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Abstract

We refine and clinically parameterize a mathematical model of the humoral immune

response against Shigella, a diarrheal bacteria that infects 80-165 million people and kills

an estimated 600,000 people worldwide each year. Using Latin hypercube sampling and

Monte Carlo simulations for parameter estimation, we fit our model to human immune data

from two Shigella EcSf2a-2 vaccine trials and a rechallenge study in which antibody and

B-cell responses against Shigella0s lipopolysaccharide (LPS) and O-membrane proteins

(OMP) were recorded. The clinically grounded model is used to mathematically investigate

which key immune mechanisms and bacterial targets confer immunity against Shigella

and to predict which humoral immune components should be elicited to create a protective

vaccine against Shigella. The model offers insight into why the EcSf2a-2 vaccine had low

efficacy and demonstrates that at a group level a humoral immune response induced by

EcSf2a-2 vaccine or wild-type challenge against Shigella0s LPS or OMP does not appear

sufficient for protection. That is, the model predicts an uncontrolled infection of gut epithelial

cells that is present across all best-fit model parameterizations when fit to EcSf2a-2 vaccine

or wild-type challenge data. Using sensitivity analysis, we explore which model parameter

values must be altered to prevent the destructive epithelial invasion by Shigella bacteria and

identify four key parameter groups as potential vaccine targets or immune correlates: 1) the

rate that Shigella migrates into the lamina propria or epithelium, 2) the rate that memory B

cells (BM) differentiate into antibody-secreting cells (ASC), 3) the rate at which antibodies

are produced by activated ASC, and 4) the Shigella-specific BM carrying capacity. This

paper underscores the need for a multifaceted approach in ongoing efforts to design an

effective Shigella vaccine.
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Introduction

Shigella, a dysentery-causing bacterial pathogen in the same family as Escherichia coli, causes

an estimated 80-165 million dysentery infections and kills an estimated 600,000 people world-

wide every year, with the highest prevalence in developing countries [1, 2]. Treatment of shig-

ellosis has become increasingly difficult with the spread of antibiotic resistance in Shigella.

Furthermore, no vaccine has been licensed to prevent Shigella infections despite decades of

clinical trials; difficulties in Shigella vaccine design include scarce, imperfect animal models

and an incomplete understanding of how the immune system successfully neutralizes a Shi-
gella infection. Identifying the immunological correlates of protection—the immune system

components that either prevent or correlatively indicate the prevention of shigellosis symp-

toms—has been declared perhaps the most crucial step for accelerating vaccine design and yet

continues to prove elusive [3, 4].

Shigella infections occur via fecal-oral transmission [2]. Upon ingestion of contaminated

food or water, the bacteria travels to the gut and crosses from the lumen into the lamina pro-

pria (LP, just inside the gut lining) via host M cells; from the basolateral side of the epithelial

lining, Shigella can enter and spread through epithelial cells and induce the most severe shigel-

losis symptoms [5–7]. This combination of intracellular and extracellular stages requires a

multifaceted immune response for clearance after a Shigella infection has established. Clear-

ance of intracellular bacteria likely requires the activation of cytotoxic T-cells and T-cell-

derived cytokines, yet the role of cell-mediated immunity (CMI) in protection from Shigella
is largely unknown [6, 8–16]. In this paper, we do not evaluate CMI responses and thus our

model investigates the humoral, antibody-based effects of a Shigella vaccine with a goal not

only to eradicate the bacteria from the gut lumen and lamina propria but also to prevent Shi-
gella from entering epithelial cells. Vaccine targets in past Shigella vaccine candidates include

lipopolysaccharide (LPS) and O-membrane proteins (OMP) on the bacterial surface as well as

protein components of the bacteria’s epithelial entry machinery such as IpaB and MxiH [3,

17]. Studies suggest that serum immunoglobulin G (IgG) targeting LPS and antibody secreting

cells (ASC) that secrete anti-LPS immunoglobulin A (IgA) correlate with Shigella protection

[3, 6, 18–20]. However, whether anti-LPS antibodies or ASC can be sufficient for protection

remains unknown, as does which immune factors paired with which bacterial targets induce

the most effective anti-Shigella response. We use mathematical tools to help elucidate these key

relationships.

Mathematical models of immune responses to viruses and some bacteria are increasingly

common (e.g., [21–26]), and a few mathematical studies have examined in-host pathogen

interactions with vaccines (e.g., [27, 28]). Our 2013 paper [29] introduced the first mathemati-

cal investigation of the immune response against Shigella; with it, we established a foundational

mathematical framework for identifying key bacterial and immune vaccine targets [29]. That

model used delay differential equations to capture the interactions between Shigella and the

humoral immune response composed of antibodies (Ab), antibody-secreting cells (also known

as plasma cells), and memory B cells (BM). One-day delays were incorporated into the equa-

tions to mimic the time delay from antigenic activation of naive B cells to the production of

new ASC or BM. That first model was parameterized with rate values from the literature, as a

more thorough parameterization with clinical data was beyond the scope of the paper. Our

modeling results predicted that an anti-LPS vaccine would be ineffective at preventing shigel-

losis symptoms without a massive boost in antibody, ASC, and/or BM numbers [29].

In this paper, we clinically parameterize our mathematical model by fitting the model to

clinical human data from three Shigella vaccine and challenge trials in the 1990s. The model is

fit to average immune levels within trial groups, and thus protection is evaluated on a group
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rather than individual level. We use Latin hypercube sampling, least squares optimization, and

Monte Carlo simulations to explore the relevant multi-dimensional parameter space and to

identify best-fit parameter value combinations. We also update our mathematical model intro-

duced in [29] with key structural changes. Most notably, we use ordinary instead of delay

differential equations for numerical efficiency while carrying out Monte Carlo runs during

parameter estimation. We also directly include memory B cell stem-like activity (that is, inter-

mittent asymmetric division of BM to maintain the BM pool) to counteract the degree of mem-

ory cell depletion as BM differentiate into ASC that was observed with the first model, which

assumed a baseline logistic BM growth rate and then only purely symmetric differentiation of

BM into ASC. After comprehensive clinical parameterization, we perform identifiability analy-

sis and use numerical sensitivity analysis to identify the few critical parameter values that

govern the clearance and severity of Shigella infections. With these, we make model-based pre-

dictions about which biological interactions might—and which biological interactions likely

do not—correlate with protective immunity against Shigella. We find that antibody-based vac-

cines targeting Shigella0s outer membrane components such as LPS and OMP are unlikely to

elicit sufficient immunity for protection at a group level except possibly with major boosts in

particular immune parameters, which we identify. Our modeling suggests secondary humoral

immune targets upon which to focus in future vaccine development efforts. These include 1)

the rate that Shigella migrates into the lamina propria or epithelium, 2) the rate that BM differ-

entiate into ASC, 3) the rate at which antibodies are produced by activated ASC, and 4) the Shi-
gella-specific BM carrying capacity (that is, the number of Shigella-specific BM at homeostasis

between infections). Future modeling and vaccine efforts could also examine the efficacy of

CMI and other immune targets not directly measured in these clinical studies and thus not

included in the present model.

Methods

Data

We use clinical data supplied and published by our collaborators from three human clinical

studies in the 1990s: two vaccine clinical trials followed by a rechallenge study [30–34]. The

two vaccine trials (called the EcSf2a-2 studies in this paper or ET in labels) tested the efficacy

of EcSf2a-2, a hybrid E. coli-Shigella flexneri 2a vaccine candidate [30–32]. This clinical trial

separated volunteers into control and vaccinated groups, the latter of which were given the

EcSf2a-2 vaccine. All volunteers were later challenged with 1,400 colony forming units (cfu) of

2457T wild-type (wt) Shigella. Volunteers were tracked for a month and time-course data were

gathered at days 0, 7, and 10 for ASC of IgA- and IgG-type and at days 0, 14, 21, and 28 for

antibodies—specifically, serum IgA and serum IgG directed at LPS and OMP in Shigella0s
outer membrane. In the EcSf2a-2 vaccine studies, 14 volunteers received placebo while 45 vol-

unteers received the vaccine in three or four doses. All volunteers then received the wild-type

challenge with 2457T Shigella. We aggregate the respective volunteers in the EcSf2a-2 trials to

form the placebo+wt primary infection data, which we label ET: 2457Tx1 for the EcSf2a-2

studies with no vaccine and one challenge of 2457T Shigella, and separately the vaccine+wt sec-

ondary infection data, which we label ET: EcSf2a-2x1, 2457Tx1 for the EcSf2a-2 trials with one

round of EcSf2a-2 vaccine and then one challenge of 2457T vaccine. (One vaccine round

includes all three or four doses, as applicable.) We fit our model against the mean ASC and

antibody levels for each group. Fig 1 shows clinical measurements of antibodies and ASC tar-

geting LPS (a–d) or OMP (e–h) during the challenge portion of the clinical trial. The trials

demonstrated efficacy in 27-36% of volunteers but were not considered sufficiently efficacious

on average at the group level.
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Fig 1. Data from EcSf2a-2 clinical trials and 2457T rechallenge study [30–32, 34]. Measured antibody (serum IgA,

serum IgG), IgA-secreting ASC (A-ASC), and IgG-secreting ASC (G-ASC) directed against lipopolysaccharide (LPS,

left) and O-membrane proteins (OMP, right) are given over time for each trial. We convert measured specific antibody

titers to the number of specific Ab/mL by a factor of 1: 1.204 × 1010 Ab/mL, as described in the text. Measurements

were taken 0, 10, 21, and 28 days after challenge for antibodies and on days 0, 7, and 10 for ASC; displays each day are
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In a follow-up to the EcSf2a-2 trials, 30 volunteers were challenged or rechallenged with

1,400 cfu of 2457T wt Shigella. We call this the 2457T study or 2T in labels. The 19 formerly

immunologically naive individuals who received a 2457T challenge are labeled 2T: 2457Tx1,

for the 2T study with one challenge of wt 2457T Shigella. Six other individuals, labeled 2T:

2457Tx2, had served as controls in the EcSf2a-2 study; these individuals had previously been

challenged with 2457T Shigella without receiving the EcSf2a-2 vaccine candidate and in the

second study were challenged a second time with wt 2457T Shigella. These data sets, also

shown in Fig 1, thus show antibody and ASC levels directed against LPS and OMP both for

formerly naive individuals after a primary infection and for previously exposed individuals

after a secondary wild-type infection. In theory, the latter individuals should exhibit the reacti-

vation of any natural immunity that was established during the primary infection against Shi-
gella, although the level of immunity first established was not necessarily protective. A third

category of 5 volunteers who received the EcSf2a-2 vaccine and challenge in the first trial fol-

lowed by rechallenge in the second study (thus, possibly exhibiting tertiary immunity) are

labeled 2T: EcSf2a-2x1, 2457Tx2 and are not included in this paper’s analysis to avoid mixing

the effects of vaccine-induced versus wt-induced immunity.

Notice in Fig 1 that from primary to secondary immune responses there is in many cases

no statistical rise and often slight declines in the levels of serum Ab and ASC directed against

LPS and OMP. That is, the primary EcSf2a-2 (cyan) and primary 2457T (magenta) study data

from controls who were challenged with wt Shigella are equal to or higher than the corre-

sponding secondary or tertiary exposure data (cyan versus blue, magenta versus red and black)

in many cases. We compare modeling results from parameters fit to the primary infection

data, which predict theoretical increases in secondary immunity, to those fit to both primary

and secondary infection data, which replicate this observed flatness in data. These separate fits

enable us to gain insight into the potential effects of establishing LPS and/or OMP immunity

at or above measured clinical values and also ensure the robustness of our conclusions across

different parameterizations.

It is not known clinically what Ab and/or ASC levels are sufficient for immunity, if any, nor

which targets are most immunologically active or involved in protection from disease [3, 35].

However, the 27-36% efficacy of the EcSf2a-2 trials indicates that measured levels of ASC,

serum IgA, and serum IgG directed against LPS and OMP are not sufficient on average at the

group level to prevent infection in the majority of patients. On the other hand, five of six vol-

unteers who received a second wild-type dose of 2457T in the challenge study (that is, 2T:

2457Tx2) were not strongly symptomatic. It is not known if the mechanisms of protection

were the measured levels of anti-LPS and anti-OMP serum IgA and/or IgG or other unmea-

sured immune components perhaps with different bacterial targets. With this mathematical

model, we investigate this by using only the measured serum IgA and IgG humoral responses

offset to differentiate between trials. Dots represent each individual volunteer’s measured values. Means and standard

deviations are plotted for each trial group. ET denotes data from the EcSf2a-2 vaccine trials whereas 2T denotes the

2457T rechallenge study. EcSf2a-2 indicates the vaccine was given, 2457T indicates wt challenge, and x1 or x2 indicates

once or twice. The five trial groups are the following. ET: 2457Tx1 (cyan): A primary immune response: controls from

the EcSf2a-2 trials who were challenged with wild-type (2457T) Shigella without the vaccine. ET: EcSf2a-2x1, 2457Tx1

(blue): An immune response following vaccination: all volunteers who received the EcSf2a-2 vaccine followed by wild-

type challenge. 2T: 2457Tx1 (magenta): A primary immune response: unvaccinated volunteers for the 2457T

rechallenge study who were challenged once with wild-type 2457T Shigella. 2T: 2457Tx2 (red): A wild-type secondary

immune response: volunteers who first served as controls in EcSf2a-2 trials and were challenged with wild-type 2457T

(but not vaccinated) in that study. These volunteers were then rechallenged with wild-type 2457T Shigella in the 2457T

rechallenge study. 2T: EcSf2a-2x1, 2457Tx2 (black): A secondary immune response after vaccination: volunteers who

received both the EcSf2a-2 vaccine and a 2457T challenge in the first studies. They then were rechallenged with wild-

type Shigella in the 2457T rechallenge study. They have not been included in the model data fits.

https://doi.org/10.1371/journal.pone.0189571.g001

A clinically parameterized mathematical model of Shigella immunity

PLOS ONE | https://doi.org/10.1371/journal.pone.0189571 January 5, 2018 5 / 38

https://doi.org/10.1371/journal.pone.0189571.g001
https://doi.org/10.1371/journal.pone.0189571


without any additional immune action and examine in silico whether epithelial infection is suf-

ficiently prevented (indicating hosts with few-to-no symptoms).

To convert clinical data to units more readily usable in the mathematical model, we

assume the following. To convert ASC and BM per million peripheral blood mononuclear

cells (PBMC) to absolute numbers of cells, we note that there are roughly 106 PBMC per mL

of whole blood [36] and roughly 5,000 mL of blood in a human body [37]). Thus, we multiply

measured ASC or BM cells per million PBMC by a factor of 5,000 to obtain an estimate of cell

numbers. We do not have any established standard method to convert our serum IgA and

IgG titers to number of antibodies per mL. Thus, we use the following approximation from

titer to antibodies per milliliter (Ab/mL) where Ab here is the number of antibodies. IgA and

IgG each have a molecular weight of 150 kDa (kg/mol) per Ab [37]. In our data, the measure-

ment of the specific antibodies was quantified and expressed as calculated endpoint titers.

However, using a parallel standard curve with known concentration of purified IgG or IgA

in the same setup, we approximate that a titer of 1 approximately represents 3 ng/mL of anti-

body (unpublished data). Taking these factors together with Avogadro’s number, we convert

our specific antibody titers to the number of specific Ab/mL by a factor of 1: 1.204 × 1010 Ab/

mL.

Mathematical model

We update our original model in [29] to a system of 12 ordinary differential equations that

capture interactions between bacterial and humoral immune dynamics. Biological and mathe-

matical reaction diagrams corresponding to the updated model are given in Fig 2. Model

parameter definitions are listed in Table 1. The model focuses on humoral immune agents,

specifically Ab, ASC, and BM. We include IgG- and IgA-type immunity for all Ab, ASC,

and BM. For simplicity we do not include immunoglobulin M (IgM) production or affinity

maturation/somatic hypermutation prior to IgA/IgG secretion, although we consider somatic

Fig 2. Key interactions between Shigella and the host’s humoral immune system in the gut. Bacterial pathogenesis (blue) plus antibody and

B cell dynamics (red) seen in vivo (left) are translated to a mathematical reaction diagram (right). The most severe symptoms result when

Shigella infects epithelial cells. Prior to this, Shigella can be removed by antibodies (lumen IgA or lamina propria IgG targeting Shigella0s outer

membrane) or engulfed by macrophages, from which it escapes or is destroyed. All modeled components also degrade naturally; degradation

arrows have been omitted for simplicity. Mathematical abbreviations: S: Shigella, A: IgA, G: IgG, M: BM, P: ASC, I: in Lamina Propria, E:

Luminal, C: Epithelial, N: Engulfed.

https://doi.org/10.1371/journal.pone.0189571.g002
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hypermutation during interpretation of our sensitivity analysis results. We also do not include

potential contributions from cytotoxic T-cells. While cell-mediated immunity could help to

combat intracellular Shigella within the epithelium, the exact role and importance of effector

cell-mediated activity in fighting Shigella infections remains to be well characterized; thus, any

Table 1. Parameter definitions.

Param Range, Units Description Reference, Note

σN (0.01,1)/d Shigella reproduction rate in innate immune cells high but brief [38]

σC 0.1/d Shigella reproduction rate in epithelial cells high [39, 40] (smaller for numerical stability w/o

CTLs)

δSE 0.0001/d Natural death rate of Shigella in lumen minimal

δSI 0.0001/d Natural death rate of Shigella in LP minimal

δSN (0.1,1)/d Death rate of Shigella in macrophages 1 − μN
δSC 0.0001/d Natural death rate of Shigella in epithelium minimal

δAE (0.01,0.5)/d Natural decay/removal rate of IgA in lumen 3.5 d hl (from δG)

δAI (0.01,0.5)/d Natural decay/removal rate of IgA in LP 3.5 d hl (from δG)

δG (0.01,0.5)/d Natural decay/removal rate of IgG in LP 3.5 d hl (18 d hl [41]-localiz.)

δPA 0.2/d Natural death rate of IgA- type ASC 3 d hl (early pc) [41–43]

δPG 0.2/d Natural death rate of IgG-type ASC 3 d hl (early pc) [41–43]

μE (0.1,1)/d Migration rate of Shigella from lumen to LP low (0.0029% of 108 bact/mL) in first 2h [44]

μI (0.1,1)/d Migration rate of Shigella from LP to epithelium

μNI (0.5,0.9)/d Rate Shigella in LP are engulfed by macrophages fast

μN (0.5,0.9)/d Rate Shigella escape out of macrophages into LP fast (macs apoptose in 8h) [38]

ω (0.01,1)/d Migration rate of IgA from LP to lumen 20% of total IgA to lumen (from nI)
nE (2E3,2E4) Ab/mL/cfu Number of IgA that neutralize a luminal bacterium

nI (2E3,2E4) Ab/mL/cfu Number of IgG that neutralize a LP bacterium [45]

βA (5E4,5E7) (Ab/mL)/pc/d Production rate of IgA by IgA-type ASC 105/sec [41, 46–49]

βG (5E4,5E7) (Ab/mL)/pc/d Production rate of IgG by IgG-type ASC 105/sec [41, 46–49]

ϕ1 (0.001,0.1)/d Antigen-independent differentiation rate of BM into ASC

ρ (0.001,0.1)/d Antigen-independent cycling rate of BM

ξ1 (1,1E4) pc/mc Number of ASC generated by background BM proliferation

ξ2 (5E2,5E4) pc/mc Number of ASC generated by proliferating antigen-activated BM

α (1E-16,1E-13)/(Ab/mL)/d Rate antibodies neutralize Shigella in lumen

γ (1E-16,1E-13)/(Ab/mL)/d Rate antibodies neutralize Shigella in LP

ϕ2A (0.001,1)/cfu/d Antigen-dependent rate function for IgA-type BM differentiation into ASC

ϕ2G (0.001,1)/cfu/d Antigen-dependent rate function for IgG-type BM differentiation into ASC

kA (5E2,5E5) mc IgA-type BM carrying capacity

kG (5E2,5E5) mc IgG-type BM carrying capacity

λP (1E-2,1E4) pc/cfu/d Creation rate of new ASC from naive B cells All λ are set equal.

λM (1E-2,1E4) mc/cfu/d Creation rate of new BM from naive B cells

Υ (0.05,1) Percent of BM differentiations that do not create new BM via stem-like

activity

Delay 3.5 d Initial delay until naive B cell activation in an infection

SE(0) 1,400 cfu Initial number of luminal Shigella Clinical trials [30–32, 34]

Parameters of the model are given along with their descriptions and ranges for Latin hypercube sampling. Parameters with fixed numbers rather than ranges are kept

constant and not fit. Applicable references or notes on the range values are given. Ranges for uncited parameters are chosen to be broad, subject to plausibility and

numerical stability. The initial condition for establishing a (luminal) Shigella infection is also given. Other initial conditions are taken from the clinical studies or

calculated disease-free equilibria. Abbreviations: d: day, Ab: antibodies, mL: milliliter, cfu: colony-forming units, pc: plasma cells (ASC), mc: BM cells, hl: half-life, LP:

lamina propria.

https://doi.org/10.1371/journal.pone.0189571.t001
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mathematical modeling predictions regarding CMI activity against Shigella would be difficult

to experimentally corroborate or implement at this time [3].

Our 2013 model [29] used delay differential equations to capture the one-day time delay

from naive B cell activation to the production of functional ASC or BM. However, numerical

discretization and simulation of these delay differential equations are slow and often stiff due

to wide biologically relevant parameter ranges; for numerical efficiency during Monte Carlo

simulations for parameter estimation and data fitting, we eliminate the delays and instead use

ordinary differential equations. This decision is supported by sensitivity analysis of our origi-

nal delay model [29], which suggested that these delays have little effect on peak bacterial or

antibody magnitudes. By using the best-fit parameter tuples from clinical parameterization of

this paper’s updated non-delay model to parameterize and simulate a delay differential equa-

tion version of our model, we have confirmed that the one-day delayed model produces visu-

ally identical simulations to those in this paper (not shown). Despite eliminating these built-in

naive cell activation delays, we continue to externally numerically enforce an initial 3.5-day

delay after infection begins during which bacteria and any previously established immunity

interact without yet eliciting new antigen-induced B cell formation. This time window does

not affect pre-existing immunity or innate immune cells such as macrophages, which are mod-

eled indirectly via the engulfed Shigella population.

Our model tracks bacterial populations in the gut lumen, epithelium, and lamina propria

after ingestion of contaminated food or water. As an infection begins, Shigella in the lumen,

denoted SE, crosses the epithelial barrier at rate μE via the normal activity of host M cells,

which shuttle material from the lumen across the epithelium to the LP. Upon reaching the LP,

Shigella, now SI1, is often engulfed at rate μNI by nearby innate immune cells such as macro-

phages that serve as a first line of host defense by engulfing and destroying invaders. However,

engulfed Shigella, SN, typically avoids destruction and instead proliferates at rate σN inside of

macrophages. While inside, Shigella is subject to a small rate δSN of macrophage killing but is

safe from antibody targeting. After Shigella breaks out of the macrophage at rate μN, becoming

SI2, we assume the bacterium is sufficiently distant from M cells and other macrophages to

have no likelihood of re-engulfment. We noted in [29] that separate SI1 and SI2 LP populations

are mathematically necessary to prevent macrophages from becoming a chronic reservoir for

Shigella infections. However, either bacterial population can infect epithelial cells at rate μI,
and once inside, they survive as SC, proliferate at rate σC, and move freely between epithelial

cells without interference from innate or humoral immune defenses. Substantial epithelial cell

destruction due to this cellular invasion is primarily responsible for inducing the most severe

symptoms of shigellosis [50].

We summarize the bacterial dynamics with the following equations.

dSE
dt
¼ � dSESE � mESE � aAESE ð1Þ

dSI1
dt
¼ � dSISI1 þ mESE � mNISI1 � mISI1 � gGSI1 ð2Þ

dSN
dt
¼ sNSN � dSNSN þ mNISI1 � mNSN ð3Þ

dSI2
dt
¼ � dSISI2 � mISI2 þ mNSN � gGSI2 ð4Þ
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dSC
dt
¼ sCSC � dSCSC þ mIðSI1 þ SI2Þ ð5Þ

The δ terms account for death due to natural causes, spatial washout, or macrophage activ-

ity; Shigella removal via antibody is modeled separately.

Interactions between bacteria and the immune system occur when Shigella becomes bound

by IgA in the lumen (written AE) or IgG in the LP (denoted G) at rates α and γ, respectively.

Although ASC initially produce IgM before somatically hypermutating and class switching to

produce IgA and IgG, for simplicity our model only includes IgA, the most abundant and

active antibody isotype at mucosal surfaces, and IgG, the most abundant antibody in serum

[37, 51–54]. We focus on IgA and IgG antibodies that recognize and bind specifically to Shi-
gella outer membrane components, such as LPS or OMP, that are continuously displayed and

hence subject to antibody targeting whenever Shigella exists outside of host cells. Equations

governing antibody dynamics can be found below. When sufficient numbers (nE or nI, respec-

tively) of IgA or IgG bind to a Shigella bacterium, that bacterium is removed or destroyed. We

use mass action interaction terms as a null model to describe bacterial interaction with and

removal via antibodies; more complex functional forms are not necessary to match our clinical

data. Adding saturating interaction terms would slow immune control of Shigella as antibodies

approach a maximum capacity for bacterial neutralization; in comparison, model bacterial

dynamics as written could underestimate Shigella numbers and may be a best-case scenario.

The IgG antibody response to Shigella in the LP is largely mediated by IgG-secreting ASC

(plasma cells), PG, and upstream IgG-type memory B cells, MG. Similarly, IgA antibodies are

created in the LP by IgA-secreting ASC, PA, which can be derived from IgA-type BM cells, MA,

or naive B cells (not explicitly modeled); IgA in the LP, AI, then shuttles across the epithelial

barrier at rate ω to the lumen where IgA primarily functions, becoming AE. Irrespective of

infection state, BM differentiate at baseline rate ϕ1 to produce ξ1 ASC, which constantly secrete

antibodies at rate βA or βG. However, the presence of bacteria within the lamina propria stimu-

lates naive B cells to create new ASC at rate λP and new BM cells at rate λM while also antigeni-

cally stimulating additional BM differentiation to create ξ2 new ASC at rate ϕ2A or ϕ2G. The

creation of ASC from BM is lessened slightly by Υ and Υ� as described below.

These immune dynamics are captured with the following model equations, which together

with the bacterial dynamics constitute the full mathematical model.

dAE

dt
¼ � dAEAE þ oAI � nEaAESE ð6Þ

dAI

dt
¼ � dAIAI � oAI þ bAPA ð7Þ

dG
dt
¼ � dGGþ bGPG � nIgGðSI1 þ SI2Þ ð8Þ

dPA

dt
¼ � dPAPA þ lPðSI1 þ SI2Þ þ U

�
ðx2�2AðSI1 þ SI2Þ þ x1�1ÞMA ð9Þ

dPG

dt
¼ � dPGPG þ lPðSI1 þ SI2Þ þ U

�
ðx2�2GðSI1 þ SI2Þ þ x1�1ÞMG ð10Þ
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dMA

dt
¼ r 1 �

MA

kA

� �

MA þ lMðSI1 þ SI2Þ � U �2AðSI1 þ SI2Þ þ �1ð ÞMA ð11Þ

dMG

dt
¼ r 1 �

MG

kG

� �

MG þ lMðSI1 þ SI2Þ � U �2GðSI1 þ SI2Þ þ �1ð ÞMG ð12Þ

In the absence of an infection, BM cell generation, death, and differentiation rates must bal-

ance to establish an equilibrated immune state with a steady nontrivial (nonzero) memory

population. To prevent the mathematical system from becoming neutrally stable at this equi-

librium, we assume BM follow logistic growth dynamics with growth rate ρ and carrying

capacity κA or κG. The carrying capacity is the maximum sustainable population of antigen-

specific BM; that is, it is the size of the Shigella-specific BM population at homeostasis between

infections.

In our 2013 paper [29], we found that raising the BM carrying capacity could greatly reduce

bacterial load and thus suggested that the BM carrying capacity be investigated further as a

potential correlate of Shigella immunity. If BM numbers are a limiting factor in establishing

Shigella protective immunity, as indicated by the near-depletion of the BM population in Figs 2

and 3 of that paper [29], sustained BM levels might indeed be crucial. However, the observed

depletion could be an artifact of the modeling assumption that BM symmetrically divide and

differentiate to form ASC if such differentiation outpaces the assumed logistic growth of BM.

Since BM also sometimes act as stem-like cells and divide to replenish their own population

[55–57], we update the model to include this mixed multiplication strategy. Specifically, all

memory differentiation rates are modulated by the percentage Υ or Υ�, which are defined as

follows. We assume that BM can symmetrically differentiate to produce ξi ASC (where i = 1 for

antigen-independent differentiation and i = 2 for antigen-dependent differentiation) and that

this symmetric differentiation occurs Υ% (written as a decimal) of memory differentiations.

The remaining 1 − Υ% of differentiations involve a BM asymmetrically dividing to produce

one BM replacement and a plasma cell progenitor that immediately differentiates and divides

to produce half as many (that is, ξi/2) ASC. The temporary progenitor cell is not explicitly

modeled. Hence, overall a total of Υ% of old BM are lost at the rates given in the model as a

total of Υ�ξi ASC per BM are gained, where

U
�
¼

1 � U

2
þ U

� �

:

The degree of depletion observed might depend upon the balance between differentiation

and self-replication established by Υ, and thus we examine the robustness of modeling results

to a range of values for this parameter.

Because we do not examine cytotoxic T-cell interactions with intracellular Shigella, we also

do not model cell-to-cell spread or epithelial cell destruction directly but rather assume high

values for SC indicate substantial epithelial cell destruction and severe illness [50]. We also

limit our scope to within-host dynamics and do not model any potential bacterial migration

from the epithelium back to the lumen (SC! SE) before transmitting via a fecal-oral route to

another person.

Equilibrium analysis

Bacteria inside the epithelium, SC, are safe from humoral immune targeting and, if present,

self-perpetuate and grow without bound in the model, even while the rest of the system reaches
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equilibrium; a goal of vaccination is to prevent this population from establishing. For equilib-

rium analysis we leave any growing SC population out through quadrature. The remaining sys-

tem of equations yields a trivial equilibrium as well as three nontrivial disease-free equilibria:

IgA-type only, IgG-type only, and one with both IgA- and IgG-type Ab, ASC, and BM. Non-

trivial equilibria represent states in which some level of immunity has been established,

although perhaps not at protective levels. We assume both IgA and IgG immune responses are

solicited and thus concentrate on the joint IgA/IgG nontrivial equilibrium, for which the equa-

tions and parameterized values are given in Table 2.

A positive, stable nontrivial equilibrium is necessary, although perhaps not sufficient, for

establishing immunity to Shigella via vaccine or natural infection. Positivity and stability

Table 2. Nontrivial disease-free equilibrium values.

SE, SI1, SN, SI2, SC AE AI G PA, PG MA, MG

cfu Ab/mL Ab/mL Ab/mL Cells Cells

EcSf2a-2 LPS Study 0 3.1 × 109 3.5 × 109 2.4 × 1012 9,610 20,050

Fit Primary Data 75,146 156,780

2457T LPS Study 0 5.1 × 1010 1.2 × 1011 5.6 × 1011 15,685 19,957

Fit Primary Data 7,647 9,730

EcSf2a-2 OMP Study 0 3.1 × 109 3.5 × 109 2.4 × 1012 9,610 20,050

Fit Primary Data 75,146 156,780

2457T OMP Study 0 2.1 × 109 4.7 × 108 2.7 × 1011 24 933

Fit Primary Data 69 2,668

EcSf2a-2 LPS Study 0 6.0 × 1010 1.4 × 1011 2.2 × 1011 611,620 88,311

Fit Primary and Secondary Data 3,040 439

2457T LPS Study 0 2.0 × 107 1.3 × 107 1.6 × 108 4 73

Fit Primary and Secondary Data 4 71

EcSf2a-2 OMP Study 0 1.8 × 1011 3.5 × 1010 1.7 × 1013 75,926 8,585

Fit Primary and Secondary Data 196,870 22,261

NonzeroTerms AE ¼
o

dAE
AI PA ¼

Υ�x1�1

dPA
MA MA ¼

kAðr � Υ�1Þ

r

AI ¼
bA

dAI þ o
PA PG ¼

Υ�x1�1

dPG
MG MG ¼

kGðr � Υ�1Þ

r

G ¼
bG

dG
PG

Eigenvalues of Jacobian � dPG sN � dSN � mN � dSI � mI �
gbGx1�1kG

dGdPGr
Υ�ðr � Υ�1Þ

at Nontrivial Equilibrium � dG � ðr � Υ�1Þ � dSI � mI � mNI �
gbGx1�1kG

dGdPGr
Υ�ðr � Υ�1Þ

dPA � ðr � Υ�1Þ � dSE � mE �
aobAx1�1kA

dAEðdAI þ oÞdPAr
Υ�ðr � Υ�1Þ

dAE dAI � o

Values of model state variables at the nontrivial disease-free equilibrium for which both IgA and IgG are present are given for the EcSf2a-2 trials or 2457T rechallenge

study data. For each, the model is parameterized with data fit to either primary infection data alone or to both primary and secondary infection data. The positive, stable

nontrivial equilibrium values are given, representing the long-term presence of some immunity, while in the unstable cases, the trivial equilibrium is instead

approached. No positive nontrivial equilibrium was found for parameters that best fit the OMP measurements for the 2457T rechallenge study. The nontrivial

equilibrium is evaluated at the corresponding parameter values given in the other tables. The equations for this nontrivial equilibrium are also given, as well as

eigenvalues of the Jacobian for the linearized model. The equilibria are all positive and the eigenvalues are all negative if the positivity and stability conditions given in

the text are met. These are sufficient, and for positivity necessary, conditions.

https://doi.org/10.1371/journal.pone.0189571.t002
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conditions for maintenance of such a nontrivial steady state can be derived by examining the

eigenvalues of the Jacobian matrix evaluated at the joint IgA/IgG nontrivial equilibrium. These

eigenvalues are given in Table 2. Positivity of the nontrivial equilibrium requires

r � U�1 > 0; ð13Þ

which essentially requires that there be a balance between BM logistic growth and differentia-

tion into ASC; that is, BM must not fully deplete. Stability requires the same condition as posi-

tivity plus that

sN < dSN þ mN : ð14Þ

This requires that the bacterial growth rate inside of macrophages be less than the rate of

bacterial exit so that a chronic or uncontrolled bacterial reservoir is not created inside of mac-

rophages. If stability conditions are satisfied, the nontrivial equilibrium (some immunity) is

approached as a stable sink while the trivial equilibrium (no immunity) is a saddle, as are the

IgA-only and IgG-only nontrivial equilibria. There is a transcritical bifurcation (not shown) at

which the nontrivial IgA/IgG equilibrium becomes negative and switches stability with the

trivial equilibrium.

Model implementation

A necessary condition for long-term immunity is a stable nontrivial disease-free equilibrium

in the mathematical model. Because the biological threshold for sufficient, i.e. protective,

immunity against Shigella is unknown, we explore the protective effects of this nontrivial

immune state via our model. First, however, we find parameter value combinations that best

fit the model to our clinical data using Latin hypercube sampling and a least squares metric as

described below. In the process, we also uncover separate parameter combinations that ensure

versus negate stability of the nontrivial immune state; that is, some parameter combinations

enable some long-term immunity to establish while other combinations establish no long-

term immunity. We numerically investigate the infection dynamics that lead to each. Finally,

we use numerical sensitivity analysis to determine which parameter values do and do not con-

trol bacterial clearance and the establishment of lasting immunity.

We numerically implement infection dynamics in Matlab using a stiff ODE solver (ode15s).

Both primary and secondary infections are simulated so that disease progression from nonim-

mune versus immune initial states can be compared. We initialize the model using as our ini-

tial luminal bacterial level, SE, the Shigella wt or vaccine single-dose levels administered in the

clinical trials and reinfections studies: 2 × 109 cfu for the EcSf2a-2 vaccine and 1,400 cfu for

any wt challenges [30–32, 34]. Both are above the minimum infectious dose of 100-1,000 cfu

[20, 31, 32, 35]. A primary infection is initialized with all other immune and bacterial numbers

initially at 0. If a primary infection fails to establish any lasting immunity, as indicated by an

unstable nontrivial equilibrium for a given parameterization, we initialize a secondary infec-

tion identically to the primary infection. If, on the other hand, the nontrivial IgA/IgG disease-

free equilibrium is stable (with some immunity established), we initialize the secondary infec-

tion with immune numbers set to this disease-free equilibrium and then pulse 1,400 cfu of

luminal Shigella to start the new infection. Thus, our model initialization mimics the Shigella
challenges administered during the clinical studies.

In order to numerically enforce an initial 3.5-day incubation period after infection begins

during which bacteria and any previously established immunity interact without yet eliciting

new antigen-induced B cell formation, the mathematical model’s terms for antigen-dependent

B cell proliferation and differentation are tagged and assigned the value zero for the prescribed
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length of time after initialization of the model simulation, after which these terms switch on

to their nonzero values. Such an activation window has no effect on long-term, equilibrium

immune levels because bacterial levels are zero at all equilibria and hence there is no chronic

antigen induction of immunity. We also investigate how the existence and length of this activa-

tion window affect key short-term dynamics and find that, for instance, epithelial Shigella (SC)

levels vary only slightly for between a 0- and 10-day activation delay (not shown).

Parameter estimation

As described earlier, we have serum IgA, serum IgG, IgA-type ASC, and IgG-type ASC time

series data from both primary and secondary infections. We focus separately on those that tar-

get two bacterial outer membrane components, LPS or OMP, in three different studies, the

two EcSf2a-2 vaccine studies and the wild-type Shigella flexneri 2457T challenge study. For the

EcSf2a-2 versus 2457T studies separately and for each target separately, our parameter estima-

tions simultaneously fit the model to serum IgA, serum IgG, and both ASC types. It is impor-

tant to note IgA was not measured in the gut lumen (i.e., stool) of subjects in these studies, and

serum IgA is used as an indirect estimate of luminal IgA. We ignore time 0 data points in these

fits, as initial measurements cannot always detect low levels of immune components, but we

include all other time points. We initially fit only the primary infection with the hope to use

the secondary infection data for independent model validation. However, since primary and

secondary data from these clinical trials are very similar, as can be seen in Fig 1, the rise in sec-

ondary immunity predicted by primary fits does not often match clinical trends in secondary

responses. Thus, we additionally fit both primary and secondary data together and compare

our results with the primary-only fits to discern general trends between all best fits and to com-

pare immune parameter differences between theorized higher and measured lower secondary

immune response values.

In the absence of experimental measurements for many of our rate parameters, we use

Monte Carlo parameter estimation runs to extensively explore the multi-dimensional param-

eter space of unknown parameter values. Of 33 parameters listed in Table 1, we fix seven

parameters based on established values in the literature and vary the remaining 26, although

some vary together. Tables 3 and 4 give more details. We establish ranges for each parameter,

based on literature searches wherever possible, and keep unknown ranges as broad as reason

and computation time allow. Using Latin hypercube sampling [58, 59], we segment each

parameter’s range into 10 equal sections and randomly sample a value from each section. We

simultaneously sample for all relevant parameters and randomly create a 26-tuple that con-

tains one sampled value for every parameter. To explore a wide range of parameter value

combinations, we repeat this 4,000 times. We then run a numerical simulation of the model

for both primary and secondary infections to determine model dynamics and data-versus-

model distances for each parameter tuple. We use least squares fitting to determine which

parameter tuple best matches our clinical data. In the least squares analysis, we add over the

sums of (ln(data) − ln(model))2 so that the higher order-of-magnitude antibody values do

not mute ASC differences. We save the best-fit tuple and repeat this entire sampling process

25 times to establish a selection of many different parameter combinations that are optimal

within their set. This allows us to identify parameter values that are relatively fixed across all

best-fit tuples versus parameters that vary more widely without significantly affecting the

goodness of fit (S1 Fig in the supporting information). We also look at partial rank correla-

tion coefficients for all of our best-fit cases together to see which, if any, parameters are most

crucial in fitting the model to primary and secondary infection data (Fig 3) [60, 61]. Finally,

a grand Monte Carlo parameter estimation run chooses the single best-fit parameter tuple
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out of the 1,000,000 total sampled tuples for each study (EcSf2a-2 or 2457T) and each target

(LPS or OMP) case.

One pattern we notice is that the best 25 fits in most grand runs generate some best-fit

parameter tuples that correspond with a stable positive nontrivial immune equilibrium and

others that instead have only the trivial equilibrium where immunity is not lasting. This

Table 3. Best-Fit parameter values: Fit primary data only.

Parameter Range and Units Best-Fit Best-Fit Best-Fit Best-Fit Best-Fit Best-Fit Best-Fit Best-Fit Note

EcSf2a-2 EcSf2a-2 2457T 2457T EcSf2a-2 EcSf2a-2 2457T 2457T

LPS LPS LPS LPS OMP OMP OMP OMP

Stable Unstable Stable Unstable Stable Unstable Stable Unstable

σN (0.01,1)/d 0.5173 0.6005 0.2067 0.3748 0.5173 0.6005 0.5641 0.383

σC 0.1/d — — — — — — — —

δSE 0.0001/d — — — — — — — —

δSI 0.0001/d — — — — — — — —

δSN (0.1,1)/d 0.6655 0.4427 0.9858 0.9795 0.6655 0.4427 0.8182 0.853

δSC 0.0001/d — — — — — — — —

δAE (0.01,0.5)/d 0.026 0.0264 0.1966 0.0524 0.026 0.0264 0.0493 0.026

δAI, δG (0.01,0.5)/d 0.308 0.4051 0.0259 0.0178 0.308 0.4051 0.01 0.057 (1)

δPA 0.2/d — — — — — — — —

δPG 0.2/d — — — — — — — —

μE (0.1,1)/d 0.1044 0.5856 0.8407 0.6888 0.1044 0.5856 0.7536 0.514

μI (0.1,1)/d 0.4699 0.9248 0.8058 0.6685 0.4699 0.9248 0.5978 0.969

μNI, μN (0.5,0.9)/d 0.5891 0.4944 0.8956 0.8801 0.5891 0.4944 0.6258 0.557 (2)

ω (0.01,1)/d 0.0227 0.0253 0.0806 0.1816 0.0227 0.0253 0.222 0.113

nE, nI (2E3,2E4) Ab/mL/cfu 67,67 9,955 3,298 9,036 6,767 9,955 3,025 13,986 (3)

βA (5E4,5E7) (Ab/mL)/pc/d 122,111 213,061 844,742 271,928 122,111 213,061 4,532,685 6,229,820

βG (5E4,5E7) (Ab/mL)/pc/d 9,949,617 30,306,492 1,909,672 2,228,489 9,949,617 30,306,492 39,054,816 33,641,791

ϕ1 (0.001,0.1)/d 0.0204 0.0902 0.0016 0.0681 0.0204 0.0902 0.002 0.073

ρ (0.001,0.1)/d 0.046 0.0021 0.0014 0.0067 0.046 0.0021 0.0298 0.003

ξ1 (1, 1E4) pc/mc 5 2,697.9 179.3 3,303.4 5 2,697.9 3.2 3,144.8

ξ2 (5E2,5E4) pc/mc 544 907 1,414 7,571 544 907 3,709 1,058

α (1E-16,1E-13)/(Ab/mL)/d 1.02E-15 1.95E-16 4.01E-16 3.38E-15 1.17E-15 1.95E-16 6.24E-14 2.40E-16

γ (1E-16,1E-13)/(Ab/mL)/d 7.01E-14 9.32E-14 1.10E-15 2.32E-15 7.01E-14 9.32E-14 2.60E-15 8.02E-14

ϕ2A (0.001,1)/cfu/d 0.0018 0.1816 0.0079 0.1796 0.0018 0.1816 0.0574 0.291

ϕ2G (0.001,1)/cfu/d 0.0238 0.0535 0.0017 0.0025 0.0238 0.0535 0.0013 0.019

kA (5E2,5E5) mc 33,146 65,773 21,611 46,902 33,146 65,773 974 527

kG (5E2,5E5) mc 259,192 4,192 10,536 504 259,192 4,192 2,786 2,084

λP (1E-2,1E4) pc/cfu/d 0.01 0.0104 8.2818 0.1596 0.01 0.0104 0.0527 0.065 (4)

λM (1E-2,1E4) mc/cfu/d 0.01 0.0104 8.2818 0.1596 0.01 0.0104 0.0527 0.065 (4)

Υ (0.05,1) 0.8932 0.9327 0.0636 0.3067 0.8932 0.9327 0.6436 0.067

Delay 3.5 d — — — — — — — —

Parameters values for the model are given along with their ranges and best-fit values using primary infection data only. The model is fit to primary infection data for the

EcSf2a-2 trials or the 2457T study using LPS or OMP data separately. For each, the best-fit parameter set is given that produces a stable nontrivial equilibrium (wherein

some immunity is established) versus an unstable nontrivial equilibrium (for which no immunity can establish). Parameters with fixed numbers are kept constant (–)

while those with values were chosen by fitting from the range provided. Each column should be taken together as the best fit; every individual number is not necessarily

the single best-fit value for that parameter. Notes: (1) Lumen Ab: δAI = δG, (2) μNI = μN, (3) nE = nI, (4) All λ are set equal. Abbreviations: LPS: lipopolysaccharide, OMP:

O-membrane proteins

https://doi.org/10.1371/journal.pone.0189571.t003
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matches the analytical observation that there is a transcritical bifurcation at which the nontriv-

ial equilibrium loses stability. To compare the parameter values and model results associated

with a stable versus unstable nontrivial equilibrium, we isolate the best fitting stable nontrivial

equilibrium run and the best unstable nontrivial equilibrium run, in which only the trivial

Table 4. Best-Fit parameter values: Fit primary and secondary data.

Parameter Range and Units Best-Fit Best-Fit Best-Fit Best-Fit Best-Fit Notes

EcSf2a-2 2457T 2457T EcSf2a-2 2457T

LPS LPS LPS OMP OMP

Stable Stable Unstable Stable Unstable

σN (0.01,1)/d 0.8024 0.7524 0.3748 0.6253 0.3826

σC 0.1/d — — — — —

δSE 0.0001/d — — — — —

δSI 0.0001/d — — — — —

δSN (0.1,1)/d 0.7416 0.7275 0.9795 0.7436 0.8527

δSC 0.0001/d — — — — —

δAE (0.01,0.5)/d 0.0479 0.0668 0.0524 0.4125 0.0263

δAI, δG (0.01,0.5)/d 0.4969 0.0225 0.0178 0.1273 0.0569 (1)

δPA 0.2/d — — — — —

δPG 0.2/d — — — — —

μE (0.1,1)/d 0.8481 0.9696 0.6888 0.1319 0.5135

μI (0.1,1)/d 0.9218 0.6723 0.6685 0.9138 0.9685

μNI, μN (0.5,0.9)/d 0.6455 0.5144 0.8801 0.4049 0.5573 (2)

ω (0.01,1)/d 0.0204 0.102 0.1816 0.0213 0.1135

nE, nI (2E3,2E4) Ab/mL/cfu 9,191 13,637 9,036 14,259 13,986 (3)

βA (5E4,5E7) (Ab/mL)/pc/d 119,091 410,585 271,928 2,713,011 6,229,820

βG (5E4,5E7) (Ab/mL)/pc/d 36,708,315 971,487 2,228,489 22,509,577 33,641,791

ϕ1 (0.001,0.1)/d 0.0251 0.0067 0.0681 0.0041 0.073

ρ (0.001,0.1)/d 0.0986 0.0056 0.0067 0.0273 0.0031

ξ1 (1, 1E4) pc/mc 61.3 1.8 3,303 10.2 3,144

ξ2 (5E2,5E4) pc/mc 664 4,882 7,571 768 1,058

α (1E-16,1E-13)/(Ab/mL)/d 2:69E-16 7.96E-15 3.38E-15 1.40E-15 2.40E-16

γ (1E-16,1E-13)/(Ab/mL)/d 9.44E-14 1.12E-16 2.32E-15 7.68E-14 8.02E-14

ϕ2A (0.001,1)/cfu/d 0.8159 0.0135 0.1796 0.0034 0.2909

ϕ2G (0.001,1)/cfu/d 0.1987 0.0013 0.0025 0.1283 0.0191

kA (5E2,5E5) mc 110,919 1,263 46,902 19,136 527

kG (5E2,5E5) mc 551 1,222 504 13,904 2,084

λP (1E-2,1E4) pc/cfu/d 0.0165 0.4733 0.1596 0.0116 0.0649 (4)

λM (1E-2,1E4) mc/cfu/d 0.0165 0.4733 0.1596 0.0116 0.0649 (4)

Υ (0.05,1) 0.7997 0.7898 0.3067 0.6309 0.0667

Delay 3.5 d — — — — —

Parameters values for the model are given along with their ranges and best-fit values using primary and secondary infection data. The model is fit jointly to both

primary and secondary infection data for the EcSf2a-2 trials or the 2457T study using LPS or OMP data separately. For each, the best-fit parameter set is given that

produces a stable nontrivial equilibrium (wherein some immunity is established) versus an unstable nontrivial equilibrium (for which no immunity can establish). No

parameter set was found that produced a stable nontrivial equilibrium for 2457T OMP data or an unstable nontrivial equilibrium for EcSf2a-2 LPS or OMP data when

both primary and secondary infection data are fit. Parameters with fixed numbers are kept constant (–) while those with values were chosen by fitting from the range

provided. Each column should be taken together as the best fit; every individual number is not necessarily the single best-fit value for that parameter. Notes: (1) Lumen

Ab: δAI = δG, (2) μNI = μN, (3) nE = nI, (4) All λ are set equal.

https://doi.org/10.1371/journal.pone.0189571.t004
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equilibrium is biologically relevant and stable. This is done for each bacterial target and for

each clinical study. The grand best-fit parameter tuples in each case are given in Tables 3 and

4, depending upon if the model is fit to primary infection data only or to both primary and sec-

ondary infection data, respectively. Thus, this parameter fitting process gives us a wealth of

outputs to parse for identifying the key biological rates and interactions responsible for confer-

ring or failing to confer protective immunity against Shigella.

We use GenSSI to evaluate which parameters are structurally identifiable versus which are

difficult to uniquely determine [62]. If all state variables are measurable and if the system

launches from a nonimmune state (i.e., the trivial equilibrium), GenSSI finds that δSE, δSI, μE,

μI, μNI, μN, ω, βA, βG, α, γ, λP, and λM are globally structurally identifiable. No parameters were

found to be structurally non-identifiable. However, the identifiability of parameters not listed

here could not be resolved due to computational limitations in calculating sufficient Lie deriv-

atives to parse underlying relationships. If we consider only those state variables for which we

have data to be measurable, then using 12 Lie derivatives in GenSSI only definitively deter-

mines that σC and δSC (parameters governing Shigella dynamics inside of epithelial cells) are

Fig 3. Partial Rank Correlation Coefficients (PRCCs) for all best-fit runs fit to both primary and secondary

infection data calculated together along with their p-values. Parameters are listed on the horizontal axis in the same

order as Table 1. Extreme PRCC values (> 0.5 or< −0.5) and small p-values indicate parameters that are key for how

well the model fits to data. Since all parameters have PRCC values closer to 0 than to ±1, no parameters stand out as

most important for these fits. Despite the small PRCC values, some parameters have a p-value less than 0.05: μI, ξ2, ϕ1,

ϕ2A, ϕ2G; thus, these parameters could have more influence than others in fitting the model to data. Importantly, the

parameters most responsible for fitting the model to data could be different than the parameters most responsible for

preventing an epithelial infection and resulting symptoms in a host; the latter is explored separately with the sensitivity

analysis results.

https://doi.org/10.1371/journal.pone.0189571.g003
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structurally non-identifiable. Lack of identifiability is likely for more parameters in this case

due to our inability to measure bacterial levels internally in humans.

We conduct numerical sensitivity analysis to discern the effects of individual parameters

upon the severity of the Shigella infection, as measured by the number of bacteria within the

epithelium, SC, on day 7 after infection. Every parameter is varied one at a time from the

model parameterized by the overall best-fit parameter tuple. This is done using as baseline the

best-fit tuple for a stable nontrivial equilibrium as well as separately the best-fit tuple for an

unstable nontrivial equilibrium, and results are compared when the model fits primary data

only versus fits both primary and secondary data. Furthermore, we carry out this sensitivity

analysis for each study (EcSf2a-2 or 2457T) and for each bacterial target (LPS or OMP). We

compare general trends across all of these scenarios in order to discern which model parame-

ters are key to establishing or preventing severe epithelial infections across all examined bio-

logical parameterizations. Parameters are varied at minimum across the ranges given in

Table 1 and sometimes across wider ranges. Similar parameters are varied together. The four

parameter groups that we identify as sensitive through this analysis under our strictest protec-

tion threshold are varied across the following ranges: (0.01, 1)/d for μE and μI; (100, 106) ASC/

BM on a log scale for ξ1 and ξ2; (102, 1010) Ab/mL/ASC/d on a log scale for βA and βG; and

(102, 108) BM on a log scale for κA and κG.

The goal of our sensitivity analysis is to identify individual parameters that, when altered,

have the capacity to move the resulting dynamics below a protection threshold. Key parame-

ters that do so are potential immune correlates of protection for Shigella and are highlighted

for continued investigation in the future. However, it is not known what degree of epithelial

invasion by Shigella must be prevented for the host to remain unsymptomatic [3, 35]. When

estimating this threshold for our model, it should be kept in mind that our model does not

incorporate cell-mediated immunity (e.g., T-cells) and thus assumes all bacteria that infect

the epithelium escape immune action; in vivo conditions would likely include a naive CMI

response that could handle a larger number of bacteria invading the epithelium than the

model would suggest. Thus, the protective threshold desired for modeling purposes is the

effective number of bacteria in vivo that can not only infect the epithelium by day 7 but also

escape all immune action without the host becoming symptomatic. In lieu of a known pro-

tective threshold, we examine immune requirements to keep the number of Shigella in the

epithelium below either 10 cfu or 100 cfu by day 7 of infection. (Nevertheless, a model

threshold of 10 cfu translates to a higher actual number of allowed epithelially invasive bacte-

ria if CMI is present.) Whether immunity that keeps epithelial bacteria below 10 or 100 cfu is

protective is not known. Importantly, we will see in our results that the baseline best-fit

parameter tuples do not sufficiently prevent the epithelial infection in any case under any

parameterization as judged by the 10 cfu threshold. Under the 100 cfu threshold, results

will show that three cases would be deemed protective on average with their best-fit parame-

terizations: (1) fitting to EcSf2a-2 LPS primary immunity data with a stable nontrivial

equilibrium, (2) fitting to EcSf2a-2 OMP primary immunity data with a stable nontrivial

equilibrium, and (3) fitting to EcSf2a-2 OMP primary and secondary immunity data with a

stable nontrivial equilibrium. Since the EcSf2a-2 vaccine demonstrated 27-36% efficacy, it

was considered insufficiently protective at the group and population level. This partial effi-

cacy informs the modeling threshold we use as a surrogate for predicting clinical outcome.

Since under a 100 cfu threshold the model would have demonstrated complete protection in

the three aforementioned cases and since such protection was not demonstrated clinically,

we use a 10 cfu threshold as our target level for protection. Nevertheless, we include informa-

tion using both bacterial thresholds to elucidate how modeling results are impacted by

threshold choice.
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Results

Primary infection data fits

When we parameterize the model with primary infection data from the vaccine trials (ET:

2457Tx1) or rechallenge study (2T: 2457Tx1), we observe decent fits of the model to primary

data, as shown in Panels a and d of Figs 4 and 5 for the EcSf2a-2 vaccine and 2457T rechallenge

studies, respectively. This is expected as there are enough unknown parameters that our model

has a high likelihood of fitting the data. Some parameter values can range broadly without sub-

stantially affecting fits, while other best-fit values cluster together within wider ranges. As seen

in S1 Fig, clustered parameter values determine equilibrium stability (σN and δSN), affect bacte-

rial infectivity and Ab migration (μE, μI, and ω), and control new B-cell formation (λP and λM,

which fall broadly in the lower half of their range). We further examine which parameters

most affect the model’s fit to data by calculating partial rank correlation coefficients (PRCC),

which are plotted in Fig 3. When we use PRCC to compare the top 25 best-fit tuples for each

case across all cases, no parameter has a PRCC value beyond ±0.5, although some parameters

(μI, ξ2, ϕ1, ϕ2A, ϕ2G) have a p-value smaller than 0.05. Thus, PRCC analysis indicates that no

parameters are the primary contributors to the goodness of fit of the parameterized model to

data; a combination of parameters must be responsible for the fits. It is important to note that

PRCC analysis describes which parameters are responsible for the model fitting to data, not

which parameters are responsible for reducing the epithelial infection or host symptoms; we

explore the latter, a key goal of vaccination, with numerical sensitivity analysis.

Our best-fit parameter values when fitting the model to primary infection data are given in

Table 3. Given our model’s many fitted parameter values, we avoid pitfalls of overfitting by

never considering our best-fit parameters to each individually be the best possible parameter

value for matching the model to data; rather, we compare commonalities across many best-fit

parameter tuples to observe general trends and conclusions that can be made, regardless of

whether each parameter value is itself optimized. In this way, we ensure that our conclusions

are robust across an array of feasible parameterizations.

We first fit the model to the primary EcSf2a-2 vaccine trial data (ET: 2457Tx1) and sepa-

rately to the primary 2457T rechallenge data (2T: 2457Tx1). Specifically, we fit the model

simultaneously to the serum IgA, serum IgG, A-ASC, and G-ASC data targeting LPS for each

study. We separately fit the model to the same data targeting OMP for each study. The fits to

primary infection data are plotted in Panels a and d of Figs 4 (EcSf2a-2) and 5 (2457T). We

then use the model parameterized against each primary data set to numerically predict bacte-

rial and immune dynamics during a subsequent Shigella infection. The Latin hypercube ran-

dom samples as a whole were different for all cases, but some of the 1,000,000 tuples generated

by Matlab’s LHS solver overlapped in parameter values with other cases; surprisingly, the same

parameter tuple was optimal for both EcSf2a-2 LPS data and EcSf2a-2 OMP data when fitting

the model separately to these primary infection data (but not when fitting to both primary and

secondary infection data). This remained true after rerunning these simulations with new ran-

dom seeds, and thus LPS and OMP EcSf2a-2 primary (but not secondary) data fits have identi-

cal characteristics in our results.

The disease-free IgA/IgG nontrivial equilibrium values given in Table 2 are subject to stabil-

ity conditions, and we analytically and numerically examine whether each best-fit parameteri-

zation produces a stable or unstable disease-free state. Model predictions based on fits to

primary infection data with predicted secondary infection dynamics are plotted in Panels b, c,

e, and f in Figs 4 (EcSf2a-2) and 5 (2457T) and overlaid for comparison (but not fit) with clini-

cal data of secondary immune levels from the two studies. Secondary infection data from the

EcSf2a-2 trials show measurements taken after challenging volunteers with wild-type Shigella
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Fig 4. Numerical simulations of model dynamics for the best fits to primary EcSf2a-2 data (ET: 2457Tx1). Vertical axis units are

number of Ab per mL (highest three lines: AE, AI, G), number of ASC (middle lines: PA, PG), number of BM (lower flat lines: MA, MG), and

bacterial cfu (lower dashed lines: SE, SI1, SN, SI2; rising purple dashed line: SC). The model is fit to LPS (top row: a–c) or OMP (lower row:

d–f) primary infection data from control volunteers who received no vaccine and a wild-type challenge in the EcSf2a-2 vaccine trials (ET:

2457Tx1). The model is fit only to primary (1) infection data (ET: 2457Tx1). Secondary (2) infection data (ET: EcSf2a-2x1, 2457Tx1) from

EcSf2a-2 volunteers who received both the vaccine and subsequent challenge are given for reference but were not used for these fits.

Primary infection dynamics are shown for the stable nontrivial equilibrium’s best-fit parameters in (a) and (d). The secondary infection

dynamics predicted under the best primary infection parameter fit that corresponds with a stable nontrivial equilibrium (i.e., some

immunity) are given in (b) and (e), whereas dynamics from the best primary fit that results in an unstable nontrivial equilibrium are given

in (c) and (f). To match clinical conditions, the primary infection is initialized at 2 × 109 cfu of luminal Shigella, whereas secondary

dynamics are initiated at 1,400 cfu. Legend abbreviations match model variable names, without subscripts. S: Shigella, A: IgA, G: IgG, M:

BM, P: ASC, I: in Lamina Propria, E: Luminal, C: Epithelial, N Engulfed.

https://doi.org/10.1371/journal.pone.0189571.g004

Fig 5. Numerical simulations of model dynamics for the best fits to primary 2457T rechallenge data (2T: 2457Tx1). Vertical axis

units are number of Ab per mL (highest three lines: AE, AI, G), number of ASC (middle lines: PA, PG), number of BM (lower flat lines: MA,

MG), and bacterial cfu (lower dashed lines: SE, SI1, SN, SI2; rising purple dashed lines: SC). The model is fit to LPS (a–c) or OMP (d–f)

primary infection data from volunteers who received a single wild-type challenge in the 2457T rechallenge study (2T: 2457Tx1). The

model is only fit to primary (1) infection data (2T: 2457Tx1). Secondary (2) infection data (2T: 2457Tx2) from 2457T rechallenge study

volunteers who received two wild-type challenges (and no previous vaccine) are given for reference but were not used for these fits. No

tertiary infection data (2T: EcSf2a-2x1, 2457Tx2) are included. To match clinical conditions, both the primary and secondary infections

are initialized at 1,400 cfu of luminal Shigella. Abbreviations and distinctions between Primary (a, d), Stable Secondary (b, e), and

Unstable Secondary (c, f) Dynamics are as described in the previous figure caption.

https://doi.org/10.1371/journal.pone.0189571.g005
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after the candidate vaccine had already been administered (ET: EcSf2a-2x1, 2457Tx1); data

from the 2457T rechallenge study come from six rechallenge patients who received a sequen-

tial double wild-type challenge (2T: 2457Tx2). The EcSf2a-2 studies resulted in 27-36% efficacy

at establishing immunity, while five of the six subjects in the 2457T study did not get ill upon

rechallenge [32, 34].

Results with a stable nontrivial equilibrium when the model is fit only to primary infection

data are shown in comparison with measured data values in Panels b and e in Figs 4 (EcSf2a-2)

and 5 (2457T). In all cases, the data (taken from Fig 1) have a not-significant difference, and in

some cases a decrease, in antibody and immune levels from a primary to a secondary infection.

This lack of rise in measured immunity is discordant with the model’s predictions in Panel b

in Fig 4 and Panels b and e in Fig 5 of heightened secondary immunity arising from a stable

nontrivial equilibrium. That is, when a stable nontrivial equilibrium (and hence some immu-

nity) is established by a primary infection, the model overestimates the antibody and ASC lev-

els during a secondary infection in comparison with the data by predicting an increase of

roughly 1–3 orders of magnitude in secondary antibody and ASC numbers in all cases except

for the EcSf2a-2 OMP response (Panel e in Fig 4). This is consistent with published literature

that describes a blunted ASC response to challenge in blood among subjects who are protected

from Shigella, presumed to be due to a secondary immune response at the mucosa (as the

model predicts) [32]. Interestingly, every grand Monte Carlo fitting round with fits to primary

infection data produced a few best-fit parameter tuples that corresponded with an unstable

nontrivial equilibrium in addition to those that produced a stable nontrivial equilibrium.

Thus, primary infection data can be fit both with parameter combinations that do not lead to

an immune state and others that do lead to some immunity. If we look at the parameterizations

that produce unstable nontrivial equilibria and initialize our model from the trivial equilib-

rium (which assumes no lasting immunity from the previous infection), then our model

matches the clinical secondary infection data remarkably well for the 2457T data (Panels c and

f in Fig 5). This is perhaps unsurprising because the primary and secondary infection data are

similar, and the model was fit to the primary data. Nevertheless, Fig 5 reveals that, on average,

wt anti-LPS and anti-OMP immune levels during a secondary wt challenge (2T: 2457Tx2) are

mathematically nearly identical to initiating an infection from a trivial, non-immune state.

That is, the model best matches wt challenge data if no lasting LPS or OMP immunity is

established.

The predicted secondary infection levels following a stable disease-free state match data

in the case of EcSf2a-2 OMP, which suggests that some anti-OMP immunity (not necessarily

protective) was established by the EcSf2a-2 vaccine. Meanwhile, our model predictions fail to

match measured secondary infection data for the EcSf2a-2 trials with a stable or unstable equi-

librium (that is, with or without some immunity establishing) in every case except when OMP

immunity is established (Panel e in Fig 4 versus Panels b, c, and f in Fig 4). The explanation is

likely that, although the primary and secondary data are similar, the initial infection dose var-

ies widely in the EcSf2a-2 trials: 2 × 109 cfu for a primary vaccine dose versus 1,400 cfu for a

secondary challenge dose. Thus, the model did not replicate vaccine trial data when fit solely

to primary infection dynamics except when investigating OMP immune responses. We next

ask whether we can obtain better information about the EcSf2a-2 vaccine trial by fitting both

primary and secondary infection data, and we investigate whether our 2457T and EcSf2a-2

OMP modeling results are robust across other parameterizations. However, our primary data

fits inform our primary and secondary data fit results and indicate, for instance, why no best

fit parameterizations are found for certain cases (unstable and stable secondary dynamics,

respectively) in Figs 6 and 7.
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Primary and secondary infection data fits

To see if model results are robust or are artifacts of our parameterization process, we redo the

data fits but simultaneously fit both the primary and secondary infection data. We wish to dis-

cern if stable nontrivial equilibria, which correspond to establishing some level of immunity

(although possibly not protective at the group level), are possible with our model while fitting

data other than just EcSf2a-2 OMP, and we seek to corroborate the primary-fit EcSf2a-2 OMP

and the primary-fit 2457T modeling results. Thus now in addition to primary infection data

(ET: 2457Tx1), we use the data from volunteers who received both the EcSf2a-2 vaccine and a

wild-type 2457T Shigella challenge as the secondary infection data (ET: EcSf2a-2x1, 2457Tx1)

in the EcSf2a-2 trial fits. For the 2457T secondary infection fits, we match primary infection

data (2T: 2457Tx1) as well as data from volunteers who were controls in the EcSf2a-2 trial

(and thus were challenged but did not receive the vaccine candidate) and then were rechal-

lenged with wild-type Shigella during the 2457T rechallenge study (2T: 2457Tx2). The results

are plotted in Figs 6 (EcSf2a-2) and 7 (2457T) and predicted antibody, ASC, and BM equilib-

rium numbers are given in Table 2. Best-fit parameter values are listed in Table 4. We again

separately examine best-fit parameterizations that produce a stable versus unstable nontrivial

equilibrium.

The fits for the OMP measurements from the primary and secondary 2457T study gener-

ated only best-fit parameters that corresponded with an unstable nontrivial equilibrium; no

stable best fits were found. For every other case, we produce a best-fit parameterization with a

stable nontrivial equilibrium that matches both the primary and secondary infection data. In

fact, for the EcSf2a-2 trial data (Fig 6), we found no best-fit parameterizations that produced

an unstable nontrivial equilibrium and could mimic both primary vaccine data (initialized

at 2 × 109 cfu) and secondary challenge data (with a 1,400 cfu infection dose). That is, of 25

grand best-fit parameterizations for EcSf2a-2 LPS data and separately for EcSf2a-2 OMP data,

all produced only a stable nontrivial immunity. This strongly suggests that the EcSf2a-2 vac-

cine established some lasting anti-LPS and anti-OMP humoral immunity, although perhaps

not at levels that are protective for the population.

Furthermore, we examine the number of Shigella that have invaded the epithelium by day 7

of infection as a proxy for disease severity. This is the day 7 value of the rising purple dashed

SC curve in Figs 4–7. Day 7 epithelial Shigella levels are listed in Table 5 for all cases. We note

that while all cases have epithelial infections above the 10 cfu threshold, three cases have values

below the weaker 100 cfu threshold. These three are (1) fitting to EcSf2a-2 LPS primary infec-

tion data with a stable nontrivial equilibrium, (2) fitting to EcSf2a-2 OMP primary infection

data with a stable nontrivial equilibrium, and (3) fitting to EcSf2a-2 OMP primary and second-

ary infection data with a stable nontrivial equilibrium. This too suggests that the EcSf2a-2

vaccine was effective at preventing some disease and establishing some immunity, which is

corroborated by the 27-36% vaccine efficacy. However, the level of immunity created by the

EcSf2a-2 vaccine was not sufficiently efficacious at a group level. This indicates that even 100

cfu of bacteria (in the absence of a CMI response) invading the epithelium by day 7 are pre-

dicted to induce symptoms in the host, so the model’s threshold for protection must be lower

than 100 cfu of epithelial bacteria. Hence, we use 10 cfu as our target threshold.

Turning to the wild-type 2457T results (Fig 7), the situation is different. When we fit the

model to both primary and secondary infection data for a wt challenge, we see that both stable

and unstable nontrivial equilibrium cases fit the LPS data well, while only an unstable equilib-

rium fits OMP data. Furthermore, the nontrivial equilibrium values in Table 2 indicate that

the 2457T LPS stable best-fit parameterization (for fitting primary and secondary infection

data) establishes negligibly small numbers of Ab, ASC, or BM. Thus, the model only fits the
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Fig 6. Numerical simulations of model dynamics for the best fits using both primary and secondary EcSf2a-2 data

(ET: 2457Tx1 and ET: EcSf2a-2x1, 2457Tx1, respectively). Vertical axis units are number of Ab per mL (highest

three lines: AE, AI, G), number of ASC (middle lines: PA, PG), number of BM (lower flat lines: MA, MG), and bacterial

cfu (lower dashed lines: SE, SI1, SN, SI2; rising purple dashed line: SC). The model parameters are fit to both primary and

secondary infection data for LPS (a–b) or OMP (c–d). Primary (1) infection data is from control volunteers who

received no vaccine and a wild-type challenge in the EcSf2a-2 vaccine trials (ET: 2457Tx1). Secondary (2) infection

data is from volunteers who received both the EcSf2a-2 vaccine and subsequent wild-type challenge (ET: EcSf2a-2x1,

2457Tx1). To match clinical conditions, the primary infection is initialized at 2 × 109 cfu of luminal Shigella, whereas

secondary dynamics are initiated at 1,400 cfu. No best-fit parameterizations gave an unstable nontrivial equilibrium

when fitting both primary and secondary infection EcSf2a-2 data. Resulting model dynamics using the joint fits show

predicted Primary (a, c) and Stable Secondary (b, d) Dynamics as described for previous figures.

https://doi.org/10.1371/journal.pone.0189571.g006

Fig 7. Numerical simulations of model dynamics for the best fits using both primary and secondary 2457T rechallenge data (2T:

2457Tx1 and 2T: 2457Tx2, respectively). Vertical axis units are number of Ab per mL (highest three lines: AE, AI, G), number of ASC

(middle lines: PA, PG), number of BM (lower flat lines: MA, MG), and bacterial cfu (lower dashed lines: SE, SI1, SN, SI2; rising purple dashed

line: SC). The model parameters are fit to both primary and secondary infection data for LPS (a–c) or OMP (d–e). Primary (1) infection

data is from volunteers who received a single wild-type challenge in the 2457T rechallenge study (2T: 2457Tx1). Secondary (2) infection

data is from volunteers who received two 2457T challenges (one as controls during the EcSf2a-2 trial and a second one during the 2457T

rechallenge study, 2T: 2457Tx2). No tertiary vaccine-challenge-challenge infection data are included (2T: EcSf2a-2x1, 2457Tx2). To match

clinical conditions, both the primary and secondary infections are initialized at 1,400 cfu. No best-fit parameterizations gave a stable

nontrivial equilibrium when the model was fit to both primary and secondary 2457T OMP data. Resulting model dynamics using the

joint fits show predicted Primary (a, d), Stable Secondary (b), and Unstable Secondary (c,e) Dynamics as described in previous figures.

https://doi.org/10.1371/journal.pone.0189571.g007
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2457T rechallenge data when little-to-no lasting immunity is established. This is further sup-

ported by the day 7 epithelial infection levels (Table 5), which are much larger than 100 cfu for

all wt 2457T cases. This would suggest a heavily symptomatic host.

In fact, in all best-fit parameterizations of our model using either EcSf2a-2 or 2457T pri-

mary or secondary infection data, bacterial numbers inside of the epithelium rise quickly and

uncontrollably. This can be seen by the rising purple dashed SC curves in every panel of Figs 4–

7 and by the day 7 levels in Table 5. In three EcSf2a-2 cases previously mentioned, these day 7

epithelial levels are kept below 100 cfu, and yet the vaccine was still not sufficiently efficacious

at a group level. In no case is the day 7 epithelial Shigella level kept below the lower threshold

of 10 cfu by the humoral immune response. While the true threshold for an asymptomatic

host is unknown, these results together indicate that Shigella bacteria are not sufficiently pre-

vented from invading the epithelium by anti-LPS or -OMP immune responses in any investi-

gated scenario or study. Thus, the model predicts epithelial escape of the bacteria (and a

symptomatic host) in all best-fit cases regardless of parameterization. That is, in 1,000,000

Monte Carlo runs and 25 best-fit parameter tuples observed for each case, not one predicted

that an anti-LPS or anti-OMP vaccine would prevent an epithelial Shigella infection below a 10

cfu threshold, and the three cases that kept the epithelial infection below 100 cfu are known

not to have been protective on average at a group level. Thus, our modeling results indicate

that humoral immunity against only LPS and OMP, regardless of whether established via

vaccine or wild-type infection, will not be protective against Shigella. Below, we amend this

slightly while exploring the parameter space further with sensitivity analysis to determine

whether altering individual immune response rates can increase the effectiveness of an LPS- or

OMP-targeted vaccine.

Sensitivity analysis

To investigate other potential immune targets, we carry out numerical sensitivity analysis on

our model and plot key results in Figs 8–11 with corresponding predicted immune levels in

S2–S5 Figs. We parameterize our model with the best-fit parameterizations in eight different

cases each for EcSf2a-2 and 2457T data: fit to the primary infection only and either producing

a stable or unstable nontrivial equilibrium; and fit to both the primary and secondary infection

Table 5. Epithelial Shigella levels: Day 7 of secondary infection.

Study & Target F1U (cfu) F12U (cfu) F1S (cfu) F12S (cfu)

EcSf2a-2 LPS 2,089 — 36 1,236

2457T LPS 1,581 1,581 1,656 1,996

EcSf2a-2 OMP 2,089 — 36 85

2457T OMP 1,757 1,757 1,044 —

The number of bacteria (cfu) in the epithelium (SC in the model) on day 7 of a secondary infection is given for every

scenario investigated. Hosts with epithelial infection numbers above 100 cfu are likely symptomatic. Hosts with

between 10 and 100 cfu might be symptomatic. No cases had less than 10 cfu of epithelial bacteria on day 7. The cases

considered are as follows. Rows are data studies (EcSf2a-2 or 2457T) and bacterial targets (LPS or OMP) in the same

order as in sensitivity analysis figures and supplementary figures. Columns are day 7 secondary infection levels for

the following parameterizations (left to right): fit primary infection data with an unstable nontrivial equilibrium

(F1U), fit primary and secondary infection data with an unstable nontrivial equilibrium (F12U), fit primary infection

data with a stable nontrivial equilibrium (F1S), and fit primary and secondary infection data with a stable nontrivial

equilibrium (F12S). F1U, F1S, and F12S (Columns 1, 3, and 4) correspond with baseline levels (black horizontal line)

in the upcoming sensitivity analysis figures. In cases marked —, no parameterizations were found.

https://doi.org/10.1371/journal.pone.0189571.t005
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while the nontrivial equilibrium is either stable or unstable. From each of these best-fit tuples

for LPS and separately for OMP, we widely vary one parameter at a time and search for which,

if any, can reduce the epithelial Shigella load to below a threshold of 10 cfu on day 7 of a sec-

ondary infection. No best-fit parameterizations gave epithelial Shigella values below 10 cfu on

Fig 8. Predicted peak Shigella cfu levels when parameters μE and μI are varied together from 0.01 to 1/d. These control the rate at

which Shigella migrates from the lumen into the lamina propria (LP) or from the LP into the epithelium. All other parameters are fixed to

the best-fit parameter values given in Tables 3 and 4 for the model when fit to (a–c) EcSf2a-2 trials LPS data, (d–f) 2457T study LPS data,

(g-i) EcSf2a-2 trials OMP data, or (j–k) 2457T study OMP data. Model predictions for peak Shigella values by day 7 of infection are shown

for the lumen (L), LP, engulfed inside innate immune cells (I), or in the epithelium (E). These are primary (a,d,g,j) and positive, stable

secondary (b,e,h,k) infection dynamics fit to primary infection data only or are positive, stable secondary infection dynamics (c,f,i)

resulting from fitting both primary and secondary infection data. Results with an unstable nontrivial equilibrium produced when fitting

to both primary and secondary infection data are not shown due to strong similarity to the displayed unstable primary infection best-fit

results. No best-fit parameter set for OMP measurements from the 2457T rechallenge study produced a positive, stable nontrivial

equilibrium when fitting both primary and secondary infection data. Vertical lines indicate best-fit parameter values. The horizontal black

line shows the best-fit day 7 epithelial Shigella infection numbers for comparison to the thick red E curve. The red horizontal lines show

10 cfu and 100 cfu thresholds for assessing protection from epithelial infection. Corresponding peak immune numbers are given in S2 Fig.

https://doi.org/10.1371/journal.pone.0189571.g008
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Fig 9. Predicted peak Shigella cfu levels when parameters ξ1 and ξ2 are varied together on a log scale from 100 to 106 ASC/BM. These

control the rates at which new ASC are generated by BM in the absence versus presence of antigenic stimulation, respectively. All other

parameters are fixed to the best-fit parameter values given in Tables 3 and 4 for the model when fit to (a–c) EcSf2a-2 trials LPS data, (d–f)

2457T study LPS data, (g-i) EcSf2a-2 trials OMP data, (j–k) 2457T study OMP data. Model predictions for peak Shigella values by day 7 of

infection are shown for the lumen (L), lamina propria (LP), engulfed inside innate immune cells (I), or in the epithelium (E). These are

primary (a,d,g,j) and positive, stable secondary (b,e,h,k) infection dynamics fit to primary infection data only or are positive, stable

secondary infection dynamics (c,f,i) resulting from fitting both primary and secondary infection data. Results with an unstable nontrivial

equilibrium produced when fitting to both primary and secondary infection data are not shown due to strong similarity to the displayed

unstable primary infection best-fit results. No best-fit parameter set for OMP measurements from the 2457T rechallenge study produced

a positive stable nontrivial equilibrium when fitting both primary and secondary infection data. Vertical lines indicate best-fit parameter

values. The horizontal black line shows the best-fit day 7 epithelial Shigella infection numbers for comparison to the thick red E curve.

The red horizontal lines show 10 cfu and 100 cfu thresholds for assessing protection from epithelial infection. 10x: the number on the x-

axis should be used as the exponent of 10 to obtain the true value. Corresponding peak immune numbers are given in S3 Fig.

https://doi.org/10.1371/journal.pone.0189571.g009
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Fig 10. Predicted peak Shigella cfu levels when parameters βA and βG are varied together on a log scale from 102 to 1010 (Ab/mL)/

ASC/d. These control the rates at which ASC produce IgA and IgG, respectively. All other parameters are fixed to the best-fit parameter

values given in Tables 3 and 4 for the model when fit to (a–c) EcSf2a-2 trials LPS data, (d–f) 2457T study LPS data, (g-i) EcSf2a-2 trials

OMP data, (j–k) 2457T study OMP data. Model predictions for peak Shigella values by day 7 of infection are shown for the lumen (L),

lamina propria (LP), engulfed inside innate immune cells (I), or in the epithelium (E). These are primary (a,d,g,j) and positive, stable

secondary (b,e,h,k) infection dynamics fit to primary infection data only or are positive, stable secondary infection dynamics (c,f,i)

resulting from fitting both primary and secondary infection data. Results with an unstable nontrivial equilibrium produced when fitting

to both primary and secondary infection data are not shown due to strong similarity to the displayed unstable primary infection best-fit

results. No best-fit parameter set for OMP measurements from the 2457T rechallenge study produced a positive stable nontrivial

equilibrium when fitting both primary and secondary infection data. Vertical lines indicate best-fit parameter values. The horizontal

black line shows the best-fit day 7 epithelial Shigella infection numbers for comparison to the thick red E curve. The red horizontal lines

show 10 cfu and 100 cfu thresholds for assessing protection from epithelial infection. 10x: the number on the x-axis should be used as the

exponent of 10 to obtain the true value. Corresponding peak immune numbers are given in S4 Fig.

https://doi.org/10.1371/journal.pone.0189571.g010
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Fig 11. Predicted peak Shigella cfu levels when parameters κA and κG are varied together on a log scale from 102 to 108 BM. These are

the carrying capacities of IgA-type and IgG-type memory B cells, respectively. All other parameters are fixed to the best-fit parameter

values given in Tables 3 and 4 for the model when fit to (a–c) EcSf2a-2 trials LPS data, (d–f) 2457T study LPS data, (g-i) EcSf2a-2 trials

OMP data, (j–k) 2457T study OMP data. Model predictions for peak Shigella values by day 7 of infection are shown for the lumen (L),

lamina propria (LP), engulfed inside innate immune cells (I), or in the epithelium (E). These are primary (a,d,g,j) and positive, stable

secondary (b,e,h,k) infection dynamics fit to primary infection data only or are positive, stable secondary infection dynamics (c,f,i)

resulting from fitting both primary and secondary infection data. Results with an unstable nontrivial equilibrium produced when fitting

to both primary and secondary infection data are not shown due to strong similarity to the displayed unstable primary infection best-fit

results. No best-fit parameter set for OMP measurements from the 2457T rechallenge study produced a positive stable nontrivial

equilibrium when fitting both primary and secondary infection data. Vertical lines indicate best-fit parameter values. The horizontal

black line shows the best-fit day 7 epithelial Shigella infection numbers for comparison to the thick red E curve. The red horizontal lines

show 10 cfu and 100 cfu thresholds for assessing protection from epithelial infection. 10x: the number on the x-axis should be used as the

exponent of 10 to obtain the true value. Corresponding peak immune numbers are given in S5 Fig.

https://doi.org/10.1371/journal.pone.0189571.g011
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day 7, while three EcSf2a-2 best-fit parameterizations (Panels b, h, and i in Figs 8–11) gave val-

ues already below a weaker threshold of 100 cfu. Importantly, the true threshold for an asymp-

tomatic host is unknown, so it is possible individuals could be symptomatic with epithelial

bacteria below even a 10 cfu threshold; however, establishing a feasible threshold enables us to

quantitatively compare cases.

We find that only eight (or four groups) of all of our 33 parameters can sufficiently limit the

peak epithelial infection to below 10 cfu under one or more parameterizations. Specifically, we

see the epithelial infection controlled by drastically reducing the rates that Shigella migrates

into the lamina propria (μI) or epithelium (μE); substantially increasing the rate that BM differ-

entiate into ASC (ξ1 or ξ2); significantly increasing the rate at which antibodies are produced

by activated ASC (βA or βG); or substantially increasing the Shigella-specific BM carrying capac-

ity (κA or κG), which is the number of Shigella-specific BM at homeostasis between infections.

These can be seen in Figs 8–11, which plot peak bacterial levels on day 7 of a secondary infec-

tion (following vaccination or infection). The best-fit parameter values in each instance are

shown with vertical lines, with actual values given in Tables 3 and 4. We compare the epithelial

Shigella curve (solid red) with 10 and 100 cfu thresholds (dashed red lines). The corresponding

day 7 peak immune levels of Ab/mL, ASC, and BM are given in S2–S5 Figs. Each group of

parameters is varied together; for instance, the listed migration rates (μ terms) are kept identi-

cal to one another. All other parameters show little-to-no impact on peak epithelial Shigella
numbers and never drop below the 10 cfu epithelial infection threshold despite widely varying

their values, sometimes beyond the range of the previous Latin hypercube sampling. Those

that drop below the 100 cfu threshold are discussed at the end. Notably, neither Υ (the BM sym-

metric vs asymmetric division percentage added to this model) nor the length of the incuba-

tion period time delay before naive activation affect the degree of epithelial infection (not

shown because flat).

The Shigella migration rates to which the model dynamics are sensitive (μE and μI) must be

reduced to very small values (Fig 8) to limit the bacterial load within the epithelium; such a

reduction would essentially stop the Shigella infection before it starts. However, this would

require an immune mechanism different from anti-LPS or -OMP antibody targeting, which is

already represented by other terms in the model. Since the causative immune agent is not the

currently modeled immune response against LPS or OMP, anti-LPS and -OMP immune levels

are nearly flat in almost all cases in S2 Fig despite the potential protection indicated in Fig 8.

Notably, the LPS response measured during the wt 2457T rechallenge study is predicted by

the model to be insensitive to all parameter variations except a large drop in Shigella migration

rates. This indicates that for a wt infection, an anti-LPS antibody response is only effective if it

can almost completely block Shigella migration across or into the epithelium (and by a mecha-

nism different than the modeled antibody blocking); otherwise, the model predicts that anti-

LPS antibodies are not sufficient for disease prevention by any other mechanism even at much

larger Ab/mL, ASC, or BM levels. However, the same is not true for anti-OMP responses or for

LPS responses during the EcSf2a-2 vaccine trials.

Epithelial infection levels are sensitive to the ξ1, ξ2 and βA, βG parameter groups in all stable

nontrivial anti-OMP cases (Panels h, i, and k in the following: Fig 9 with immune levels in S3

Fig for ξ terms, and Fig 10 and S4 Fig for β terms) and in some but not all anti-LPS responses

(Panels b and c in Fig 9 and S3 Fig, and Panel c in Fig 10 and S4 Fig). These parameters are

rates at which antibodies and ASC are created, respectively. Oddly, possible protection is

observed even in cases without a stable immune state when fitting OMP measurements from

the wt 2457T study and varying the β or ξ groups (Panel g in Figs 9 and 10), which suggests

large pulses of anti-OMP Ab or ASC production even without vaccination might aid the pre-

vention of symptoms in wt cases. However, this is not observed for LPS or with the EcSf2a-2
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vaccine study OMP data. Comparing parameterized values to parameter zones that keep epi-

thelial bacteria below the 10 cfu threshold in all sensitive cases reveals that the production rates

of antibodies or ASC must be orders-of-magnitude faster than the best-fit values. Specifically,

when ξ1 and ξ2, the rates at which BM produce ASC, are varied, sufficient epithelial protection

following the establishment of a stable immune equilibrium occurs with anti-OMP ASC num-

bers above 107 and often greater than 109 ASC, with correspondingly high antibody levels at or

above 1015 Ab/mL. However, similar anti-OMP ASC and Ab levels are not protective with an

anti-LPS immune response (Panels e and f in Fig 9 and S3 Fig). Varying βA and βG, the rates at

which ASC produce Ab, also shows that epithelial protection can occur, but is not guaranteed,

when Ab levels rise above approximately 1015 Ab/mL. Here, a rise in ASC is not required for

high Ab levels or protection; in fact, ASC numbers drop in all predicted protective cases as the

rate at which ASC produce Ab increases because fewer ASC are required to sustain higher Ab

levels.

In some, but not all, best parameter fits shown in Fig 11 and S5 Fig, substantially altering

the BM carrying capacities (κA and κG) could reduce or even prevent the epithelial infection;

that is, establishing a larger permanent pool of BM could generate protective immunity. This

sensitivity is observed when a stable nontrivial equilibrium is established in the EcSf2a-2 vac-

cine trial as well as for anti-OMP BM in a 2457T wt rechallenge (Panels b, c, h, i, and k in Fig

11). The effect is strongest when the carrying capacity for BM is increased from the best-fit val-

ues to establish lasting BM populations of at least 106 cells. However, such BM numbers were

not reached during infection in the 2457T LPS best-fit case despite raising the BM carrying

capacity well above 106 cells. This suggests that establishing a larger permanent anti-OMP or

anti-LPS BM population above the current levels established with the EcSf2a-2 vaccine candi-

date or a wt infection can (but does not necessarily) raise overall BM numbers and could corre-

late with protection in some, but not all, cases.

Comparison of Figs 8–11 in relation to the baseline parameterization of each (vertical lines

and Tables 3 and 4) reiterates that all parameterizations that best fit the clinical data have

parameters in, and often well into, the zones that produce epithelial infection levels above the

10 cfu threshold, as previously seen in Figs 4–7. If these parameter values can be raised biologi-

cally, epithelial invasion by Shigella can be reduced and even potentially entirely prevented.

For instance, the epithelial Shigella levels in Panel i of Figs 8–11 drop below 1 cfu if any one of

the four sensitive parameter groups is substantially altered. This suggests there might be multi-

ple avenues by which to raise anti-OMP immunity to fully protective levels for the EcSf2a-2

vaccine. In contrast, altering wt 2457T anti-LPS immunity is predicted as never fully protective

and wt anti-OMP immunity is fully protective solely when accompanied by a rise in ξ1 and ξ2,

the rates at which BM generate ASC. While we change only one parameter group at a time,

an unexplored combination of parameter changes might also result in sufficient protection.

If we relax the protection threshold to 100 cfu on day 7, we have noted that three EcSf2a-2

vaccine best-fit parameterizations already are below this. These are the best-fit parameteriza-

tions for the EcSf2a-2 study that produced a stable equilibrium when fitting only the primary

infection LPS data, only primary infection OMP data, or both primary and secondary infection

OMP data. Yet we know the EcSf2a-2 vaccine was not on average protective at a group level,

and thus 100 cfu is likely too weak a threshold for protection. Nevertheless, we use this 100 cfu

threshold to describe how results change when the threshold considered is raised from 10 cfu.

For the 10 cfu threshold, epithelial infection dynamics were sensitive to four parameter groups;

for a 100 cfu threshold, the epithelial infection on day 7 can be lowered by changing one of 10

parameter groups. However, this is better parsed by separating the three cases already below

threshold (Panels b, h, and i in Figs 8–11) from those which drop newly below threshold

given a parameter change. The latter is rare and only occurs for a wt 2457T infection with an
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unstable equilibrium (no lasting immunity). We see that this case, Panel j in Figs 8–11, has a

day 7 epithelial infection that drops below 100 cfu by altering any of the 4 previously sensitive

parameter groups or by altering one of 3 new parameter groups as follows (not shown): raising

the BM growth rate (ρ), substantially decreasing the percent of BM that act like memory stem

cells (Υ), or substantially lowering natural antibody death rates (δAE, δAI, and δG). It must be

noted, however, that altering these parameters does not affect wt 2457T dynamics when a sta-

ble nontrivial immune equilibrium is established, and thus this sensitivity is not robust under

multiple best-fit parameterizations. It is also interesting to look at which parameters exhibit

sensitivity to parameter values for the three cases already below 100 cfu with their best-fit

parameterizations (panels bhi). The epithelial Shigella numbers are entirely flat for most

parameter values, indicating complete insensitivity of the epithelial infection to those parame-

ters. The parameters to which the epithelial Shigella number show sensitivity in these three

cases are the 4 previously sensitive parameter groups plus the following 4 parameter groups

(not shown): the antigen-dependent BM differentiation rates, ϕ2A and ϕ2G; the antigen-inde-

pendent BM differentiation rate, ϕ1; the BM growth rate, ρ; and the neutralization rates of Shi-
gella by Ab, α and γ. The existence of these indicates that if a vaccine can establish sufficient

anti-LPS or anti-OMP immunity to drop epithelial Shigella values below 100 cfu, additional

immune parameters might gain feasibility as secondary immune targets and as conditional

immune correlates.

Discussion

In this paper, we build upon our original mathematical model [29] of the humoral immune

response against Shigella by introducing asymmetric division of BM, removing nonessential

delays, and comprehensively parameterizing the model with clinical anti-LPS and anti-OMP

humoral immune data from three human Shigella studies in the 1990s: two EcSf2a-2 vaccine

trials and a subsequent wt 2457T rechallenge study [30–32, 34]. We use Monte Carlo runs of

Latin hypercube sampling with least-squares fitting to parameterize the model both against

only primary infection data and against primary and secondary infection data simultaneously

for each study and each immune target in order to explore which observed trends are parame-

terization-dependent versus common across parameterizations. To avoid the pitfalls of overfit-

ting a large number of parameters to data, we do not seek to optimize every parameter value

individually but rather consider a large number of best-fit parameter tuples as a whole and

identify trends across many best-fit tuples. Our modeling results suggest that, on average,

humans would be symptomatic with shigellosis following a purely anti-LPS or -OMP humoral

immune response due to an uncontrolled infection of gut epithelial cells that is present across

all best-fit model parameterizations. We conduct identifiability analysis to gain insight on

which parameter values can be uniquely determined, and we use sensitivity analysis to explore

which model parameter values must be altered to prevent epithelial invasion and destruction

by Shigella bacteria. We identify four key parameter groups as potential vaccine targets or

immune correlates.

Results presented in this paper are only as accurate as the mathematical model, and all mod-

els are approximations. Limitations of our approach include utilization of serum IgA as an

indirect measure of luminal IgA as well as assessment of immune markers that correlate with

protection at the group rather than individual level. Predicted levels of epithelial invasion

could be underestimates due to not directly modeling cell-to-cell spread of Shigella within the

epithelium, which could exacerbate epithelial bacteria levels even above model predictions.

Furthermore, immunological thresholds for protection are not clinically known and thus

achieving thresholds set in this paper does not guarantee protection from disease. These
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limitations are transparently considered in the conclusions made and may be addressed in

future studies. Modeling results and predictions should be confirmed with biological studies

before being clinically employed. Biological validation of these results is difficult due to limited

animal models for Shigella and the necessity for human clinical work. However, a strength of

mathematical modeling is the ability to first explore conditions theoretically that are difficult

to examine biologically and thereby to inform future biological investigation.

Our best-fit parameterizations that match the EcSf2a-2 vaccine trial data reveal that the

vaccine likely established some immunity in some individuals (although not protective at the

group level), which makes sense given the 27-36% efficacy of the trials [30–32, 34]. That is,

while the EcSf2a-2 vaccine candidate was not sufficiently efficacious at a group level, the

model suggests that measured humoral immune levels during the post-vaccine wt challenge

are only possible if some lasting anti-LPS and anti-OMP immunity was established. Neverthe-

less, the epithelial bacterial numbers (the purple dashed SC curves) in Figs 4 and 6, and Table 5

indicate that hosts vaccinated with an EcSf2a-2 vaccine would still be symptomatic with these

established levels of immunity if 100 cfu of bacteria on day 7 is an insufficient threshold for

protection (which is suggested by the 27-36% efficacy).

While our modeling suggests the EcSf2a-2 vaccine established some levels of lasting LPS

and OMP immunity, the model results also suggest that, to reproduce wt data, little-to-no last-

ing anti-LPS or -OMP humoral immunity is established by a primary wt 2457T infection. That

is, the model matches data best when there is no stable nontrivial equilibrium or when the

nontrivial equilibrium has very few Ab, ASC and BM. Since it is known that humans can

develop immunity to wt Shigella infections, these modeling results indicate that the primary

immune factors responsible for conferring immunity are likely not (or not solely) anti-LPS or

anti-OMP humoral immune responses.

Thus, in what is perhaps our strongest modeling result, we observe that in every best-fit

model parameterization using any primary and secondary infection data, bacteria invade the

epithelium and rise quickly and uncontrollably (Figs 4–7). That is, under the 10 cfu day 7 epi-

thelial infection threshold, the model predicts epithelial escape of the bacteria in every best-fit

case regardless of parameterization, bacterial target (LPS or OMP), or clinical study (EcSf2a-2

or 2457T). Since it is the epithelial infection that induces the worst symptoms of shigellosis

[50], this uncontrolled epithelial expansion indicates that our model’s hypothetical patient

(and the average EcSf2a-2 or 2457T study volunteer when protected solely by an anti-LPS or

-OMP humoral response) is symptomatic to heavily symptomatic. Thus, our modeling results

indicate that a vaccine or natural immunity targeting only LPS and/or OMP will not be protec-

tive against Shigella. We amend this slightly after conducting sensitivity analysis to determine

whether altering individual immune rates from their parameterized values can increase the

effectiveness of an LPS- or OMP-targeted vaccine. Nevertheless, any suggested alterations do

not fit observed wild-type or vaccine trial measurements, and it is not yet known if they are

biologically feasible.

Putting the ubiquitous rise in epithelial infection levels across all best-fit parameterizations

together with the observation that some clinical trial and rechallenge study participants were

protected at the measured levels of anti-LPS and -OMP antibodies suggests that healthy indi-

viduals were protected at least in part by immune components other than anti-LPS and anti-

OMP humoral immune responses. We are unable with these data to determine what those

might be, but we use sensitivity analysis to explore possibilities. Our numerical sensitivity anal-

ysis reveals that severe epithelial infection is insensitive to all but four parameter groups. That

is, limiting the epithelial infection to 10 cfu by day 7 of infection requires radically lowering

the rates that Shigella migrates into the lamina propria (μI) or epithelium (μE); markedly

increasing the rate that BM differentiate into ASC (ξ1 or ξ2); substantially increasing the rate at
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which antibodies are produced by activated ASC (βA or βG); or significantly increasing the Shi-
gella-specific BM carrying capacity (κA or κG), that is, the homeostatic Shigella-specific BM

population size. Limiting the epithelial infection to below 100 cfu is less difficult, and we also

explore the broader set of parameter targets by which to do this; however, those parameter

alterations might not be sufficiently protective. As a caveat, the 10 cfu and 100 cfu thresholds

for the epithelial infection are the numbers of bacteria in the epithelium that escape all

immune action; thus, in future models that include CMI, collaboration between humoral and

cellular compartments could provide protection even with more bacteria present.

Decreasing the migration of Shigella from the lumen (that is, lowering μE) to prevent Shi-
gella infections from beginning to establish would require, for instance, secretory IgA antibod-

ies that block Shigella entry into the lamina propria via M cells. However, decreased migration

from the lumen would require a mode of action by immune components that is different than

the modeled mass-action removal of bacteria by LPS- or OMP-directed IgA antibodies, which

is not sufficient to prevent infection. On the other hand, lowering the migration rate of Shigella
from the lamina propria into the epithelium (that is, μI) might be accomplished with antibod-

ies that specifically target the epithelial entry proteins displayed by Shigella for brief periods of

time. Such proteins include IpaB/C/D/A, IpgC/D/E, and other known bacterial products [63].

We hope to explore this more in future modeling work that takes into account the short expo-

sure times and brief window for antibody targeting of these proteins. Additionally, measuring

secretory IgA in future studies rather than utilizing serum IgA as an indirect estimate will help

clarify this issue.

Two parameter groups (ξ1, ξ2 and βA, βG) to which the epithelial infection levels are sensitive

in most stable nontrivial cases control the rates at which antibodies and ASC are created.

Orders-of-magnitude faster creation of antibodies or their secreting cells is required for pre-

venting an epithelial infection. This faster production rate maintains total antibody levels at

those observed in the data starting from often small pools of BM. It should be noted that we

change only one parameter group at a time, and thus smaller increases in combinations of BM,

ASC, and antibodies might have similar effects; this possibility was partially explored via the

parameter fitting process and did not produce a best-fitting parameter combination within the

tuples investigated. The observation from Panel j in Figs 9 and 10 that a substantial decrease in

epithelial bacteria might be possible even without a stable immune state by varying the β or ξ
groups suggests that mimicking high production rates by prophylactically dosing individuals

with large amounts of antibodies targeting OMP, even without creating long-term immunity,

could be effective. However, this was observed only when fitting OMP measurements from the

2457T rechallenge study and thus is heavily study- and parameterization-dependent. For vac-

cine design purposes, more attention should perhaps be paid to the stable nontrivial equilib-

rium cases that suggest orders-of-magnitude increases in the rates that antibodies (both IgA

and IgG) or ASC are produced above all current best-fit levels would be required to keep the

epithelial infection below 10 cfu on day 7. It is not known if lowering the epithelial Shigella
peak below this dose will be sufficient for protection.

Significantly raising the BM carrying capacities (κA and κG) could limit the epithelial infec-

tion in some, but not all, cases. This suggests that establishing a larger permanent pool of BM

via vaccination could prevent a severe epithelial infection, if this boosting sufficiently raises the

BM carrying capacity in addition to the transitory number of BM. In fact, Panels c and i in Fig

11 predict that the epithelial infection could be almost entirely prevented if the long-term levels

of BM directed at OMP could be raised by 2–4 orders of magnitude; this is purely theoretical

and remains to be explored experimentally. However, the lack of sensitivity of epithelial bacte-

rial numbers to the LPS BM carrying capacity in the 2457T rechallenge study (Panels d–f in Fig

11) suggests that establishing a larger BM permanent pool will not be sufficient for protection
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in all cases. Broader protection across all cases is obtained solely by lowering Shigella migration

rates into the lamina propria and epithelium.

Sensitivity analysis suggests that creating better antibodies through somatic hypermutation

and/or affinity maturation might not be protective, since severe epithelial infection dynamics

are insensitive to the parameters that relate to antibody effectiveness (α and γ, not shown).

Thus, refining the ability of anti-LPS and anti-OMP antibodies to find, be tuned to, and elimi-

nate Shigella is predicted by modeling to not sufficiently protect against epithelial invasion.

Furthermore, comparing requirements to meet the 100 cfu threshold versus the 10 cfu thresh-

old for the day 7 epithelial infection reveals some potential immune correlates that are

conditional upon establishing EcSf2a-2 vaccine levels of anti-LPS and anti-OMP humoral

immunity. That is, while the unconditionally sensitive immune parameters established by the

model are the rate that Shigella migrates into the lamina propria or epithelium, the rate that

BM differentiate into ASC, the rate at which antibodies are produced by activated ASC, and the

Shigella-specific BM carrying capacity, additional conditional targets for enhancing an already

partially protective vaccine include the BM differentiation rates, the BM growth rate, and the

neutralization rates of Shigella by Ab. This underscores the idea that multiple immune mecha-

nisms and bacterial targets might work in combination to sufficiently protect against Shigella
infections.

In moving forward, modeling conclusions should be tested and confirmed clinically. A

planned future modeling direction is to examine Shigella immune protection at the individual

rather than group level; that is, we hope to utilize our model to discern immunological differ-

ences between those individuals who were protected by the EcSf2a-2 vaccine or wild-type chal-

lenge versus those who were not. Additionally, we plan to track epithelial cell damage more

overtly in the model in order to directly integrate or predict clinical disease outcomes for each

individual. Future modeling should also include new immune targets and correlates that

become known in the literature. Measuring and modeling CMI and spatially distinct periph-

eral versus mucosal immune responses may also assist in a better understanding of the protec-

tive immune response against Shigella.

Supporting information

S1 Fig. The best-fit parameter tuples resulting from every grand run plotted together.

These best-fit parameter values result from fitting the model to every combination of the fol-

lowing four characteristics: EcSf2a-2 or 2457T study, LPS or OMP, fitting primary data (1) or

fitting both primary and secondary data (2), and producing a stable or unstable nontrivial

equilibrium. The parameters are listed on the horizontal axis in the same order as Table 1. The

3.5-day incubation period delay is included. The parameter tuples are listed in Tables 3 and 4.

Black lines show the maximum and minimum of the region explored by Latin Hypercube sam-

pling. The entire space was searched but only the best-fit parameter tuple for each scenario is

displayed. The colors are as follows. Magenta: stable, fit (1); Cyan: unstable, fit (1); Red: stable,

fit (2); Blue: unstable, fit (2). Stable (some immunity) versus unstable (no immunity) parame-

ter values have been slightly offset horizontally to make them easier to distinguish. Each

parameter tuple as a whole is optimized, not each individual parameter.

(EPS)

S2 Fig. Predicted peak immune levels when parameters μE and μI are varied together from

0.01 to 1/d. These control the rate at which Shigella migrates from the lumen into the lamina

propria (LP) or from the LP into the epithelium. All other parameters are fixed to the best-fit

parameter values given in Tables 3 and 4 for the model when fit to (a–c) EcSf2a-2 trials LPS

data, (d–f) 2457T study LPS data, (g-i) EcSf2a-2 trials OMP data, (j–k) 2457T study OMP data.
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Model predictions for peak immune values by day 7 for Ab/mL, ASC, and BM are shown.

These are primary (a,d,g,j) and positive, stable secondary (b,e,h,k) infection dynamics fit to

primary infection data only or are positive, stable secondary infection dynamics (c,f,i) resulting

from fitting both primary and secondary infection data. Results with an unstable nontrivial

equilibrium produced when fitting to both primary and secondary infection data are not

shown due to strong similarity to the displayed unstable primary infection best-fit results. No

best-fit parameter set for OMP measurements from the 2457T rechallenge study produced a

positive stable nontrivial equilibrium when fitting both primary and secondary infection data.

Vertical lines indicate best-fit parameter values. Corresponding peak Shigella numbers are

given in Fig 8.

(EPS)

S3 Fig. Predicted peak immune levels when parameters ξ1 and ξ2 are varied together on a

log scale from 100 to 106 ASC/BM. These control the rates at which new ASC are generated by

BM in the absence or presence of antigenic stimulation, respectively. All other parameters are

fixed to the best-fit parameter values given in Tables 3 and 4 for the model when fit to (a–c)

EcSf2a-2 trials LPS data, (d–f) 2457T study LPS data, (g-i) EcSf2a-2 trials OMP data, (j–k)

2457T study OMP data. Model predictions for peak Ab/mL, ASC, and BM values by day 7 are

shown. These are primary (a,d,g,j) and positive, stable secondary (b,e,h,k) infection dynamics

fit to primary infection data only or are positive, stable secondary infection dynamics (c,f,i)

resulting from fitting both primary and secondary infection data. Results with an unstable

nontrivial equilibrium produced when fitting to both primary and secondary infection data

are not shown due to strong similarity to the displayed unstable primary infection best-fit

results. No best-fit parameter set for OMP measurements from the 2457T rechallenge study

produced a positive stable nontrivial equilibrium when fitting both primary and secondary

infection data. Vertical lines indicate best-fit parameter values. 10x: the number on the x-axis

should be used as the exponent of 10 to obtain the true value. Corresponding peak Shigella
numbers are given in Fig 9.

(EPS)

S4 Fig. Predicted peak immune levels when parameters βA and βG are varied together on a

log scale from 102 to 1010 (Ab/mL)/ASC/d. These control the rates at which ASC produce

IgA and IgG, respectively. All other parameters are fixed to the best-fit parameter values given

in Tables 3 and 4 for the model when fit to (a–c) EcSf2a-2 trials LPS data, (d–f) 2457T study

LPS data, (g-i) EcSf2a-2 trials OMP data, (j–k) 2457T study OMP data. Model predictions for

peak Ab/mL, ASC, and BM values by day 7 are shown. These are primary (a,d,g,j) and positive,

stable secondary (b,e,h,k) infection dynamics fit to primary infection data only or are positive,

stable secondary infection dynamics (c,f,i) resulting from fitting both primary and secondary

infection data. Results with an unstable nontrivial equilibrium produced when fitting to both

primary and secondary infection data are not shown due to strong similarity to the displayed

unstable primary infection best-fit results. No best-fit parameter set for OMP measurements

from the 2457T rechallenge study produced a positive stable nontrivial equilibrium when fit-

ting both primary and secondary infection data. Vertical lines indicate best-fit parameter val-

ues. 10x: the number on the x-axis should be used as the exponent of 10 to obtain the true

value. Corresponding peak Shigella numbers are given in Fig 10.

(EPS)

S5 Fig. Predicted peak immune levels when parameters κA and κG are varied together on a

log scale from 102 to 108 BM. These are the carrying capacities of IgA-type and IgG-type

memory B cells, respectively. All other parameters are fixed to the best-fit parameter values
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given in Tables 3 and 4 for the model when fit to (a–c) EcSf2a-2 trials LPS data, (d–f) 2457T

study LPS data, (g-i) EcSf2a-2 trials OMP data, (j–k) 2457T study OMP data. Model predic-

tions for peak Ab/mL, ASC, and BM values by day 7 are shown. These are primary (a,d,g,j) and

positive, stable secondary (b,e,h,k) infection dynamics fit to primary infection data only or are

positive, stable secondary infection dynamics (c,f,i) resulting from fitting both primary and

secondary infection data. Results with an unstable nontrivial equilibrium produced when fit-

ting to both primary and secondary infection data are not shown due to strong similarity to

the displayed unstable primary infection best-fit results. No best-fit parameter set for OMP

measurements from the 2457T rechallenge study produced a positive stable nontrivial equilib-

rium when fitting both primary and secondary infection data. Vertical lines indicate best-fit

parameter values. 10x: the number on the x-axis should be used as the exponent of 10 to obtain

the true value. Corresponding peak Shigella numbers are given in Fig 11.

(EPS)
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