. mRNA were visualized according the manufacturer’s protocol (ViewRNA
ISH Cell Assay Kit, ThermoFisher QVC0001), with mRNA probes hybridized for
4 h at 40 °C. Probes included in this study were ViewRNA Type 6 probes
ordered from ThermoFisher, HIST2H4A (VA6-3174283-VC), HIST1H1A (VA6-
3172011-VC), and HIST1H3A (VA6-3174263-VC). Wells not stained for mRNA
were permeabilized in 0.1% TritonX for 15 min, washed three times with 3%
Bovine Serum Albumin (BSA), and processed for EdU visualization as de-
scribed by the manufacturer’s protocol (Invitrogen C10340). Subsequent
immunofluorescence was done following standard protocols: cells were
blocked for 1 h at 37 °C in 3% BSA, primary antibodies were incubated in 3%
BSA overnight at 4 °C, cells were washed three times in PBS, secondary an-
tibodies were incubated at room temperature for 2 h, and cells were washed
three times in PBS before being incubated with Hoechst at 1:10,000 at room
temperature for 15 min. Imaging was done on a Nikon Ti-E with a 20× 0.45
numerical aperture (NA) objective with the appropriate filter applied. Ex-
posure times were set to 200 ms for DAPI, 200 ms for fluorescein iso-
thiocyanate (FITC), 200 ms for Cy3, and 400 ms for Cy5. Image processing was
done as previously described (48, 60). Whole-cell median was quantified as
the median pixel value of a cytoplasmic mask, which was deteremined by

watershed segmentation and the MATLAB function regionpropswas used to
label the cytoplasm of each cell.

Live-Cell Imaging. Image processing, cell tracking, and cell classification were
done as previously described (45, 48, 60), with the tracking code available at
https://github.com/scappell/Cell_tracking. In this study, IF, EdU, or FISH sig-
nals were matched back to the last frame of the live-cell movie using nearest
neighbor screening after jitter correction as previously described (47, 48).
Additional information is provided in SI Appendix.

Data Availability.All study data are included in the article and/or SI Appendix.
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