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Abstract: Kratom (Mitragyna speciosa (Korth.) Havil.) has been used to reduce blood sugar and lipid
profiles in traditional medicine, and mitragynine is a major constituent in kratom leaves. Previous
data on the blood sugar and lipid-altering effects of kratom are limited. In this study, phytochemical
analyses of mitragynine, 7-hydroxymitragynine, quercetin, and rutin were performed in kratom
extracts. The effects on α-glucosidase and pancreatic lipase activities were investigated in kratom
extracts and mitragynine. The LC-MS/MS analysis showed that the mitragynine, quercetin, and
rutin contents from kratom extracts were different. The ethanol extract exhibited the highest total
phenolic content (TPC), total flavonoid content (TFC), and total alkaloid content (TAC). Additionally,
compared to methanol and aqueous extracts, the ethanol extract showed the strongest inhibition
activity against α-glucosidase and pancreatic lipase. Compared with the anti-diabetic agent acarbose,
mitragynine showed the most potent α-glucosidase inhibition, with less potent activity of pancreatic
lipase inhibition. Analysis of α-glucosidase and pancreatic lipase kinetics revealed that mitragynine
inhibited noncompetitive and competitive effects, respectively. Combining mitragynine with acarbose
resulted in a synergistic interaction with α-glucosidase inhibition. These results have established the
potential of mitragynine from kratom as a herbal supplement for the treatment and prevention of
diabetes mellitus.

Keywords: Mitragyna speciosa; kratom; α-glucosidase; pancreatic lipase; anti-diabetes mellitus

1. Introduction

Obesity is a major risk factor that is closely related to various pathological conditions
and chronic diseases worldwide and has become a major global public health problem. In
2022, the World Health Organization (WHO) reported that among adults aged 18 years
and older, 39% were overweight and 13% were obese [1]. Recent studies revealed that
the common underlying cause of both diabetes and obesity is related to insulin resistance,
which occurs due to the stimulation of insulin production or a reduction in insulin recep-
tors [2,3]. Common molecular targets for designing anti-obesity drugs are enzymes, which
are accounted for virtually half of the small-molecule drugs available on the market. Be-
cause of their protein structures with several validated sites for drug interaction, enzymes
are proved to be an appealing target for the discovery of novel therapeutic molecules [4].
Natural products are known to be remarkable sources for discovering possible therapeutic
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approaches for metabolic disorders, such as anti-diabetic and anti-obesity drugs. Hence,
extensive experiments were made to investigate the effects of molecules from natural
products through enzyme inhibition assay, particularly activities of α -Glucosidase and
lipase [5–7].

α-glucosidase is a carbohydrate-hydrolyzing enzyme that is secreted from the intesti-
nal chronic epithelium. These enzymes are essential enzymes of digestion that stimulate the
breakdown of disaccharides and oligosaccharides into small, simple, and absorbable carbo-
hydrates [8]. One of the most common alpha-glucosidase inhibitors (AGIs) drugs currently
available is acarbose, which is proven to be efficient in blood glucose level stabilization.
Moreover, acarbose was found to have activity against oxidative stress and endothelial
dysfunction; therefore, it might lower the risk of developing cardiovascular diseases and
help increase the lifespans of type-2 DM patients [9]. In addition, the dysfunctions of
insulin-producing pancreatic β cells lose their functions due to the excessive accumulation
of lipids in the pancreas [10,11]. Lipase is an enzyme produced by the exocrine portion of
the pancreas and is released into the intestinal lumen to catalyze the hydrolytic breakdown
of triacylglycerols in ingested fats, into free fatty acids and monoacylglycerols; thus, it is
the most important enzyme in lipid digestion and is absorbed into circulation [12]. Orlistat,
a lipase inhibitor that competes with dietary lipid molecules for enzymatic active sites, is an
archetypic medication prescribed for obese patients in need of losing weight. Orlistat, with
a therapeutic oral dose of 120 mg administered three times per day, accounts for nearly
one-third of the reduction of dietary fat absorption via intestinal epithelium due to its
inhibitory effect against lipase in the hydrolysis of triacylglycerol. This decrease in lipid
absorption is shown to be without prominent effects on appetite [13]. However, long-term
use of these drugs is often reported to cause some severe side effects, such as insomnia,
headaches, hypoglycemia, weight gain, constipation, and renal damage [14,15]. Efforts
have been directed toward discovering medicines from natural products due to their low
costs, relative safety, probability of high compliance, and low incidences of undesirable side
effects [16]. Based on previous studies, secondary metabolites of natural products, such
as phenolics, alkaloids, terpenoids, flavonoids, and glycosides, have shown potent pan-
creatic lipase and α-glucosidase inhibitory activities [17–22]. The α-glucosidase inhibitory
potential was also shown by plants in the Juglandaceae family [23]. However, it remains
necessary to continue searching for more effective α-glucosidase and lipase inhibitors from
traditional herbs.

Mitragyna speciosa (Korth.) Havil. or kratom (Rubiaceae) is an indigenous plant in
Southeast Asia that grows naturally in several regions, including Thailand, Indonesia,
Malaysia, Sumatra, Java, Bali, and Borneo (Figure 1) [24]. Kratom leaves have been used in
local communities to treat pain, cough, fever, and diabetes; to enhance work performance;
and are used as substitutes for illicit substances, mainly opioids. The leaves have been
used as a traditional medicinal herb in southern Thailand, where it has become a culturally
accepted stimulant drink similar to coffee and tea [25]. Previous studies revealed that
M. speciosa contains a diverse group of secondary metabolites, such as indole alkaloids,
flavonoids, triterpenoids, saponins, and glycosides [26]. More than forty of these com-
pounds have been identified. Mitragynine is the most abundant compound available
in the kratom preparation, with an estimated 2% by mass and up to two-thirds (66%)
of total alkaloid content [27]. In addition, through in vitro and in vivo studies, kratom
has been observed to exhibit various pharmacological properties, such as antioxidant,
anti-inflammation, antibacterial, antiproliferative, and anti-analgesic properties [28,29].
Although previous studies have reported that kratom leaves exhibit activities that control
diabetes and lipid profile [30–35], there is still a lack of scientific evidence related to the
inhibitory effects and mechanism of enzymatic activities. Thus, in this research, we aimed
to evaluate the α-glucosidase and pancreatic lipase inhibitory activities of kratom leaves.
Additionally, the phytochemical profile, total alkaloid content, total phenolic content, and
total flavonoid content of kratom extract were also investigated.
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Figure 1. Mitragyna speciosa (Korth.) Havil. or Kratom.

2. Materials and Methods
2.1. Plant Material

Fresh leaves of M. speciosa were collected from Thasala district, Nakhon Si Thammarat
Province, Thailand in February 2022 (Figure 1). The leaves were identified by the Plant
Varieties Protection office, Department of Agriculture, Thailand; the voucher specimen
(BK083621) was deposited.

2.2. Preparation of Kratom Extracts

The leaves of kratom (1 kg) were dried in a hot air oven at 60 ◦C and ground to a coarse
powder (600 g). The kratom powder was extracted with various organic solvents, including
methanol (MeOH), ethanol (EtOH), and water, respectively for 24 h (three times). The
extracts were filtered using a Whatman No. 1 filter paper. Each filtrate was concentrated
to dryness in a rotary evaporator (Büchi Labortechnik, Germany) under reduced pres-
sure and controlled temperature (40 ◦C) to give the final extracts including EtOH extract
(52.8 g), MeOH extract (60.5 g), and aqueous extract (57.99 g), which were stored at 4 ◦C in
a refrigerator until further use.

2.3. Determination of Total Phenolic Content, Total Flavonoid Content, and Total Alkaloid Content
2.3.1. Total Phenolic Contents (TPC)

The total phenolic content was determined for individual extracts using the Folin–
Ciocalteu method with some modifications [36]. Briefly, the 20 µL of extracts were mixed
with 100 µL of tenfold diluted Folin–Ciocalteu reagent (Sigma-Aldrich, St Louis, MO,
USA) and 80 µL of sodium bicarbonate (75 g/L). The mixture was incubated at room
temperature for 1 h, and the absorbance was measured at 765 nm with a microplate reader
(Thermo Scientific, Göteborg, Sweden). All samples were analyzed in triplicate. Gallic
acid (4–30 µg/mL) was used as a positive control (Sigma-Aldrich, St Louis, MO, USA,
lot number 099K0128). The results are expressed as milligrams of gallic acid equivalent
(mg GAE/g).

2.3.2. Total Flavonoid Content (TFC)

The total flavonoid content method was determined by using an aluminum chloride
colorimetric assay with some modifications [37]. Briefly, 50 µL of samples were mixed
with 10 µL of 10% aluminum chloride (Sigma-Aldrich, St Louis, MO, USA), 1 M sodium
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acetate (Sigma-Aldrich, St Louis, MO, USA), and 150 µL of 95% ethanol. The mixtures
were further incubated in the dark at room temperature for 40 min. The absorbance was
measured at 415 nm using a microplate reader (Thermo Scientific, Göteborg, Sweden). All
samples were analyzed in triplicate. A solution of quercetin (Sigma-Aldrich, St Louis, MO,
USA, lot number Q4951) in a range of 10–100 µg/mL was used to prepare a standard curve
for determining the total flavonoid contents. The results are expressed as milligrams of
quercetin equivalent (mg QE/g).

2.3.3. Total Alkaloid Content (TAC)

Bromocresol green solution (1 × 10−4) was prepared by heating 69.8 mg bromocresol
green (Sigma-Aldrich, St Louis, MO, USA) with 3 mL of 2N NaOH and 5 mL of distilled
water until completely dissolved and the solution was diluted to 1000 mL with distilled
water. A phosphate buffer solution (pH 4.7) was prepared by adjusting the pH of 2 M
sodium phosphate (71.6 g Na2HPO4 in 1 L of distilled water) to 4.7 with 0.2 M citric acid
(42.02 g citric acid in 1 L of distilled water). Atropine standard (Glentham Life Sciences, Ltd.,
Wiltshire, United Kingdom, lot number 756VTN) solution (20–140 µg/mL) was dissolved
at 1 mg in 10 mL of distilled water [38]. All samples were analyzed in triplicate. The results
are expressed as milligrams of atropine equivalent (mg ATR/g).

2.4. Liquid Chromatography Analysis of Kratom Extracts

UHPLC model Ultimate 3000 with an LC-MS/MS model Altis Plus (Thermo Fisher
Scientific, MA, USA) was used. All samples were filtrated by a nylon filter with a pore
size of 0.22 µm. The scanning range was from 100 to 1700 m/z for MS/MS in positive
mode. Separation was achieved through Thermo Hypersil GOLD C-18 (2.1 × 100 mm,
1.9 µm). The gradient mobile phase was a mixture of solvent A: 0.1% formic acid (pH 2.99),
and solvent B: acetonitrile, with a flow rate of 0.5 mL/min. The gradient program
was set as 0–0.5 min, 25% B; 3–4 min, 80–100% B; and 4–6.5 min, 25% B with an injec-
tion volume of 10 µL. Standard mitragynine (0.1–1 µg/mL) (Lipomed, Inc., lot number
1610.1B0.2), quercetin (0.1–1 µg/mL) (Sigma-Aldrich, St Louis, MO, USA, lot number
Q4951), 7-hydroxymitragynine (0.1–1 µg/mL) (ChromaDex, Inc., lot number 00008624-
00377), and rutin (0.1–1 µg/mL) (Acros Organics, lot number A0355330) were eluted at
2.08, 1.20, 3.06, and 1.22 min, respectively. The mass scan mode was the positive multiple
reaction monitoring mode. The precursor ion and product ion were m/z 399.20→ 174.10
for mitragynine, m/z 415.20→ 190.10 for 7-hydroxymitragynine, m/z 303.05→ 229.00 for
quercetin, and m/z 611.16→ 303.10 for rutin.

2.5. Kinetic Study of α-Glucosidase Inhibition

The assay was performed as described previously with some modifications [39]. The
kinetic parameters (Michaelis–Menten constant; Km and maximum velocity; Vmax) of α-
glucosidase were determined by using p-nitrophenol-α-D-glucopyranoside (pNPG) as
a substrate. Briefly, 0.1 unit of α-glucosidase (Sigma-Aldrich, St Louis, MO, USA) were
incubated at 37 ◦C with 100 µL of total reaction. After 10 min, the reactions were started by
adding 50 µL pNPG (Sigma-Aldrich, St Louis, MO, USA, lot number 3698310) ranging from
0 to 15 mM, and the p-nitrophenol product was measured at 405 nm using a microplate
reader (Multiskan SkyHigh, Thermo Scientific, Göteborg, Sweden). The substrate concen-
tration rates were plotted against pNPG concentrations and fitted to the Michaelis–Menten
equation. For the inhibition assay, 100 µL containing 0.1 unit of α-glucosidase was incu-
bated at 37 ◦C with acarbose (positive control) (Sigma-Aldrich, St Louis, MO, USA, Lot
number SLCF5122) or kratom extracts at various concentrations (0–100 µg/mL).

The reactions were started by adding 50 µL of 0.3 mM pNPG (Km), and the p-nitrophenol
product was measured at 405 nm using a microplate reader. The IC50 was determined
by comparing the rate of each test inhibitor concentration to that of the vehicle control
(ethanol), and the IC50 was calculated by plotting the remaining activity of each inhibitor
concentration to the log test inhibitor concentration. The inhibition modes of pure com-
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pounds (mitragynine) and the positive control (acarbose) against the α-glucosidase enzyme
were determined with at least four different concentrations of test inhibitors (mitragynine
0–0.4 mM; acarbose 0–3 mM). After co-incubation with each inhibitor for 5 min at 37 ◦C,
the reactions were initiated by adding the p-NPG substrate (0–15 mM) [39]. The inhibition
constant (Ki) values were determined from Lineweaver–Burk Plots.

2.6. Kinetic Study of Pancreatic Lipase Inhibition

The kinetic parameters (Km and Vmax) of pancreatic lipase were determined using
4-methylumbelliferyl oleate (4MUO) as the substrate (Sigma-Aldrich, St Louis, MO, USA,
Lot number BCCF8781). Briefly, 0.5 units of lipase (Sigma-Aldrich, St Louis, MO, USA, Lot
number SLCG8579) were incubated in 96-well plates with a total volume of 100 µL (15 mM
Tris-HCl buffer, pH 8.0) at 37 ◦C for 10 min. The reactions were initiated by adding 50 µL
of 4MUO ranging from 0 to 5 mM. The reactions were left to proceed for 10 min, and the
rates of the reactions were measured by monitoring the increase in 4-methylumbelliferone
(4MU), a fluorescent product (excitation, 355 nm; and emission, 460 nm). The rates at
which substrate concentrations were plotted against 4MUO concentrations and fitted to the
Michaelis–Menten equation. For the inhibition assay, 0.5 units of lipase were incubated with
orlistat (Sigma-Aldrich, St Louis, MO, USA, Lot number 0000117290) or kratom extracts
at various concentrations (0–100 µg/mL) in a 100 µL total reaction volume at 37 ◦C. After
10 min, the reactions were started by adding 0.35 mM 4MUO. The reaction rates were
monitored by measuring the release of 4MU from 4MUO. Fluorescence from the release
of 4MU was measured using a microplate reader (Synergy Mx, Agilent Technology, Santa
Clara, USA) with excitation and emission wavelengths of 355 and 460 nm, respectively. The
remaining activity of lipase was determined by comparing the rate of each test inhibitor
concentration to the vehicle control (ethanol), and IC50 was calculated by plotting the
remaining activity of each inhibitor concentration to the log test inhibitor concentration [39].

2.7. The Combination of Kratom Extracts and Acarbose Inhibited Enzymatic α-Glucosidase
Activities

For the combination inhibition of α-glucosidase, 0.1 units of α-glucosidase was incu-
bated with acarbose ranging from 0 to 100 µM in the presence and absence of ethanol extract
(IC50; 16 µg/mL), methanol extract (IC50; 42 µg/mL), aqueous extract (IC50; 70 µg/mL),
and mitragynine (IC50; 82 µg/mL) at 37 ◦C in a total volume of 100 µL of 15 mM Tris-HCl
buffer, pH 8.0. After 10 min, the residual reactions were started by the addition of 50 µL of
0.3 mM pNPG. The reactions were left to proceed for 10 min. The absorption at 405 nm was
then measured using a microplate reader, and IC50 values were calculated by GraphPad
Prism version 9.3.1.

2.8. Statistical Analysis

All data were obtained from three dependent experiments and are expressed as the
mean ± standard deviation (SD). Statistical analysis was performed using GraphPad Prism
9.3.1 (GraphPad Software, Inc., San Diego, CA, USA) with one-way ANOVA. Differences
with * p < 0.05 were statically significant.

3. Results
3.1. TPC, TFC, and TAC of All Kratom Extracts

The effects of the extraction solvents (ethanol, methanol, and aqueous) on the TPC,
TFC, and TAC of the kratom leaf extracts were evaluated, as shown in Table 1. The TPC was
calculated from the regression equation of the calibration curve (Y = 0.0236x; R2 = 0.9995)
and expressed as mg GAE/g of samples. The TFC was also reported as mg QE/g of
samples (Y = 0.0059x; R2 = 0.9923). The content of alkaloids was measured in terms of
atropine equivalents (Y = 0.0052x; R2 = 0.9980). The results showed that the ethanol extract
exhibited a higher TPC (252.92± 1.15 mg GAE/g), TFC (26.07± 0.01 mg GAE/g), and TAC
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(88.04 ± 0.15 mg ATR/g) than those of the other kratom extracts. These results suggest that
the ethanol extract is rich in phenolics, flavonoids, and alkaloids.

Table 1. TPC (mg GAE/g extract), TFC (mg QE/g extract), and TAC (mg ATR/g extract) of kratom
leaf extracts.

Samples TPC
(mg GAE/g) ± SD

TFC
(mg QE/g) ± SD

TAC
(mg ATR/g) ± SD

Ethanol 252.92 ± 1.15 * 26.07 ± 0.01 * 88.04 ± 0.15 *
Methanol 159.30 ± 2.01 13.15 ± 0.09 52.82 ± 0.85
Aqueous 130.58 ± 0.68 0.82 ± 0.02 5.61 ± 0.13

Results are expressed as means± SDs, n = 3. * p < 0.05 compared to methanol and aqueous extracts of each group.

3.2. LC-MS/MS Analysis of Mitragynine, 7-hydroxymitragynine, Quercetin, and Rutin

LC-MS/MS is a confirmed hyphenated and accurate tool for rapid analysis, and it
was used for the identification of a total of the mitragynine, 7-hydroxymitragynine, and
two flavonoid compounds, which were identified by comparing their retention times and
mass fragmentation patterns with data obtained from previous studies [26]. Then, each
individual compound was quantified by comparing its peak area with the calibration curve
obtained for the corresponding standard (Figure 2). Table 2 summarizes the bioactive
phytochemical, mainly indole alkaloids and flavonoids. The presence and identification of
these phytochemicals correlate with the reports published in a previous report [26].

Table 2. MS/MS data of compounds identified tentatively in kratom ethanol, methanol, and aqueous
leaf extracts using UHPLC and LC-MS/MS.

Identification Calculated m/z
[M+H]+

Precursor ion
Experimental
m/z [M+H]+

Major Ion in
MS/MS Spectra

(Key Fragment Ions)

Ethanol
RT, min

Methanol
RT, min

Aqueous
RT, min

Mitragynine 399.2278 399.20 174.10 3.284 3.224 3.224
7-hydroxymitragynine 415.2227 415.2 190.10 3.286 3.212 3.212

Rutin 611.1602 611.16 303.10 1.209 1.175 1.175
Quercetin 303.0508 303.05 229.00 1.217 1.223 1.223

The quantitative analysis of kratom leaf extracts is shown in Table 3. Mitragynine
appeared to be the major alkaloid that was found in ethanol, followed by methanol and
aqueous extracts, respectively. From this result, we can calculate that the percentages
of mitragynine in TAC are 66% in methanol extract, 68% in ethanol extract, and 6.9%
in aqueous extract. However, 7-hydroxymitragynine was observed at less than 1 mg/g.
Additionally, quercetin and rutin were found to contain the highest amounts of ethanol
compared to the other kratom extracts.

Table 3. Quantitative analysis of mitragynine, quercetin, and rutin of kratom extracts.

Compounds
Amount (mg/g) ± SD

Ethanol Extract Methanol Extract Aqueous Extract

Mitragynine 58.75 ± 0.21 * 35.87 ± 1.01 3.85 ± 0.17
Quercetin 19.10 ± 0.85 * 5.90 ± 0.14 1.28 ± 0.02

Rutin 11.36 ± 0.11 * 3.19 ± 0.22 1.22 ± 0.05
Results are expressed as means ± SDs, n = 3. * p < 0.05 compared to methanol and aqueous extracts of each group.
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Figure 2. Total ion chromatograms (TIC) from LC-MS/MS of (A) the reference standard (mitragynine)
concentration at 1 µg/mL, (B) ethanol extract, (C) methanol extract, and (D) aqueous extract from
kratom leaves. The peaks of four major constituents were identified by comparison with the refer-
ence standards, their retention times, and mass fragmentation patterns (B1–D1) as rutin, quercetin,
mitragynine, and 7-hydroxymitragynine.

3.3. α-Glucosidase Inhibition Activity

The three different solvent extracts of kratom were evaluated for their α-glucosidase
inhibitory activities (Table 4). Each kratom extract was initially treated at 0–100 µg/mL.
The ethanol extract showed the strongest activity (IC50 15.9 ± 1.34 µg/mL), followed by
methanol extract (IC50 42.12± 1.76 µg/mL) and aqueous extract (IC50 69.48 ± 2.67 µg/mL),
with a potency higher than that of the drug acarbose (IC50 728.20 ± 7.01 µg/mL). However,
compared to acarbose as a positive control, mitragynine has lower IC50 (81.68 ± 1.70 µg/mL)
and, thus, has higher inhibitory activity (Figure 3A,B).
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Table 4. The IC50 values of kratom extracts and mitragynine for α-glucosidase and pancreatic lipase
inhibitory activities.

Samples
α-Glucosidase Pancreatic Lipase

IC50 (µM) IC50 (µg/mL) IC50 (µM) IC50 (µg/mL)

Ethanol extract - 15.90 ± 1.34 * - 14.15 ± 1.71 *
Methanol extract - 42.12 ± 1.76 * - 28.38 ± 2.34 *
Aqueous extract - 69.48 ± 2.67 * - 41.43 ± 3.32 *

Mitragynine 205.04 ± 15.11 * 81.68 ± 1.70 * 24.9 ± 1.38 * 9.86 ± 0.45 *

Acarbose 1121.09 ± 67.01 728.20 ± 7.01 - -
Orlistat - - 0.84 ± 0.10 0.42 ± 0.05

Results are expressed as means ± SDs, n = 3. * p < 0.05 compared to positive controls (acarbose and orlistat).
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Figure 3. Inhibitory effect of the kratom extracts and mitragynine against α-glucosidase (A,B) and
pancreatic lipase (C,D). Inhibition curves of acarbose (B) and orlistat (D) were used as positive controls.

The inhibition kinetics of acarbose and kratom extracts against α-glucosidase were
analyzed using the Lineweaver–Burk plots of the inverted values of velocity (1/V) versus
the inverted values of substrate concentration (1/[S]), which are presented in Figure 4A–D.
The drug acarbose showed the intersection of the lines on the ordinate, indicative of mixed-
type inhibition. The results showed that km 0.3 mM and Vmax (28 µmol/min/mg) were
consistent with a previous report [39]. The Ki of each mode was evaluated (Figure 4A,B).
The intersection on the abscissa yielded a Ki value of acarbose (0.28 mM), indicating mixed-
type inhibition. Mitragynine was present at concentrations of 100, 200, and 300 µM with a Ki
value of 0.10 mM (Figure 4C,D). These results suggest that mitragynine is a noncompetitive
inhibitor of this enzyme (Table 5).
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Figure 4. Lineweaver–Burk plots of α-glucosidase (A–D) and pancreatic lipase (E–H) in the presence
and absence of kratom extracts, mitragynine, and positive controls (acarbose and orlistat).

Table 5. Kinetic parameters in α-glucosidase and pancreatic lipase in the presence of mitragynine
and positive controls.

Inhibitors
α-Glucosidase Pancreatic Lipase

Ki (mM) Mode Ki (µM) Mode

Mitragynine 0.10 noncompetitive 14.94 competitive
Acarbose 0.28 mixed-type - -
Orlistat - - 0.24 competitive
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3.4. Pancreatic Lipase Inhibition Activity

The kratom leaf extracts were subjected to pancreatic lipase inhibitory activity with
4MUO as the substrate evaluation. Each kratom extract was initially treated at 0–100 µg/mL
(Table 4). The results revealed that the ethanol extract exhibited strong inhibition of lipase
(IC50 14.15 ± 1.71 µg/mL), followed by the methanol extract (IC50 28.38 ± 2.34 µg/mL)
and aqueous extract (IC50 41.43 ± 3.32 µg/mL), but the potency was lower than that of
orlistat (IC50 0.42 ± 0.05 µg/mL), which was a positive control (Figure 3C,D). In addition,
we found that the IC50 value of mitragynine was 30-fold higher than that of orlistat. In
experiments on the kinetics parameter of lipase with 4MUO as the substrate, the Km and
Vmax values were determined to be 0.45 ± 0.01 mM and 58 nmol/min/mg, respectively.
The Ki values of orlistat and mitragynine were determined. The intersection on the abscissa
yielded a Ki value of orlistat (0.24 ± 0.03 µM) and mitragynine (14.94 ± 0.29 µM). These
observations suggested that both orlistat and mitragynine were competitive inhibitors of
the lipase enzyme (Table 5), but mitragynine was shown to have weaker inhibition than
that of orlistat (Figure 4E–H).

3.5. The Combined Inhibitory Effect of Kratom Extracts and Mitragynine on α-Glucosidase Activities

The mode of inhibition between acarbose and mitragynine on the α-glucosidase en-
zyme was as described earlier. We hypothesized that acarbose and mitragynine might have
synergist effects. The inhibitory effects of kratom and its combination with α-glucosidase
are shown in Figure 5. The concentration of acarbose in the range of 0–15 mM was com-
bined with the IC50 values of kratom extracts and mitragynine. The results showed that the
IC50 of kratom extracts combined with acarbose was lowered almost two-fold compared
with that of acarbose alone. Interestingly, combination treatments with mitragynine at
the concentrations of 200 and 300 µM decreased IC50 values compared with that of mixed
kratom extracts. However, 100 µM of mitragynine showed less potency than that of kratom
extracts. Thus, the results indicated that mitragynine in kratom is a major constituent for
reducing blood glucose as well as improving the efficiency of acarbose, which is a reference
standard for glucose-lowering drug.
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4. Discussion

M. speciosa or kratom contains more than 40 identified bioactive compounds including
indole alkaloids, flavonoids, triterpenoids, saponins, and glycosides. These compounds
have been described to have antioxidant, anti-inflammatory, antibacterial, antiproliferative,
and analgesic activities by several studies [26,28,29,40]. In this study, the presence of
phenolic, flavonoid, and alkaloid compounds in our kratom extracts were confirmed by
TPC, TFC, and TAC, respectively (Table 1). The four major kratom extract constituents
identified by LC-MS/MS included mitragynine, 7-hydroxymitragynine, quercetin, and
rutin (Table 2), which corresponded to the previous studies [26,27]. The amounts of these
four compounds appeared to be different depending on the extraction solvent used (Table 3).
Ethanol, the most common extraction solvent used in maceration, could extract the highest
amounts of all types of compounds, while water extracted the least amount of all the
compounds regardless of the polarities of the compounds. This result could imply that
the polarities of the extracting solvents directly affected the yield of extraction following
the like–dissolve–like principle [41]. Additionally, these data suggest that the water-based
preparation of kratom leaves as a tea or stimulant drink for use as an alternative medicine
for pain relief and diabetes in different cultures, including the Thai culture [25], may not be
effective, as water cannot extract many bioactive ingredients from kratom leaves.

Bioactive constituents of kratom leaves, including mitragynine, are already well-
known for their analgesic activities, primarily via activation of µ-opioid receptors, in which
7-hydroxymitragynine has 16-fold higher analgesic activity than that of mitragynine. [42].
Increasing evidence indicates that kratom extract could be used to treat metabolic syndrome,
i.e., controlling blood glucose and lipid profiles [30–35], even though information about the
underlying molecular mechanisms or targeted molecules, in which bioactive compounds
in kratom leaves exhibit these actions, is limited. There has been only one previous study
that reported the potential of kratom leaf extracts in glucose-lowering effects, in which
the methanolic extract of kratom leaves and the major constituent mitragynine promoted
in vitro glucose uptake to muscle cells via glucose transporter-1 (GLUT-1) [31]. Thus, this
study evaluated whether kratom extracts and the major constituent mitragynine could
inhibit the enzymatic activities of α-glucosidase and pancreatic lipase, which are two of
the most common molecular targets of anti-diabetic agents (i.e., acarbose) and anti-obesity
agents (i.e., orlistat), respectively [5–7]. Inhibiting α-glucosidase results in fewer transfor-
mations of the oligosaccharides and disaccharides to glucose, which plays an important
role in controlling the postprandial blood glucose levels of diabetics and keeping the blood
glucose levels normal by delaying the digestion of carbohydrates and diminishing the ab-
sorption of monosaccharides [43], meanwhile, the suppression of pancreatic lipase activity
reduces the breakdown of dietary triglycerides into free fatty acids and glycerol and, thus,
helps lower blood triglyceride levels [12].

Among the three different kratom leaf extracts, ethanolic extract showed the strongest
inhibitory effects toward both α-glucosidase and pancreatic lipase, followed by the methano-
lic and aqueous extracts (Table 4). It appeared that these trends of inhibition also corre-
sponded to the amounts of the identified four major bioactive compounds that were identi-
fied in kratom extracts, which were highest in ethanolic extracts, followed by methanolic
and aqueous extracts. Therefore, our results suggested that the highest inhibitory activities
of the ethanolic extract were attributed to the presence of the four main compounds, mi-
tragynine, 7-hydroxymitragynine, quercetin, and rutin, which were present in the highest
amounts compared to the methanolic and aqueous extracts. Interestingly, it should be noted
that all the kratom extracts outperformed the anti-diabetic agent acarbose, which is well
known as an α-glucosidase inhibitor, to inhibit α-glucosidase activity [9]. Our discovery
could primarily imply that kratom extracts could be used for lowering blood glucose levels
by inhibiting the α-glucosidase enzyme. However, this was not a similar case for the inhi-
bition, in which the kratom extracts appeared to inhibit pancreatic lipase activity 30-fold
compared to inhibition by the well-known drug inhibitor orlistat [13]. These compounds in
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the kratom extracts could act synergistically for the activation or downregulation of some
key pathways [44].

To further investigate whether the major constituent mitragynine mainly contributed
to the inhibition of both α-glucosidase and pancreatic lipase, the purified mitragynine
compound was also used in enzymatic assays and the determination of inhibition kinetics.
We found that mitragynine exhibited an approximately 3.5-fold stronger inhibitory effect
toward α-glucosidase than that of acarbose (Table 5). However, mitragynine appeared to
exhibit weaker inhibition toward pancreatic lipase when compared to the known inhibitor
drug orlistat judging by double-reciprocal plots (Figure 4A–H), mitragynine inhibited
α-glucosidase in a noncompetitive mode with a Ki value of 0.10 mM, whereas the known
inhibitor drug acarbose inhibited α-glucosidase by a mixed-type inhibition mode with
a Ki value of 0.28 mM. In contrast, both mitragynine and the known inhibitor drug orli-
stat inhibited pancreatic lipase in a competitive mode, in which the Ki of mitragynine
was approximately 62.5-time higher than that of orlistat (Ki = 14.94 ± 0.29 µM versus
Ki = 0.24 ± 0.03 µM, respectively). This finding suggested that mitragynine exhibited rela-
tively weak inhibition toward pancreatic lipase and could not be effective for use in obesity
management via lowering blood triglyceride levels. The orlistat molecule comprises several
aliphatic chains that could span over the active site of the pancreatic lipase enzyme [45].
However, the relatively more rigid molecular structure of mitragynine may not fit well into
the active site of pancreatic lipase, resulting in compromised inhibitory activities. Based on
molecular docking, several previous studies have predicted that flavonoids with subclasses
of flavones, flavanones, and chalcones could be potential candidate compounds for the
effective inhibition of pancreatic lipase [46]. Further work will be conducted to investigate
whether the other bioactive compounds in kratom leaves could exhibit anti-diabetic and
anti-obesity properties.

It has been hypothesized that the two inhibitors with different modes of inhibition
could contribute synergistically to each other (to the inhibition of α-glucosidase). Therefore,
we investigated whether this postulation was correct by performing synergistic inhibition
assays. When mitragynine was added to the enzymatic reactions in which acarbose was
also present, a synergistic effect could be observed as the IC50 value of the compound
mixture was lower than that of acarbose alone. Therefore, our results have reported for
the first time the potential of kratom leaf extracts and the major constituent mitragynine
for use as herbal medicinal therapies for diabetes. In addition, our information could
primarily provide healthcare professionals with significant notes on the potential of the use
of kratom in combination with the anti-diabetic agent acarbose for more effective control of
blood glucose levels in patients with diabetes and can increase the knowledge [47] of using
kratom in combination with bioactive substances and medicines.

5. Conclusions

Kratom leaves are known to be rich sources of alkaloids, flavonoids, and phenolic
compounds, and our study found that the ethanolic extraction of kratom leaves produced
the highest amount of these compounds compared with that of methanolic and aqueous
extractions. The extracted compounds from kratom leaves also exhibited inhibitory activity
against α-glucosidase and pancreatic lipase, and the highest inhibition was found from
the ethanolic extract. Mitragynine, one of the major alkaloid constituents in kratom leaves,
was found to have stronger inhibitory activity against α-glucosidase than that of the well-
known anti-diabetic drug acarbose. We deduced that mitragynine is a main component for
the inhibition of α-glucosidase in kratom leaves since the combination of acarbose with
mitragynine showed a higher inhibitory effect than that of acarbose combined with kratom
leaf extracts. In addition to the mentioned effect against α-glucosidase, the ethanol extracts
of kratom leaves and mitragynine were revealed to possess repressive activity against
pancreatic lipase. Our research suggests that kratom leaves, particularly mitragynine, have
promising potential for use in therapeutic and protective applications in diabetic patients
as herbal supplements in conjunction with standard pharmacological approaches.
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