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Abstract

In neuroimaging, spatial normalization is an important step that maps an individual's

brain onto a template brain permitting downstream statistical analyses. Yet, in infant

neuroimaging, there remain several technical challenges that have prevented the

establishment of a standardized template for spatial normalization. Thus, many differ-

ent approaches are used in the literature. To quantify the popularity and variability of

these approaches in infant neuroimaging studies, we performed a systematic review

of infant magnetic resonance imaging (MRI) studies from 2000 to 2020. Here, we

present results from 834 studies meeting inclusion criteria. Studies were classified

into (a) processing data in single subject space, (b) using an off the shelf, or “off the
shelf,” template, (c) creating a study specific template, or (d) using a hybrid of these

methods. We found that across the studies in the systematic review, single subject

space was the most used (no common space). This was the most used common space

for diffusion-weighted imaging and structural MRI studies while functional MRI stud-

ies preferred off the shelf atlases. We found a pattern such that more recently publi-

shed studies are more commonly using off the shelf atlases. When considering

special populations, preterm studies most used single subject space while, when no

special populations were being analyzed, an off the shelf template was most com-

mon. The most used off the shelf templates were the UNC Infant Atlases (24%).

Using a systematic review of infant neuroimaging studies, we highlight a lack of an

established “standard” template brain in these studies.
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1 | INTRODUCTION

A critical preprocessing step for the analysis of magnetic resonance

imaging (MRI) data is spatial normalization (Friston et al., 1995;

Poldrack, Mumford, & Nichols, 2011). Spatial normalization is the

process of bringing brain volumes that have been acquired in differ-

ent individuals into a common neuroanatomical common

(or reference) space (Crivello et al., 2002; Fox, Perlmutter, &

Raichle, 1985; Poldrack et al., 2011) and is typically performed in

analyses across all modalities: structural MRI (Ashburner &

Friston, 2000), diffusion MRI (Jones et al., 2002), and functional MRI
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(Poldrack et al., 2011). Spatial normalization to a common space is

often necessary for image statistics to be computed across partici-

pants (Friston, 1994; Gee, Alsop, & Aguirre, 1997), which assumes

that across participants brain structures occupy the same standard

anatomical space in a consistent manner (Fox, 1995; Toga &

Thompson, 2001). Spatial normalization is highly dependent on the

common space template used and results may not be directly compa-

rable if different templates are used. (Laird et al., 2010; Lancaster

et al., 2007; Rohlfing, Sullivan, & Pfefferbaum, 2009). With the goal

of rigor and reproducibility in mind, it is crucial for common spaces to

be standardized across fields of neuroimaging to compare across

studies (Fox, 1995; Friston et al., 1995). For adult neuroimaging stud-

ies, two common spaces (along with a standard coordinate system, or

stereotaxic space) have emerged as standard common spaces for spa-

tial normalization: Talairach space (Talairach & Tournoux, 1988) and

MNI space (Collins, Neelin, Peters, & Evans, 1994; Evans

et al., 1993), with MNI space now considered the “standard” (Laird

et al., 2010).

In recent years, MRI has had increased utilization as a method-

ological tool to examine brain development in infancy (Eyre

et al., 2020; Gilmore, Knickmeyer, & Gao, 2018; Howell

et al., 2019; Li et al., 2019). However, there is no standard com-

mon space template for infant brain studies. The adult MNI atlas is

not appropriate for infant studies primarily due to vast neuroana-

tomical differences between the adult and infant brain. (Gaillard,

Grandin, & Xu, 2001) Studies have shown the use of the adult MNI

atlas in the analysis of infant neuroimaging studies introduces sig-

nificant biases (Kazemi, Moghaddam, Grebe, Gondry-Jouet, &

Wallois, 2007). There also exists major challenges in the develop-

ment of a standardized infant brain common space. For example,

brain development during the first year of life is rapid and dynamic

with specific anatomical patterns of development for different ages

(Gilmore et al., 2007; Knickmeyer et al., 2008). Second, high quality

neuroimaging data is difficult to acquire in infancy due to low spa-

tial resolution, low tissue contrast, and high participant motion (Shi

et al., 2011; Xue et al., 2007). Third, common space templates are

typically constructed based upon a large sample of high-quality

neuroimaging data, thus making a template difficult to construct in

infants (Shi et al., 2011). With these existing challenges, approaches

to spatial normalization for infant neuroimaging studies have been

largely inconsistent (Li et al., 2019; Oishi, Chang, & Huang, 2019;

Shi et al., 2011). While “standard” infant atlases have been pro-

posed (Oishi et al., 2019; Shi et al., 2011), it is currently unclear

which common space approaches are used most frequently in

infant neuroimaging. In this systematic review, we conducted a

comprehensive literature search, review of common spaces used by

each study, and analysis of common spaces for infant neuroimaging

studies published between the years 2000–2020. By conducting

this systematic review, we sought to understand the current state

of the infant neuroimaging field in terms of the popularity and vari-

ability in spatial normalization methodology and to assist in the

field of infant neuroimaging to adopt a “standard” common space

moving forward.

2 | METHODS

2.1 | Objective

In this systematic review, we aimed to summarize the approaches to

spatial normalization used in infant neuroimaging studies between the

years 2000 and 2020. We only included original quantitative research

studies in the systematic review.

2.2 | Eligibility criteria

Quantitative research studies were excluded from the systematic

review if they were: (a) published before the year 2000 (b) written in

languages other than English (c) animal studies, case reports, review

articles, clinical/radiologist review, not MRI of the brain, and method-

ological manuscripts (d) fetal MRI studies or participants were older

than 18 months chronological age (e) articles using only other imaging

modalities other than MRI, (e.g., fNIRS, PET, EEG).

2.3 | Search procedure and studies identified

We conducted a search on PubMed for infant neuroimaging studies

that fit the eligibility criteria. Literature was compiled on September

2–3rd, 2020 using the following search string: “infant MRI” and “neo-
natal MRI”, “neonatal ‘fmri’”, “toddler ‘fmri’”, “‘toddler fmri’”, “pre-
term fmri”, “neonate(s)”, “infant(s)”, “(((infant) OR (neonate)) Or

(newborn)) AND ((fmri) OR (MRI) OR (DTI))”. The initial search

resulted in 37,782 manuscripts. The authors conducted screening and

eligibility assessment based upon the eligibility criteria previously

described using the web-tool Rayyan (Ouzzani, Hammady,

Fedorowicz, & Elmagarmid, 2016). After the screening procedure had

identified a subset of manuscripts that fit the eligibility criteria (834),

the full articles were reviewed for eligibility and coded into four cate-

gories based upon the common space utilized in the study: (a) single

subject space (e.g., analyses conducted in native space or no common

space was used), (b) a study specific common space such that the

common space was generated using the data in the study (e.g., tract-

based spatial statistics or TBSS option “-n”), (c) an “off the shelf” atlas
was used as the common space (e.g., the UNC Neonate Atlas), or (d) a

hybrid approach to common space was utilized (e.g., more than one

common space within the same imaging modality or different com-

mon spaces were used for each imaging modality). The results from

the screening procedure are shown in the PRISMA Consort Chart (see

Figure 1). We examined the breakdowns of common space by imaging

modality: diffusion-weighted imaging (DWI), structural MRI, or func-

tional MRI (fMRI)/resting-state (rsfMRI). Further, we examined the

distributions of imaging modalities by publication year, common space

by publication year, common space by age at scan, and common space

by special population. For the studies that utilized off the shelf atlases,

we examined the breakdown of which atlases were most used. All

authors contributed to the rating these articles.
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2.4 | Statistical methods

For the analyses of common space (overall), by imaging modality, by

age of the sample, by population, and by year, the distribution of “off
the shelf” atlases, we used the count for each generated from the

review of the full article. For a subset of the articles (n = 298, articles

from 2018–2020), we calculated the inter-rater reliability (Cohen's

kappa) of the agreement of two raters for classify articles into a com-

mon space category. For the calculation of Cohen's kappa, we used

the Kappa() function in the R package “irr” (Gamer, Lemon, Gamer,

Robinson, & Kendall's, 2012). To test for differences in distributions

for two-way contingency tables, we used a chi-square test. To test for

differences in distributions for three-way contingency tables, such as

common space (single subject, study specific, off the shelf) by imaging

modality (DWI, sMRI, and fMRI) by publication year (before 2011 or

2011 and after), the log-linear analysis version of a chi-square test

was used. The log-linear analysis version of the chi-square test is rec-

ommended for three-way contingency tables and calculates G2 via a

likelihood-ratio chi-square. G2 is like X2 but is based on the ratio of

the observed to the expected frequencies. For a three-way contin-

gency table of rows (A), columns (B), and layers (C), seven G2 values

can be calculated. ABC calculates the significance of a three-way

interaction of A, B, and C. The two-way interactions are each calcu-

lated (AB, AC, BC) and three values are calculated for the two-way

interactions with the effect of the third removed such that AB(C) is

the two-way interaction of AB removing the effect of C. We reported

the interactions of BC if they are significant, but do not interpret

these interactions as we are only focused on the interactions of com-

mon space. p-values were corrected for multiple comparisons using

Bonferroni correction.

3 | RESULTS

3.1 | Inter-rater reliability

The analysis of the inter-rater reliability indicated “very good” agree-

ment between the two raters: K = 0.945, p <.0001.

F IGURE 1 PRISMA diagram for the
systematic review of infant common
spaces
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3.2 | Common space by imaging modality

According to our systematic review, the most used common space

across imaging modalities was single subject space, followed by off

the shelf atlases, study specific templates, and lastly by hybrid regis-

trations (see Figure 2). We examined the differences in distributions

for common space (single subject, study specific, and off the shelf) by

imaging modality (DWI, sMRI, fMRI) using a 3 � 3 contingency table.

For the contingency table analyses, we removed any studies that used

a “hybrid” approach to common space (n = 50), this resulted in

784 studies for this analysis. The log-linear test for the 3 � 3 contin-

gency table was significant (X2[4, 784] = 106.46, p <.0001), indicating

that the different modalities relied on different common space

approaches. Upon further inspection, in DWI studies single subject

space appeared to be the most popular (49.32% of all DWI studies),

followed by study specific (32%), and off the shelf (18%). For struc-

tural MRI studies, single subject space and off the shelf atlases repre-

sented the majority (with 41.8% and 39.72% prevalence,

respectively), followed by registration to a study specific template

(18.46%). For fMRI and rsfMRI studies, off the shelf templates were

the most common approach (64.2%), followed by study specific (23%).

Analyses in single subject space (12.6%) were the least common for

this imaging modality. Results of the common space by imaging

modality analysis suggest that, across the studies included in the sys-

tematic review, the different modalities used different common

spaces, most studies used single subject space (40.6%), and DWI was

the most common imaging modality (47.32%).

3.3 | Common space by imaging modality by
publication year

To study trends over time in the field for common space and imag-

ing modality, studies were coded based upon their year of

publication. To examine potential common space by imaging modal-

ity by publication year interactions we binarized publication year to

studies between 2000–2010 and 2011–2020. Overall, there were

significantly more infant MRI studies published from 2011 to 2020

than the decade before. Using a likelihood-ratio chi-square, we

examined the interactions of common space, imaging modality, and

publication year using a 3 (common space: single subject, study spe-

cific, off the shelf) by 3 (imaging modality: DWI, sMRI, fMRI) by

2 (publication year: 2000–2010 and 2011–2020) contingency table.

The G-test indicated a significant common space by imaging modal-

ity by publication year interaction (G2[12, 784] = 187.3, p <.0001).

Further, while controlling the effect of the third variable, there was

a significant common space by imaging modality interaction

(G2[8, 784] = 121.94, p <.0001) and common space by publication

year interaction (G2[6, 784] = 71.5, p <.0001) but not a

significant imaging modality by publication year interaction

(G2[6, 784] = 12.76, p = 0.05). Overall, these interactions suggest

that, while the relative popularity of the imaging modalities did not

change across these two time points (Figure 3), what common

spaces that were used did changed, with off the shelf atlases

becoming the most popular choice by 2020 (Figure 4).

3.4 | Common space by imaging modality by age
at scan

For this analysis, we classified the studies into age groups based

upon the age at scan. Before term-equivalent age (TEA) referred

to studies in which the sample was less than 37 weeks post-

menstrual age (PMA) at the time of scan. Two additional catego-

ries were examined which included “longitudinal scans” and “wide

age range.” Longitudinal scans refer to studies that involve the

same population being imaged at multiple time points. The wide

age range category consisted of samples with age ranges greater

F IGURE 2 Frequency distribution of
different common space registrations
grouped by imaging modality and across
all modalities (Total). The DWI category
includes studies employing diffusion
tensor imaging (DTI), diffusion kurtosis
imaging (DKI), and any other modality
based upon DWI (e.g., neurite orientation
dispersion and density imaging). The sMRI
category refers to structural MRI studies,
and fMRI/rsfMRI to task and resting state
functional MRI studies. A single study can
be counted twice if multiple modalities
were used
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than 5 months or cross-sectional data collected at multiple

timepoints. Studies were coded as a longitudinal or wide age

range studies, studies with infants that were before TEA–1 month

old at the age of scan, and studies with infants that were 2–

18 months at the time of the scan. We examined the three-way

interaction of these variables using a 3 (common space: single

subject, study specific, off the shelf ) by 3 (imaging modality: DWI,

sMRI, fMRI) by 3 (age at scan: longitudinal or wide age range,

before TEA–1 month, or 2–18-month-old). The G-test indicated a

significant common space by imaging modality by age at scan

interaction (G2[20, 784] = 198.06, p <.0001). Controlling for the

effect of the third variable, there was a significant common space

by imaging modality interaction (G2[12, 784] = 115.54, p <.0001),

a significant common space by age at scan interaction

(G2[12, 784] = 66.76, p <.0001), and a significant imaging modal-

ity by age at scan interaction (G2[12, 784] = 50.32, p <.0001. The

testing of these interactions suggests different common spaces

were used at different age ranges with studies of older infants

(>2 months of age at the time of the scan) and longitudinal

studies using off the shelf templates more commonly that studies

of younger infants (<2 months of age at the time of scan;

Figure 5).

F IGURE 3 Frequency of imaging
modalities across 20 years of infant MRI
publications ranging from years 2000 to
2020. Distribution was analyzed in 3-year
increments

F IGURE 4 Studies published prior to
2010 primarily used single subject space
compared to using a template—either off
the shelf or study specific (single subject
space: n = 83, study specific: n = 18, off
the shelf: n = 12). In contrast, studies
published after 2011 primarily used a
template (single subject space: n = 236,
study specific: n = 183, off the shelf
template: n = 252)
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3.5 | Common space by imaging modality by
special population

As infant studies may choose a specific type of common space for

certain special populations of interest, we determined the number

of studies using each common space for studies of preterm infants,

other special populations besides preterm, and studies that did not

have a special population (see Figure 6). The preterm category was

determined by if the sample of infants imaged was less than

37 weeks gestational age at birth and included studies of low-birth-

weight infants. The other special populations category included

infants with autism spectrum disorder (ASD)/high risk for ASD,

hypoxic–ischemic encephalopathy, prenatal exposure to alcohol/

drugs/maternal mood symptoms, intrauterine growth restriction, and

congenital heart diseases. These clinical categories did not have

enough studies for individual group analysis. We tested the common

space by imaging modality by special population interaction using a

3 (common space: single subject, study specific, off the shelf) by

3 (imaging modality: DWI, sMRI, fMRI) by 3 (special population: pre-

term, other special population, no special population). The G-test

indicated a significant common space by imaging modality by age at

scan interaction (G2[20, 784] = 176.36, p <.0001). Controlling for

the effect of the third variable, there was a significant common

space by imaging modality interaction (G2[12, 784] = 109.42,

p <.0001), a significant common space by special population interac-

tion (G2[12, 784] = 28.44, p <.004), and significant imaging modality

by special population interaction (G2[12, 784] = 32.3, p <.001).

Overall, these suggest that the common space choice significantly

differed between studies of with or without special populations. In

preterm studies and studies of other special populations, the most

popular common space is single subject space. In contrast, the off

the shelf common space is most popular when the study is com-

prised of no special population.

3.6 | Off the shelf atlas distribution

Of the 264 studies classified as using an off the shelf atlas, we exam-

ined the breakdown of which atlases were the most used. The

most common off the shelf atlas was the UNC infant 0–1–2 atlases

(Shi et al., 2011; http://www.med.unc.edu/bric/ideagroup/free-

softwares/unc-infant-0-1-2-atlases) used in 24% of the studies,

followed by 20% of the studies fitting into an “other” category for off

the shelf atlases, followed by 13% that used the JHU neonate atlases

(Oishi et al., 2011; http://cmrm.med.jhmi.edu/cmrm/Data_neonate_

atlas/atlas_neonate.htm; see Figure 7).

4 | DISCUSSION

In our systematic review of the common spaces used for infant neuro-

imaging between years 2000–2020, several patterns emerged. DWI

and sMRI studies mostly used single subject space while fMRI studies

have mostly used an off the shelf atlas. While early studies relied

many on single subject space, off the shelf atlases increased in

popularity across the last decade and were the most popular by

2018–2020. We found that single subject space was most common

for studies with young infants (before TEA–1 month old) with an

increase use of off the shelf atlases in older samples and in longitudi-

nal samples (multiple scan time points across infancy). For the exami-

nation of common spaces for special populations, studies of preterm

infants and other special populations favored single subject space

F IGURE 5 Frequency distribution of
common space registrations across age
groups. The distribution was analyzed by
grouping studies in which infants were
scanned before term equivalent age (TEA)
to 1 month old and studies in which
infants were scanned at 2–18 months of
age. Longitudinal scans and studies
utilizing a wide age range were accounted
for separately
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F IGURE 6 Frequency distribution
(Panel A) and percentage breakdown
(Panel B) of type of common space
registration across types of population in
the sample. Samples were classified as
“preterm” if they included infants who
were less than 37 weeks gestational age
at birth and low birth weight infants,
“other special populations” if they
included infants with neurodevelopmental
disorders, medical conditions, or prenatal
exposures, or “no special population” if
they only included typically developing
infants

F IGURE 7 The most common off the shelf templates used were UNC infant atlases (n = 62), JHU neonate atlases (n = 34) and other;
templates that were used infrequently (n = 54)
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while studies without a special population most used an off the shelf

template. For studies that used an off the shelf atlas, the UNC infant

atlases were the most common, followed by the JHU neonate atlases.

The findings of the systematic review indicate a need for a standardi-

zation across studies regarding a common space, that will be critical

for rigor and reproducibility as the field of infant neuroimaging

matures.

There still exist several challenges specific to infant neuroimaging

data that have contributed to the lack of consensus and standardiza-

tion of a common space across the field (Korom et al., 2021). A stan-

dard common space for infant neuroimaging would have to consider

the rapid growth in cytoarchitecture, shape, and volume that occurs

between birth and the end of the second year of life (Oishi

et al., 2019). Further, compared to adult data, infant neuroimaging

data has reduced tissue contrast between gray and white matter

(Gilmore et al., 2018). The relative intensities of gray and white matter

for T1- and T2-weighted images are similar between 4 and 8 months

of age, posing issues for analyzes that involve tissue classification

(Gilmore et al., 2018). In addition to poor image quality and tissue con-

trast, standardization of a common space for infant neuroimaging

would require both a T1-weighted and T2-weighted template as

researchers may only collect (or prioritize) a T1 or T2 structural image

based upon the age of the sample. Lastly, the common space would

have to be representative and consist of many high-quality scans. For

an off the shelf common space atlases, greater than 100 images aver-

aged is typically required (Shi et al., 2011). If this was conducted for

multiple age ranges, likely, >100 high quality images acquired longitu-

dinally would be needed. This is exceptionally difficult when imaging

infants. However, as infant neuroimaging datasets increase in size,

such as the Baby Connectome Project and Developing Human

Connectome Project, a standard common space will be critical.

A standard common space for infant neuroimaging would need to

address the existing limitations discussed above. It would also be use-

ful for this common space to have correspondence to the adult MNI

coordinate system. Most neuroimaging results are based upon adult

studies (mostly registered to the adult MNI template; Oishi

et al., 2019). Therefore, having these as a reference with direct ana-

tomical correspondence can enhance our understanding of the devel-

oping infant brain. Our results indicated a shift in the field moving

from single subject space analysis to using off the shelf atlases. This

finding is encouraging as both single subject space and study specific

common spaces may be highly biased by the sample (S. Zhang

& Arfanakis, 2013). Due to the replicability crisis (Gorgolewski &

Poldrack, 2016; Klapwijk, van den Bos, Tamnes, Raschle, & Mills, 2021),

it is critical for the field of infant neuroimaging to reduce as much

sample-specific bias as possible to enhance rigor and reproducibility

across studies. A standard common space for registration with a stan-

dard coordinate system for reporting results would facilitate meta-

analyses and data sharing. For example, to directly compare the results

of two studies, a research lab may need to re-register their data into

the common space another lab used. This is not only time consuming

but can introduce bias. Similarly, coordinate-based meta-analyses—

which provide a more precise estimate of the effect size and can

increase the generalizability of the results of individual studies—are not

possible without a common coordinate system to report results. As

infant neuroimaging has an existing small sample size issue (Korom

et al., 2021), defining a standard common space will facilitate meta-

analyses and data sharing and enhance rigor and reproducibility across

infant neuroimaging studies.

When defining this standard common space, it is natural to ask:

are currently off the shelf atlas sufficient or do new ones need to be

created? The UNC infant 0–1–2 (Shi et al., 2011) and JHU neonate

atlases (Oishi et al., 2011) are the most used. The UNC infant atlases

are examples of spatio-temporal atlases that have a neonatal, 1 year

old and 2-year-old atlas. The atlases were generated from 95 neonates

that were scanned 5 weeks after birth and then scanned at 1 and

2 years old. The atlases are available in both T1-weighted and

T2-weighted images, tissue probability maps, and an infant Auto-

mated Anatomical Labeling (AAL) parcellation (Oishi et al., 2019; Shi

et al., 2011; Tzourio-Mazoyer et al., 2002) The collection of JHU neo-

nate atlases includes a group averaged atlas and single-subject-based

atlas for T1- and T2-weighted images as well as a DTI based atlas. The

group averaged atlases for the DTI and T2-weighted atlas were con-

structed from 20 healthy, term-birth, neonates scanned within 4 days

after birth. The JHU neonate T1 atlas was constructed from

15 healthy, term-birth, neonates (37–41 gestational weeks). In terms

of frequency of use, adopting the UNC infant atlases as the standard

of the field could allow for future studies to be comparable to the

greatest of the studies conducted to date in terms of common space.

The spatio-temporal aspect of the UNC atlases is also appealing as

three major developmental periods in early life are represented: neo-

natal, 1 year old, and 2 years old. However, the UNC infant atlases

(0–1–2) are limited if the age of the study's participants are outside

these three time points (e.g., 5–6-months-old, 17–18-months-old). To

mitigate this issue, spatiotemporal longitudinal 0–3–6–9–12 months-

old atlases as both T1- and T2-weighted images have been released

(https://www.nitrc.org/projects/infant_atlas_4d/; Zhang et al., 2016).

Nevertheless, given the need for large sample sizes and fine grain age-

specificity, these atlases may just be the starting points in developing

a standard common space.

Along with the standardization of a common space (or spaces in

the case of spatio-temporal atlases), the growing field of infant neuro-

imaging will have to adopt a standardized method of choosing an off

the shelf template. For example, if two studies both have a sample of

infants with a mean chronological age of 6 months and one study

chooses a neonate atlas as its common space and the other chooses a

1-year atlas, the results may not be directly comparable despite the

ages of the infants being similar. The choice of the different atlas for

common space registration could negatively impact the rigor and

reproducibility of the studies as the normalization procedure could

provide differences between atlases in noise due to misregistration of

the images at the voxel level and impact statistical power (Oishi

et al., 2019). Standardization, not only the common space, but also

how to best account for participant ages will be critical.

Infant neuroimaging datasets begin to reach “big data” levels like
adult neuroimaging data. Two large open-source infant neuroimaging
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datasets exist: the Baby Connectome Project (Howell et al., 2019) and

the Developing Human Connectome Project (Eyre et al., 2020). Fur-

ther, the National Institutes of Health (NIH) has announced the

HEALthy Brain and Child Development Study (HBCD). The HBCD will

involve recruitment of a large, diverse sample of pregnant women

across several sites in the United States. It will include neuroimaging

data with a focus on characterizing developmental trajectories. Both

within and between these large infant neuroimaging datasets consen-

sus on common space registration (for multiple ages) will be critical to

combine these valuable data.

Studies in the field of infant neuroimaging have steadily increased

since the beginning of use for nonclinical studies in the early 1990s

(an average of 160 publications per year to 530 per year in the last

decade) (Pollatou et al., 2022). However, due to the challenges of

infant neuroimaging, the field has experienced a lag in standardization

of best practices compared to adult MRI studies. As we have demon-

strated with the current systematic review, there is a critical need for

the field to establish a standard common space. To address these

issues concerning establishing best practices for the field, organiza-

tions, like Fetal, Infant, Toddler, Neuroimaging Group (FIT'NG) (Pollatou

et al., under review), will be critical to establish best practices within

the field (common space, scan time, prep procedures for scanning),

community exchange and collaboration (sharing analytic pipelines,

datasets), and education (training across institutions at multiple

levels).

The current systematic review is not without its limitations. Some

of the literature currently under review lacked a clear description of

methodology, thus making it hard to identify the type of registration,

age range, and population. This was especially true for studies devel-

oping a study specific template. In addition, many studies used multi-

ple common spaces or adapted an off the shelf template for their own

use that was later labeled as “hybrid” or “other.” This definition did

not account for the use of different common spaces for unique

modalities within the same paper. Furthermore, there are some meth-

odological limitations within our review, such as limited data on inter-

rater reliability. Inclusion and exclusion inter-rater reliability were

100% when calculated in a subset of 370 papers rated by two

reviewers. Clear exclusion and inclusion criteria provided guidelines

and limited discrepancies between raters reviewing papers, mitigating

any inter-rater reliability issues, but future reviews might benefit from

collecting information about reviewer's agreement. Finally, given the

large number of papers included in our analyses, a small number of

mis-classified papers is unlikely to change the general trends

reported here.

5 | CONCLUSIONS

Despite these limitations, our systematic review provides evidence

of a lack of a standard common space for infant neuroimaging

studies. With the maturation of the field of infant neuroimaging, a

standard common space will be critical to examine the generaliz-

ability of results across samples, ages, special populations, and

imaging modalities. Further, a standard common space has the

potential to increase rigor and reproducibility by reducing sample

specific bias. The results of the systematic review have provided a

quantification of the last two decades of infant neuroimaging to

gauge where the field currently stands in terms of common space.

With the results of the review in mind and an eye toward the

future of the field including large consortium neuroimaging

datasets, we suggest it is a critical time to adopt a standard com-

mon space.
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