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Highly selective hydrogenation of arenes using
nanostructured ruthenium catalysts modified
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Selective hydrogenations of (hetero)arenes represent essential processes in the chemical

industry, especially for the production of polymer intermediates and a multitude of fine

chemicals. Herein, we describe a new type of well-dispersed Ru nanoparticles supported on a

nitrogen-doped carbon material obtained from ruthenium chloride and dicyanamide in a facile

and scalable method. These novel catalysts are stable and display both excellent activity and

selectivity in the hydrogenation of aromatic ethers, phenols as well as other functionalized

substrates to the corresponding alicyclic reaction products. Furthermore, reduction of

the aromatic core is preferred over hydrogenolysis of the C–O bond in the case of ether

substrates. The selective hydrogenation of biomass-derived arenes, such as lignin building

blocks, plays a pivotal role in the exploitation of novel sustainable feedstocks for chemical

production and represents a notoriously difficult transformation up to now.
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C
atalytic hydrogenations constitute economic and clean
transformations for many pharmaceutical and petrochem-
ical processes. Due to the low price of the reductant and the

100% atom efficiency of the overall reaction, they adopt a privileged
position in methodological tool box of the chemical industry. In the
future, this type of transformation is expected to become even more
interesting and essential because of the increasing importance of the
valorization of oxygen-rich biomass. Till now, the vast majority of
industrially produced chemicals depend on fossil raw materials
namely petroleum, natural gas and coal. Hence, the conversion of
renewable biomass to higher value-added platform chemicals
currently attracts considerable attention1–4. In this respect,
significant research activities are focusing on the valorization of
lignin, which is one of the most abundant available feedstocks5,6.
After lignin depolymerization, highly oxygenated aromatic
monomers are obtained. For the consecutive utilization of such
lignin-derived compounds, both heterogeneous materials and
homogeneous catalysts based on Pd7–9, Pt10–12, Ru13–15, Rh16

and Ni17–29 have been developed which allow for reductive C–O
cleavage reactions that produce alcohols or alkene bio-building
blocks (Fig. 1). Apart from this general approach, we believe it is
highly desirable to develop alternative strategies based on selective
arene hydrogenation to effectively utilize lignin-derived compounds
and other oxygenated (hetero)arenes as feedstock for both bulk and
fine chemical production.

In general, selective hydrogenation of aromatic rings plays an
important role in the generation of all kinds of aliphatic
derivatives, which are crucial starting materials in synthesis of
polymers, resins, dyes and fine chemicals. Hence, this catalytic
transformation represents also an attractive candidate for the
investigation of the selective hydrogenation of lignin-derived
fragments. The resulting alicyclic ethers constitute a class of very
promising intermediates in the production of fine chemicals and
bio-fuels9,30,31. Although hydrogenations of the arene rings of
lignin building blocks are well-known, reports on the
development of catalysts for the selective generation of the
alicyclic ethers from such compounds are scarce16.

Nowadays, heterogeneous ruthenium nanoparticles (Ru-NPs)
represent state-of-the-art catalysts for selective hydrogenation of
aromatic rings which are also lower in price (4,200$ ozt� 1)
compared with other noble metals (for example, Pd:
60,450$ ozt� 1). By tuning shape and size of the NPs, type of
supports and even by adding functionalized ligands, the
performance of these materials has been greatly improved32–38.
Despite all these efforts, the reported systems exhibit only low
selectivity for the hydrogenation of highly reactive benzylic ethers
and related derivatives. On the basis of our recent work on the
development of metal NPs modified with nitrogen-doped
graphene layers (NGrs)39–46, we thought that such materials
might allow for more selective hydrogenations. The incorporation
of nitrogen atoms into a carbon matrix has been proven to affect
the catalytic activity/selectivity of the resulting materials
tremendously47,48. Hence, many efforts have been devoted in
recent years to the development of more active N-doped carbon
materials including their usage as supports in catalysis49–52. As an
instructive example in the context of lignin valorization, a
Pd@CN0.132 catalyst was prepared and successfully applied in the
hydrogenation of vanillin53.

Here, we describe the preparation, characterization and
catalytic testing of novel ruthenium-based NP immobilized on a
N-doped carbon support. The resulting optimal catalyst allows
for unique hydrogenation of all kinds of substituted arenes
including lignin-derived aromatic compounds to give the
aliphatic congeners in both high activity and selectivity.

Results
Material preparation and characterization. At the start of our
work, we synthesized different Ru-NPs immobilized on Vulcan
powder (Ru@NDCs-X; X labels the pyrolysis temperature). To
incorporate nitrogen atoms mainly three different sources
(dicyanamide (DCA), cyanamide and phenanthroline) were used
(Supplementary Fig. 1). The preparation of these catalysts
commenced with the impregnation of Vulcan powder with an
ethanolic solution of a nitrogen-ligated RuCl3 complex.
The Ru@NDC nano-composites were obtained upon solvent
evaporation and subsequent pyrolysis at 600, 800 or 900 �C under
inert conditions. Preliminary screening of all the different
catalysts revealed best results for the DCA-based materials
(Table 1). Applying DCA as ligand elemental analysis of the
resulting catalysts indicated that the nitrogen content dropped
from 0.65 to 0.4 wt% as the pyrolysis temperature is increased
from 600 to 900 �C (Supplementary Table 1 and Fig. 3). These
findings are in agreement with the results obtained by XPS.
Further evidence of N-doping is provided by X-ray photoelectron
spectroscopy (XPS). As shown in Fig. 2e and Supplementary
Fig. 5, three types of nitrogen were found for the samples
pyrolysed at 600, 700 and 800 �C, namely: pyridinic, pyrrolic and
NOx species, respectively. For the sample heat-treated at 600 �C,
the amount of pyrrolic N was found to be only marginally higher
than the pyridinic congener (49.7 versus 41.2%), whereas in the
sample pyrolysed at 700 �C the conditions moved into reverse
(37.4 versus 55.8%). For the 800 �C sample, the pyrrolic N was
found to be the dominating species again (78.0 versus 12.3%).
The quantitative analysis revealed a near-surface amount of
1.7 at% N after treatment at 600 �C and 700 �C, which decreased
slightly to 1.4 at% at 800 �C. To better investigate the effect of
doped-nitrogen, we synthesized Ru@NDCs-800 with different
nitrogen content by adjusting the amount of DCA in the syn-
thetic process. Interestingly, decreasing the ligand amount to
100 mg, the N content decreased to 0.66 at%, whereas no obvious
change was observed for the catalyst prepared using 400 mg of
ligand (Supplementary Table 3). The amount of N dropped
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Figure 1 | Valorization of lignin-derived building blocks. A new route

demonstrated.
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significantly to 0.5 at% after treatment at 900 �C. This low
nitrogen content hampered the determination of the various
modifications of the nitrogen. On the basis of XPS analyses, and
in agreement with other NP immobilized on N-doped carbon

supports54, we tentatively assign the corresponding signals to
pyridinic and graphitic N, respectively. Due to the influence of the
content and valence of metal-based species on the heterogeneous
hydrogenation, Ru 3p XPS analyses of Ru@NDCs-catalysts were
measured. These analyses suggest the formation of a RuO2 phase
and interaction of the active Ru sites with nitrogen species
(Supplementary Fig. 4)55. To gain more insight into the
morphology and structure of Ru@NDCs-800, high-resolution
transmission electron microscopy analysis of the material was
performed. The Ru-NPs are finely dispersed on the support and
the average size of the NPs amount to 1.82±0.11 nm (Fig. 2a).
On raising the pyrolysis temperature to 900 �C, the particle size of
the resulting material increased to 2.5–3.0 nm (see Supplementary
Fig. 2). However, in the absence of DCA the Ru-NPs aggregated
to form larger entities ranging from 10 to 20 nm particles size.
These results revealed that the Ru-NPs were prevented from
aggregation upon decomposition of DCA and concomitant
N incorporation into the carbon matrix during the course of
the pyrolysis process. In addition, the formed Ru-NPs might be
stabilized by the pyridinic N and pyrrolic N because their lone-
pair electrons can serve as metal coordination sites56. Figure 2b
shows the images of the crystal plane of Ru (101), and the
corresponding plane spacing was found to be 0.2 nm. This result
is in good agreement with the value obtained by X-ray diffraction
(Supplementary Fig. 6). As shown from the Figs 2c and 2d, the
Ru-based N-doped carbon material develops a pronounced,
well-textured morphology upon heat treatment at 800 �C.

Catalysis. After the initial screening, the performance of the
prepared materials resulting from DCA was evaluated in more
detail. Here, the hydrogenation of phenol to cyclohexanol with H2

pressures ranging from 5 bar to 20 bar was chosen as an indust-
rially relevant benchmark reaction, which is of interest for bulk
polyester processes57–59. We commenced our survey by control
experiments with Ru-free carbon and specifically prepared the N-
doped carbon, but in neither case any product formation was
observed (Table 1, entries 1 and 2). A standard Ru/C catalyst
obtained by pyrolysis at 800 �C in the absence of ligand (DCA)
exhibited only moderate activity at 5 bar H2 and 40 �C (Table 1,
entry 3). To our delight, the activity of the N-modified Ru@NDC-
800 catalyst is considerably increased and an almost quantitative
yield of cyclohexanol is achieved at low temperature and pressure
(Table 1, entry 6). In contrast, the Ru@NDCs samples originating

Table 1 | Benchmark reaction: variation of catalysts.

Entry Catalyst Temperature
(�C)

Pressure
(bar)

Y
(%)*

Sel
(%)

TOFw

1 C 40 20 0 — —
2 NC 40 20 0 — —
3 Ru/C-800 40 5 52 98 22
4 Ru@NDCs-

600
40 5 60 97 25

5 Ru@NDCs-
700

40 5 49 96 21

6 Ru@NDCs-
800

40 5 95 99 40

7 Ru@NDCs-
900

40 5 10 99 4

8 Ru@NDCs-
800

25 5 91 98 38z

9 Ru@NDCs-
800

40 5 50 99 21y

10 Ru@NDCs-
800

40 5 93 99 39||

11 Ru@NDCs-
800-2

40 5 94 99 40

12 Ru@NDCs-
800-3

40 5 95 99 40

13 Ru@NDCs-
800-4

40 5 93 98 39

14 Ru@NDCs-
800-5

40 5 93 99 39

15 Ru@NDCs-
800-6

40 5 90 99 38

Sel, selectivity; TOF, turnover Frequency; Y, yield. Reaction conditions: 0.5 mmol phenol, 20 mg
catalyst, 2 ml H2O, 2 h.
*Determined by GC-FID using dodecane as internal standard.
wTOF was calculated based on 3 wt% Ru loading.
z20 h.
y100 mg ligand used.
||400 mg ligand used.
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Figure 2 | High-resolution transmission electron microscopy images. Bright field HRSTEM images (a,c) and HRTEM (b) of the Ru@NDCs-800 (inset of

a: HAADF image), the HRTEM image (d) of the Ru@C-800 and N1s XPS spectrum (e) of Ru@NDCs.
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from lower pyrolysis temperature featured significantly lower
reactivity (Table 1, entries 4, 5 and 7). When the reaction was
carried out for 1 h, a significantly higher activity was also obtained
in the presence of Ru@NDCs-800 (Supplementary Table 3).
However, Ru@NDCs-600 or Ru@NDCs-700 might show higher
TOFs based on active Ru atoms on the surface of the NPs.

Moreover, the Ru@NDCs sample synthesized using low amount
of ligand gave considerably lower conversion, whereas similar
activity was obtained with the sample prepared in the presence
of 400 mg of ligand (Table 1, entries 9 and 10). This
also demonstrates the importance of a critical amount of
nitrogen.These experimental findings demonstrate the
importance of nitrogen for the activity of the catalyst. Next, the
reusability of the Ru@NDCs-800 nano-composite was examined
since catalyst recyclability represents an integral part in the
economic assessment of chemical transformations. The active
material was separated from the reaction mixture via
centrifugation and reused directly for five times. Gratifyingly,
no obvious deactivation was detected and the yield of the desired
product amounted to 93% at the sixth cycle (Table 1, entries 6,
11–15).

Selective hydrogenation of arenes. The functional group toler-
ance survey of various arene substrates was conducted with the
Ru@NDCs-800 catalyst. As shown in Table 2, the hydrogenation
of methyl benzoate was complete at room temperature within
12 h (Table 2, entry 1). Furthermore, benzamide and phthalimide
underwent selective reduction retaining the amide and imide
groups in the substrates (Table 2, entries 2 and 3). In case of
quinoline, which is used as a feedstock in the production of
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Figure 3 | Selective hydrogenation of benzylic ethers using Ru@NDCs-

800. Reaction conditions: 0.5 mmol substrate, 20 mg catalyst, 2 ml

isopropanol, 20 bar H2, 60 �C, 24 h. Isolated yields, value in parentheses is

obtained using commercial 5% Ru/C. b50 bar H2. cGC yield.

Table 2 | Selective arene hydrogenation with Ru@NDCs-800*.

Sel, selectivity; Y, yield.
*Reaction conditions: 0.5 mmol substrate, 20 mg catalyst, 2 ml isopropanol, 10 bar H2, 60 �C, 24 h.
wIsolated yields, value in parentheses is obtained using commercial 5% Ru/C.
zRoom temperature.
y80 �C, 12 h.
||Yields detemined by 1H NMR.
z100 �C, 20 bar, 12 h.
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specialty chemicals, the heterocyclic 1,2,3,4-tetrahydroquinoline
is obtained in 87% yield, whereas selective hydrogenation of the
pyridine ring occurred (Table 2, entry 4). Ru@NDCs-800 also
exhibited good activity in the hydrogenation of methyl benzoyl-
formate, affording a cyclohexyl-tagged tertiary alcohol in 81%
yield (Table 2, entry 5). The hydrogenation of benzyl alcohol
proceeded smoothly with almost quantitative formation of the
corresponding saturated alicyclic alcohol. It should be noted that
the yield of the latter product decreased to 75% when commercial
Ru/C was used as catalyst. This lower yield is explained by
concomitant C–O bond cleavage which leads to the formation of
a considerable amount of methyl cyclohexane (Table 2, entry 6).
N-ethylcarbazole is regarded as a promising future hydrogen-
storage material60–62. Hence, we tested our Ru@NDCs-800
catalyst in the hydrogenation of this peculiar heterocycle.

Interestingly, at 10 bar and 100 �C N-octahydroethylcarbazole is
obtained in 85% yield, demonstrating the possibility of selective
partial hydrogenation. Simply by increasing the temperature to
100 �C, the fully hydrogenated perhydro-derivative was isolated
in 93% yield (Table 2, entries 7 and 8).

Hydrogenation of benzylic compounds. In general, hydro-
genolysis of benzylic compounds is observed in the course of
hydrogenation processes. Especially, in benzylic ethers and alco-
hols the cleavage of the C–O bond easily occurrs due to the lower
C–O bonding dissociation energy. For example, the bonding
dissociation energy for benzylic ethers is 220 kJ mol� 1 compared
with 310 kJ mol� 1 for biaryl ethers and 290 kJ mol� 1 for ary-
lethyl ethers27. Indeed, in the hydrogenation of benzyl phenyl

Table 3 | Selective hydrogenation of aromatic ethers*.

*Reaction conditions: 0.5 mmol phenol, 20 mg catalyst, 2 ml isopropanol, isolated yields. 10 bar H2, 60 �C, 24 h.
wIsolated yields.
zDetermined by GC-FID using dodecane as internal standard.
y80 �C, 20 bar.
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ether using commercial Ru/C partial cleavage of the benzylic C–O
linkage is observed. Hence, a mixture of products including the
fully hydrogenated ether, cyclohexanol and methyl cyclohexane is
obtained (Fig. 3, 1a). However, applying the novel Ru@NDCs-800
catalyst gave excellent selectivity for the hydrogenation of the
arene rings. As shown in Table 3, benzyl phenyl ether was
smoothly converted to the corresponding alicyclic ether in 93%
yield. Even at 50 bars of hydrogen no significant C–O cleavage is
observed. Similarly, substrates with pendant functional groups on
the phenyl moiety such as hydroxyl, methyl and even long alkyl
chains were well-tolerated and gave high yields of the
corresponding cis/trans ethers (ratio 1.5–4:1; Fig. 3, 1b–1d).
In addition, 1-methyl-4-(phenoxymethyl)benzene was also
converted to the corresponding ether in 78% yield (Fig. 3, 1e).
All these results demonstrate the specific behaviour of N-doped
ruthenium nano-composites for selective hydrogenation of
aromatic rings in the presence of the benzylic C–O bonds.

As pointed out vide supra various phenethyl ethers are easily
available as platform chemicals from abundant lignin. As an
example for this class of compounds the hydrogenation of
phenethyl ether was investigated. Gratifyingly, the Ru@NDCs-
800 showed good activity for arene hydrogenation of phenethox-
ybenzene (Fig. 3, 1f).

Hydrogenation of aromatic ethers. To expand the scope of this
arene hydrogenation, next we investigated the reactivity of
various alkyl aryl ethers. Anisole, ethoxybenzene, butoxybenzene
and (octyloxy)benzene were readily converted to the corre-
sponding products in yields ranging from 88–94% (Table 3,
entries 1–4). Further alkyl and methoxy substituents had no
negative impact on the catalytic activity and the fully hydro-
genated products were obtained as cis/trans regioisomers (3–9:1;

Table 3, entries 5–8). Arene hydrogenation of 1-methox-
ynaphthalene was also realized with 90% of the desired ethers
formed. In addition, 2,3-dihydrobenzofuran and benzofuran were
converted to the corresponding ethers in 84–87% yield. Notably,
tetrahydrofurfuryl alcohol is obtained by selective hydrogenation
of furfuryl alcohol, which is manufactured industrially. Moreover,
the successful hydrogenation of 4-propylguaiacol and vanillin,
which are both directly accessible from lignin depolymerization,
was demonstrated and good yields were achieved (Table 3, entries
13 and 14). Having verified the catalytic activity of Ru@NDCs-
800 in the selective hydrogenation of alkyl aryl ethers, we tested
the established catalytic protocol in the transformation of lignin-
derived biphenyl ethers.

As shown in Table 4, the conversion of a broad range of
substituted biaryl ethers into the corresponding aliphatic ethers
proceeded smoothly. The parent compound afforded the
corresponding ether in 84% yield, whereas the hydrogenation of
alkyl-substituted derivatives provided slightly higher product
yields ranging from 85 to 89% (Table 4, entries 1–4).

Performing the latter reaction in the presence of commercial 5%
Ru/C, the yield for the desired product decreased to 65% due to C–O
cleavage. Finally, dibenzo-fused five- and six-membered heterocyclic
substrates displayed similar reactivity and the yield of the corres-
ponding saturated tricyclic ethers amounted to 81–91% (Table 4,
entries 5–8). To investigate the high selectivity of the catalytic
system, the hydrogenolysis of aliphatic ethers such as methoxycy-
clohexane and oxydicyclohexane were tested and no C–O cleavage
occurred. This result revealed that hydrogenation of aromatic rings
is favoured compared with the cleavage of C–O bonds. The
experimental findings were also substantiated by variation of the
solvent (see Supplementary Table 2), whereas higher selectivity was
obtained using cyclohexane as reaction medium by virtue of its
property to inhibit the hydrogenolysis reaction.

Table 4 | Selective hydrogenation of biaryl ethers*.

*Reaction conditions: 0.5 mmol phenol, 20 mg catalyst, 2 ml isopropanol, 20 bar H2, 24 h.
wIsolated yields, value in parentheses is obtained using commercial 5% Ru/C.
zSelectivity.
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Discussion
In summary, we developed for the first time a new type of
ruthenium nano-composite immobilized on a carbon support.
The described material contains finely dispersed ruthenium,
which is in contact with a specific carbon–nitrogen matrix. The
resulting catalysts (Ru@NDCs) are easily obtained in a practical
and scalable two-step method via pyrolysis of simple ruthenium
trichloride and inexpensive DCA. Combination of different
analytic methods including XPS revealed the formation of
graphitic nitrogen, which is identified as the functional
prerequisite for the development of catalytic activity. The optimal
catalyst exhibited good-to-excellent activity in the selective
hydrogenation of arenes, particularly in the transformation of
aromatic ethers to the corresponding alicyclic compounds with
preservation of the phenyl- and benzyl C–O bonds. The utility of
the catalyst opens new avenues for the valorization of lignin-
derived aromatic compounds to provide novel sustainable
platform chemicals. In addition, industrially relevant processes
such as the hydrogenation of phenol proceed under mild
conditions in a green manner.

Methods
General. Unless otherwise specified, reagents and solvents were purchased from
Aldrich, Fluka, Acros and Strem commercially and used as received. All com-
pounds were characterized by 1H NMR, 13C NMR, GC-MS spectroscopy. 1H and
13C NMR spectra were recorded on Bruker Avance 300 (300 MHz) or 400
(400 MHz) NMR spectrometers. The 1H and 13C NMR chemical shifts are reported
relative to the centre of solvent resonance (CDCl3: 7.26 (1H), 77.16 (13C)). EI mass
spectra were recorded on an MAT 95XP spectrometer (70 eV, Thermo Electron
Corporation). For GC analysis, HP 6890 chromatograph with a 29 m HP5 column
was used. GC-MS analysis was conducted on an Agilent GC-MS-HP5890 instru-
ment. The products were isolated from the reaction mixture by solvent
evaporation.

Typical preparation of Ru@NDCs-catalysts. RuCl3 (0.5 mmol) and DCA
(200 mg) were dissolved in ethanol and stirred for 2 h at 60 �C. Then, carbon
support (VULCAN XC72R, ordered from PT (Cabot Indonesia) was added and the
suspension was stirred at 60 �C for a further period of 2 h. After that, the mixture
was cooled to room temperature and dried in vacuo at 60 �C for 2 h, and it was
grinded to a fine powder which was subsequently pyrolyzed at 600, 700, 800 or
900 �C for 2 h under an argon atmosphere.

Catalytic hydrogenation of phenol. In a 4 ml reaction vial equipped with a
magnetic stirring bar, phenol (0.5 mmol) was mixed with 2 ml IPA. Then 20 mg of
the ruthenium-based catalyst (20 mg) was added. The reaction vials were fitted with
cap and needle and then placed into a 300-ml autoclave. The autoclave was purged
thrice with H2 (10 bar), pressurized to 5 bar H2, placed into an aluminium block,
heated to 40 �C and the reaction vessels were stirred for 2 h. After completion of the
reaction, the autoclave was cooled to room temperature, n-dodecane was added to
the reaction mixture as external standard and the mixture was diluted with ethyl
acetate (20 ml), followed by filtration and analysis of a sample by GC and GC-MS.
The crude reaction mixture was concentrated in vacuo and the obtained product
was analysis by NMR.

For NMR analysis of the compounds in this article, see Supplementary Methods
and Supplementary Figs 7–62.
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