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Abstract

Motivation: Microbial gene catalogs are data structures that organize genes found in microbial communities, provid-
ing a reference for standardized analysis of the microbes across samples and studies. Although gene catalogs are
commonly used, they have not been critically evaluated for their effectiveness as a basis for metagenomic analyses.

Results: As a case study, we investigate one such catalog, the Integrated Gene Catalog (IGC), however, our observa-
tions apply broadly to most gene catalogs constructed to date. We focus on both the approach used to construct this
catalog and on its effectiveness when used as a reference for microbiome studies. Our results highlight important
limitations of the approach used to construct the IGC and call into question the broad usefulness of gene catalogs
more generally. We also recommend best practices for the construction and use of gene catalogs in microbiome
studies and highlight opportunities for future research.

Availability and implementation: All supporting scripts for our analyses can be found on GitHub: https://github.com/
SethCommichaux/IGC.git. The supporting data can be downloaded from: https://obj.umiacs.umd.edu/igc-analysis/
IGC_analysis_data.tar.gz.

Contact: mpop@umd.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction
Increasingly, studies of microbial communities rely on metagenom-
ics—the sequencing of DNA extracted directly from a microbial
mixture. Assembling metagenomic reads into longer contiguous
sequences (contigs) is still a computationally challenging problem,
because of repeated sequences within and among genomes, uneven
abundances of organisms, sequencing errors and strain-level vari-
ation. Due to these challenges, and to limitations of sequencing tech-
nology, reconstructing complete and accurate genomes for all
organisms in a single, complex metagenomic sample is still challeng-
ing. Given enough samples, metagenome assembled genomes can be
reconstructed for many, but often not all, of the species comprising

a microbiome. Regardless, metagenomic assemblies typically com-
prise many small contigs of unknown taxonomic origin.

The fragmented nature of metagenomic assemblies complicates
data analysis, both because it is difficult to associate genomic frag-
ments with individual taxa, and because it is difficult to identify
related genomic fragments across samples. For these reasons, the
earliest metagenomic studies focused on genes (and their inferred
functions) found within assembled fragments, ignoring their precise
taxonomic origin. Even in fragmented data, genes can be fairly ef-
fectively identified (Rho et al., 2010). A gene-centric approach was
used in the first large scale metagenomic study of ocean bacteria
(Yooseph et al., 2007). To prevent overcounting due to sequencing
and assembly errors, or due to small differences in gene sequences
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within closely related organisms, Yooseph et al. (2007) clustered the
protein sequences based on similarity and focused their analysis on
the representative sequence of each cluster. This gene ‘catalog’
revealed the tremendous diversity of bacterial functions in the ocean,
with the newly predicted protein sequences doubling the number of
known proteins. The MetaHIT project (Qin et al., 2010) con-
structed a similar catalog in order to characterize the functional
composition of the human gut microbiome. Qin et al. (2012) lever-
aged a gene catalog as the basis for a microbiome association study
in type 2 diabetes, and introduced the concept of metagenomic link-
age groups—groups of genes that co-vary in abundance across sam-
ples. The gene catalog thus represents the basis for grouping
together genes that likely originate from a single organism, an idea
further extended by Nielsen et al. (2014) to help reconstruct partial
genome sequences from metagenomic data.

Following these initial studies, gene catalogs have become ubi-
quitous in the analysis of metagenomic datasets, and have been cre-
ated for the gut microbiota of multiple animals [e.g. mouse (Xiao
et al., 2015), rat (Pan et al., 2018), pig (Xiao et al., 2016a, b), dog
(Coelho et al., 2018), cow (Li et al., 2020), macaque (Li et al.,
2018), chicken (Huang et al., 2018), lion, leopard and tiger (Mittal
et al., 2020)], ocean bacteria (Sunagawa et al., 2015), soil bacteria
(Lou et al., 2019) and the human vagina (Ma et al., 2020) and re-
spiratory tract (Dai et al., 2019). Gene catalogs are commonly used
to: (i) reduce redundancy in the data, thereby improving estimates of
diversity (Yooseph et al., 2007); (ii) act as a common frame of refer-
ence across samples and studies; (iii) serve as a basis for metage-
nomic-wide association studies (Wang and Jia, 2016); and (iv) guide
the binning of metagenomic contigs into organism-specific groups (
Nielsen et al., 2014; Plaza O~nate et al., 2018).

Such analyses may be confounded by the specific properties of
the catalog being used. Yet, to our knowledge, the structure and
construction of gene catalogs have not been critically evaluated.
Because the processes for constructing and using gene catalogs are
broadly the same across studies, generalizable observations can be
obtained from the analysis of any of the catalogs referenced above.
We focus here on the Integrated Gene Catalog (IGC) (Li et al.,
2014), which seeks to provide a nearly comprehensive collection of
the gene sequences identified in the human gut microbiome. We
chose the IGC because it provides all the supporting metadata and
intermediate files necessary to conduct a critical analysis of the
structure of the resulting clusters.

1.1 The construction and use of gene catalogs
Catalog construction starts by identifying genes within metagenomic
data. The gene sequences are then clustered together based on simi-
larity in order to remove trivial differences between sequences due
to fragmentary data (e.g. genes that miss the start or stop codons),
sequencing errors or small, strain-level variations. The clustering
can be performed at the DNA level [e.g. the IGC (Li et al., 2014)],
or at the amino acid level [e.g. the Global Ocean Survey (Yooseph
et al., 2007)]. Analysis at the DNA level provides greater resolution
for taxonomic classification, whereas the amino acid level is better
suited for functional analysis and is more able to group together dis-
tantly related but functionally similar sequences. The implied, but
often unstated, goal of the clustering process is to reproducibly
group together sequences that have the same function and/or taxo-
nomic origin, thereby defining the gene from which the sequences
are derived in a way that is consistent across samples. Each cluster is
typically represented by one sequence, either a representative
selected from the sequences clustered together, or a sequence that
represents the consensus of the clustered sequences. Beyond the ob-
vious use of these sequences in a broad range of sequence-based
analyses (e.g. database searches, function or structure prediction),
the cluster representatives can also be used to estimate the relative
abundance of the corresponding genes within microbiome samples.

1.2 Historical context
Clustering of biological sequences that share a common function or
taxonomic origin has been at the core of biological research long

before the first metagenomic experiment. Databases such as the
Clusters of Orthologous Groups (COG) (Tatusov et al., 2000) and
Pfam (Sonnhammer et al., 1997) date back to the late 1990s and
were developed to organize the rapidly accumulating protein se-
quence information. To define the boundary of clusters, these data-
bases used reciprocal best hit links (COG), or hidden Markov
models built upon multiple alignments of related proteins (Pfam),
approaches that rely on statistical significance measures instead of
arbitrary thresholds based on sequence similarity. At the same time,
taxonomic analyses based on housekeeping genes relied on careful
phylogenetic analyses to define species boundaries (Lan and Reeves,
2001).

In the early 2000s, metagenomic studies yielded much larger
datasets than previously seen. The challenge of effectively scaling
analyses to cope with increasingly larger datasets led to the develop-
ment of new approaches that emphasized speed over the accuracy or
comprehensiveness of the analysis. CD-HIT (Li and Godzik, 2006),
for example, a greedy clustering approach we briefly describe below,
was developed to address the challenges encountered when analyz-
ing the data from the Global Ocean Survey. Although CD-HIT and
some other clustering tools developed (Edgar, 2010; Ghodsi et al.,
2011) relied on fixed thresholds to determine the boundaries of clus-
ters, it was already recognized that such thresholds were not consist-
ent with biologically relevant entities (Nguyen et al., 2016; Shah
et al., 2018); for a given threshold, some clusters contained sequen-
ces from multiple species, whereas other species were represented in
multiple clusters.

The estimation of abundances from sequencing reads is a rela-
tively new development in metagenomic studies but has been used
extensively in the study of gene expression in eukaryotes. A number
of factors have been identified that confound abundance estimation
including multi-mapped reads, uneven depth of coverage, and se-
quence composition biases. Computational and statistical
approaches have been developed to address such challenges (Bray
et al., 2016; Li and Dewey, 2011; Patro et al., 2014, 2017).

1.3 Overview of the integrated gene catalog
The Integrated Gene Catalog comprises 9 879 896 annotated gene
clusters that were constructed from a combination of 511 prokary-
otic reference genomes from species known to occur in the human
gut, and 1267 gut metagenome datasets from Chinese, American
and European cohorts. The IGC has been used to discover correla-
tions between gut microbiome composition and resistance to im-
mune checkpoint inhibitors in cancer patients (Routy et al., 2018),
to observe that microbiome composition is modulated to a greater
degree by environmental factors than by human genetics
(Rothschild et al., 2018), to correlate glycemic response after meals
with microbiome composition (Zeevi et al., 2015) and to identify
signs of human fecal contamination in a river with sewage input
(Meziti et al., 2016).

The IGC was created through a multistep clustering process (Li
et al., 2020). First, separate gene catalogs were created from the
metagenomic data derived from each cohort: American (AGC),
Chinese (CGC) and European (EGC), and for the sequenced pro-
karyotic reference genomes collection (SPGC). The three cohort-spe-
cific gene catalogs were then clustered together into a larger gene
catalog called the 3CGC, which was then clustered with the SPGC
catalog to create the IGC. Gene clustering was performed with CD-
HIT (Li and Godzik, 2006). As employed in the construction of the
IGC, this tool operates in an iterative fashion, processing the gene
sequences in decreasing order of length. The longest gene sequence
is selected to be the representative of the first cluster. The next lon-
gest sequence is then assigned to the cluster if it matches the repre-
sentative sequence with �95% sequence identity over �90% of the
length of the query sequence, or becomes the representative of a new
cluster. In the following iterations, query sequences either become
representatives of new clusters or are added to an existing cluster if
they match the corresponding representative sequence sufficiently
well. For most applications, only the set of representative sequences
is used, however, the IGC project also provides the full assignment
of individual genes to clusters. Each representative gene sequence in
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the IGC is assigned, if possible, taxonomic and functional labels,
however, only 16.3% of the sequences are assigned a genus-level an-

notation and only 60.4% have functional annotations.

2 Results

2.1 Inconsistent fidelity of clustering
That a 95% sequence identity cut-off is used throughout the mul-
tiple rounds of clustering in the construction of the IGC appears to

imply that the final clusters are consistent with this threshold.
However, the multiple rounds of clustering used to construct the

IGC may yield clusters with a (much) lower identity than the
intended threshold. We call this methodological artifact transitive
clustering error (Fig. 1), which occurs when different gene catalogs

are sequentially clustered. Although each clustering step guarantees
the 95% threshold for the sequences being clustered, this threshold

does not constrain the similarity between sequences that were clus-
tered in prior iterations. The result of transitive clustering error is an
unintended increase in the effective radius of the new cluster with re-

spect to the representative sequence (see Supplementary File S1 for a
detailed explanation of transitive clustering error). When the three

cohorts were clustered into the 3CGC, individual gene sequences
could potentially share as low as 90% identity to the new represen-
tative gene sequences, while two sequences within a cluster may

share as little as 80% sequence identity. The final clustering of the
SPGC and the 3CGC, could potentially have clustered sequences
with only 85% identity to the representative sequence and as low as

70% identity between sequences assigned to the same cluster.
To evaluate the actual impact of transitive clustering error within

the IGC, we focused on the 255 191 IGC gene clusters that con-
tained at least 100 sequences each. Among these clusters, 29.6%

contained sequences that differed from the cluster representative by
more than the intended 95% identity cut-off (Fig. 2A). Furthermore,
8.2% of the clusters contained sequences that are different by 50%

or more from the corresponding cluster representative. This differ-
ence is much higher than the expected error due to transitive cluster-

ing. An explanation is that the construction of the IGC did not
require full length alignments to each cluster representative, but ra-
ther allowed matches that cover as little as 90% of the clustered se-

quence. In the worst case, after two or more rounds of clustering,
sequences within an IGC cluster may not overlap with the selected
representative sequence at all (Supplementary Fig. S1).

The process used to construct the IGC does not constrain the
fraction of the representative sequence that needs to match the
sequences within the cluster. This choice makes it possible for two
sequences to both align to the cluster representative perfectly with-
out sharing any sequence with each other. As an example, cluster
303 contains four sequences of different lengths—16 111 nt (repre-
sentative), 7122 nt, 3012 nt and 2982 nt. All of these genes are com-
plete, spanning from start codon to stop codon and originate from
the SPGC (genes found in nearly complete reference genomes). The
alignment between the three genes to the cluster representative
(Supplementary Fig. S2) demonstrates the lack of overlap between
the individual sequences, suggesting that they align to distinct
domains of the representative sequence, rather than representing
variants of this gene. Supplementary Table S1 lists the domains
found in the representative sequence. This artifact may be wide-
spread within the IGC—within the 255 191 IGC clusters with a
minimum of 100 members, the mean difference between longest and
shortest gene length is 590 nt, representing an average of 14.4% of
the length of the cluster representative (Fig. 2B).

2.2 Taxonomic inconsistency of clusters
The 95% identity threshold selected by the IGC was intended to cre-
ate clusters with taxonomic homogeneity at the species level (Li et
al., 2014). Taxonomic homogeneity is desirable for analyses with
the IGC, however, as we briefly described above, it has long been
recognized that no specific threshold can universally and accurately
capture biologically meaningful boundaries (Nguyen et al., 2016;
Shah et al., 2018).

This can be demonstrated by clustering the genes of genera like
Bacteroides and Lactobacillus comprising multiple species within
which many strains have been sequenced. We separately clustered
the RefSeq genes from 167 Bacteroides (5 355 696 genes) and 166
Lactobacillus species (1 876 284 genes) using the IGC clustering
parameters. Of the resulting 438 106 Bacteroides and 256 949
Lactobacillus clusters, 32% and 24% were composed of multiple
species, respectively.

The taxonomic homogeneity of the IGC clusters can be most
readily assessed within the SPGC because this gene catalog has well-
defined taxonomic labels; however, we note that the SPGC only
contains 200 species with sparse representation per species (a mean
of 2.6 reference genomes). Still, we found that 42 208 (6.4%) of all
clusters in the SPGC grouped together sequences from multiple dis-
tinct species, with a maximum of 21 species in a single cluster.

To estimate the number of species within the IGC clusters
derived from sequences with unknown taxonomic origin (namely,
the three country-specific catalogs), we focused on a subset of 200
IGC clusters: the 100 largest clusters and 100 randomly chosen clus-
ters from those with at least 100 sequences each. We aligned each se-
quence within an IGC cluster to the NCBI nr database (version 5)
using Diamond (Buchfink et al., 2015) (version 0.9.29). We used the
same alignment thresholds as those used by the IGC, requiring at
least 95% sequence identity and 90% query coverage. We retained

Fig. 1. Transitive clustering error. The circles represent three clusters from three dis-

tinct catalogs. Within each catalog, the sequences within a cluster (represented by

points of different shapes) are guaranteed to be within a distance r (5% divergence

in the case of the IGC) from the corresponding cluster representative (solid shape).

When merging multiple catalogs, only the representative sequences are clustered to-

gether (also within the same tolerance r), while the sequences contained within each

cluster are implicitly assigned to the same cluster as the corresponding representa-

tive. In this figure, after clustering the representatives in one round, the triangle clus-

ter representative is the representative of a meta-cluster (dashed line) that includes

the representative sequences of the square and circle clusters. Within this cluster, the

maximum distance between two sequences (marked with A and B in the figure),

may be as high as 4r, or 20% sequence divergence in the case of the parameters used

in the IGC. The distance between a sequence and its corresponding cluster represen-

tative may be as high as 2r, or 10% sequence divergence

Fig. 2. Undesirable effects of gene clustering in the IGC. Data shown refer to the

255 191 IGC clusters that contain 100 sequences or more. (A) The distribution of

CD-HIT percent identity between the representative and the most divergent cluster

member. The vertical red line indicates the 95% identity clustering threshold used

to create the IGC. Note that many sequences are below the target threshold of 95%.

(B) Relationship of percent of the representative gene aligned to the shortest cluster

member and the length of the representative gene
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all database entries that matched each query sequence within these
thresholds. We conservatively inferred the number of species per
gene cluster using a minimum set cover approach. Specifically, we
identified the smallest number of species such that each sequence
had at least one hit to a database sequence from one of these species.
As seen in Figure 3A, 73% of clusters (57% of the largest and 89%
of the randomly selected clusters) are covered by a single species. If
we used just the top database hit for each sequence, the most com-
monly used approach in practice, only 20.5% of clusters (5% of the
largest and 36% of the randomly selected clusters) were composed
of a single species (Fig. 3B).

To explore the converse, the possibility that variants of a gene
from a single species may be distributed across multiple clusters, we
analyzed a collection of 86 830 Escherichia coli genomes obtained
from the GenomeTrakr database (Allard et al., 2016). When focus-
ing on just the 818 core genes of the E.coli pan-genome (genes found
in all of the genomes), the mean sequence identity between the repre-
sentative and the most divergent clustered sequence was 87.7%
which is lower than the 95% threshold used by the IGC. In fact,
only 63 core genes met or exceeded the 95% threshold and would
have been clustered properly by the IGC (Fig. 3C).

2.3 Hidden species within the IGC
A direct consequence of multi-species clusters is the possibility that
genes from an individual species may be ‘hidden’ by representative
sequences belonging to a different species. A species for which no
gene is selected as a representative for a cluster in the catalog
becomes effectively undetectable in the samples being analyzed.

To explore the extent of this problem, we focused on just the
SPGC (genes from complete and near complete genomes) because
these genes have well defined taxonomic labels. Within the SPGC,
the number of representative genes per species ranged from 139
(Escherichia sp. 1_1_43) to 28 404 (E.coli). We simulated reads
from 507 genomes from the same species (or strain, if known) as the
SPGC reference genomes, and mapped these reads to the SPGC
using Bowtie2 (Langmead and Salzberg, 2012). As expected, the
rate of assigning reads to a species was correlated with the number
of representative genes for the species (Supplementary Fig. S3). A
possible confounding factor might be the fraction of reads that map
ambiguously to multiple species; however, the median fraction of
multi-mapped reads was only 3% across species. Only 129 of the
201 species in the SPGC had an assignment rate of 90% or higher,
i.e. 90% of the reads originating from these genomes would be
assigned a correct species-level taxonomic label. At one extreme,
Escherichia sp. 1_1_43, had the lowest number of representative
genes and the lowest assignment rate at 2%. Despite having a large
number of representative genes, E.coli only had an assignment rate
of �83%, because of the large number of closely related species in
the SPGC. All four Shigella sp. within the SPGC had low assignment

rates: 17%, 11%, 8% and 7% for S.flexneri, S.dysenteriae,
S.boydii, S.sonnei, respectively. This is because the reads from
Shigella sp. often map to clusters with an E.coli representative
sequence.

Due to the importance of Shigella sp. for human health, we fur-
ther analyzed 20 known virulence/toxin genes of S.sonnei (Lamba
et al., 2016; Mattock and Blocker, 2017; Nyholm et al., 2015)
(Supplementary Table S2). Only 11 of the 20 genes were taxonomic-
ally labelled as Shigella, seven were labelled as Escherichia and two,
set1A and set1B, were not found at all. Notably, Shiga toxins Stx1A
and Stx1B are labelled as Escherichia, even though they are part of a
mobile prophage genome which has been horizontally transferred
among many Enterobacteriaceae (Juhas, 2015), highlighting the dif-
ficulty of annotating a mobilome.

2.4 Using the IGC as a reference for metagenomic

analyses—simulated data
The primary strategy for using the IGC as a reference when analyz-
ing metagenomic datasets involves mapping sequencing reads to the
representative sequences of the clusters. Although a seemingly
straightforward bioinformatics task, the selection of mapping tools,
parameters of the mapping process and characteristics of the reads
themselves (e.g. read length) may have a significant impact on the
results. To evaluate the effects of such features on the use of the IGC
for metagenomic analysis, we simulated three metagenomic samples
composed of the species in the SPGC. Two samples simulated
Illumina reads (100 nt, 250 nt), and the other simulated 454/
IonTorrent reads (225 nt). We compared mapping statistics for tools
that are widely used in metagenomic analyses, BWA-MEM (Li and
Durbin, 2009) and Bowtie2 (Langmead and Salzberg, 2012) with
default parameters, and BLASTN (Altschul et al., 1990) with thresh-
olds of 95% identity, 90% read coverage and default values for all
other parameters (Table 1).

Fig. 3. IGC clusters can contain more than one species. A and B show the taxonomic heterogeneity of 200 IGC clusters (the 100 largest clusters and 100 randomly chosen clus-

ters with at least 100 sequences). (A) The minimum number of species such that each sequence in a cluster had at least one significant Diamond hit to one of these species (B)

Number of species per cluster if each sequence is assigned the label of the top Diamond result. (C) The distribution of CD-HIT percent identity between the representative and

the most divergent gene sequence for the 818 core genes of E.coli identified from 86 830 assemblies. The red vertical line denotes 95% identity, the IGC clustering threshold

Table 1. The percent of simulated Illumina and 454 Roche reads,

from 507 prokaryotic reference genomes, that map to the IGC with

BWA-MEM, Bowtie2 and BLASTN

Read Datasets BLASTN Bowtie2 BWA-MEM

Illumina 100 nt 74.31 86.44 96.22

Illumina 250 nt 43.98 76.49 98.97

454 Roche �225 nt 64.48 77.82 98.18

Note: For BLASTN, only those alignments with �95% identity and �90%

read coverage are considered. BWA-MEM and Bowtie 2 were run with de-

fault parameters requiring full length matches. Note: 225 nt is the mean

length of the 454 Roche reads.
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The fraction of reads mapped by different tools, and across
different read lengths, varied substantially (Supplementary Table
S3). BLASTN consistently mapped fewer reads than the other
tools. The gene abundance profiles estimated from these map-
pings differed significantly across different mapping tools (Mann
Whitney U test, P-value < 0.001) at every read length, suggesting
the choice of mapping tool may confound abundance estimates
and, therefore, the associations derived from the data
(Supplementary Table S4). Furthermore, nearly half of the reads
multi-mapped, i.e. mapped equally well to multiple IGC clusters.
Multi-mapped reads can confound taxonomic classification and
estimates of abundance, as previously highlighted in RNA-seq
studies (Li et al., 2010). Our results suggest the need for abun-
dance estimation algorithms that can account for mapping ambi-
guity (Bray et al., 2016; Patro et al., 2014, 2017), which are
rarely used in metagenomic studies.

Together, multi-mapped reads and the poor visibility of some
species within the catalog, led to �20% of the reads mapping to
gene clusters classified as a different genus than that from which the
reads originated (Supplementary Table S5). This raises concerns
about the accuracy of taxonomic profiles derived from real metage-
nomic data given that these reads were generated from the genomes
used in the construction of the IGC.

2.5 Using the IGC as a reference for metagenomic

analyses—real data
In addition to the read mapping artifacts discussed previously, genes
that are not represented in the IGC but are present in a sample can
confound the analysis of metagenomic data. Prior studies have dem-
onstrated the IGC is not a comprehensive representation of the di-
versity of the human gut microbiome, lacking many genes found in
the gut of infants (Bäckhed et al., 2015), patients suffering from
various diseases such as gout (Guo et al., 2016) or diabetes
(Forslund et al., 2015), adults from India (only 61% of their gene
catalog mapped to the IGC) (Dhakan et al., 2019), and even adult
twins from the UK (in which a putative 1.5 million genes were not
present in the IGC) (Xie et al., 2016).

To investigate how read mapping artifacts and genes not rep-
resented in the catalog impact analyses based on the IGC, we

used a human gut sample from a 61-year-old Cameroonian male
with a hunter gatherer diet (SRA accession ERR2619707)
(Lokmer et al., 2019). We assembled the data with MEGAHIT
(Li et al., 2015) and predicted genes using Prokka (Seemann,
2014). Only 66.6% of the predicted genes from this sample clus-
tered to an IGC gene representative, genes to which we refer as
the clustered predicted genes. The other genes predicted from the
sample could not be confidently assigned to IGC clusters (and
thus are likely not represented in the IGC), and we refer to these
genes as the unclustered predicted genes.

We separately mapped the reads from the Cameroon dataset
with Bowtie2 to the two sets of genes predicted from the sample and
the IGC clusters, respectively (Fig. 4). The percent of reads mapping
to the predicted genes and the IGC was similar (59.0% to the pre-
dicted genes and 55.3% to the IGC), but the percent of multi-
mapped reads was much higher for the IGC (24.1%) compared to
the predicted genes (3.8%). The reads also mapped to an order of
magnitude more IGC clusters (1 369 981) than predicted genes
(177 745). Together this suggests a high false positive rate, i.e. that
reads from unclustered predicted genes are mapping to IGC clusters
representing potentially unrelated genomic sequences and/or
functions.

To determine the IGC clusters to which the reads from the clus-
tered predicted genes and the unclustered predicted genes were
aligned, we focused our analysis on the read pairs that mapped con-
cordantly to both the predicted genes and to the IGC clusters
(24.1% of all reads). A read pair is considered concordantly mapped
when the forward and reverse reads of the pair map to a gene with
the correct insert size and orientation. Such concordant mappings
are less likely to represent mapping artifacts. Given that each clus-
tered predicted gene has a corresponding IGC cluster, we would ex-
pect the reads mappings to also be shared between the gene and the
cluster to which it is related. Among the 10 032 192 reads that con-
cordantly mapped to clustered predicted genes, 11.9% mapped to a
different IGC gene than expected. Conversely, we would expect few
read pairs which map to the unclustered predicted genes to map to
any IGC clusters given that these genes do not share sufficient simi-
larity with any IGC cluster. Of the 9 058 978 reads that concord-
antly mapped to the unclustered predicted genes, 23.6% mapped to
IGC genes (Fig. 4).

Fig. 4. Genes from taxa in samples not represented in the IGC generate noise during analyses with the IGC. Analysis of reads from Cameroonian human gut metagenome sam-

ple. Box 1 shows the general statistics of the sample. 66.6% of the predicted genes could be assigned to IGC gene clusters—clustered predicted genes. 33.4% of the predicted

genes could not be confidently mapped to the IGC clusters—unclustered predicted genes. 19 091 170 reads mapped concordantly to the predicted genes (52.5% to the clustered

predicted genes and 47.5% to the unclustered predicted genes). Among the 10 032 192 reads that mapped concordantly to the clustered predicted genes (Box 2), 11.9%

mapped to a different IGC gene than expected (false positives denoted by dashed line Box 5). Of the 9 058 978 reads that mapped concordantly to the unclustered predicted

genes (Box 3), 23.6% mapped to IGC genes (false positives denoted by dashed line Box 6)
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2.6 Analysis of other gene catalogs
A survey of 24 gene catalog studies from the last few years highlights
that many were created using a similar clustering algorithm as the
IGC and thus likely share many of the same issues as those identified
above (Table 2). While none of these catalogs provided all the neces-
sary metadata and intermediate files to perform the same analyses as
done for the IGC, we were able to predict which issues likely affect
the catalogs based upon the description of the methods used to con-
struct these catalogs. We note that 5 of the 24 catalogs were affected
by transitive clustering error. Additionally, at least 15 catalogs
allowed genes of highly divergent lengths to be clustered together.
Further, taxonomic inconsistency and hidden species also likely af-
fect 23 of the catalogs.

3 Discussion

Gene catalogs help organize the vast volumes of data generated in
metagenomic experiments. If carefully constructed, they provide a
valuable resource for the analysis of metagenomic samples. Through
our analysis of the IGC—one of the largest gene catalogs available
to scientists today—we have highlighted how the design and con-
struction of a gene catalog can affect downstream analyses in unin-
tended ways. These issues affected a large percent of the gene
catalogs we found in the literature because many were constructed
using similar methods as the IGC.

Perhaps the most prevalent and important source of error for
gene catalogs is caused by clustering gene sequences with a fixed
threshold, creating clusters composed of sequences with variable lev-
els of taxonomic relatedness. Our observation recapitulates the find-
ing that no specific sequence similarity threshold can be used to
consistently capture a particular taxonomic level or functional cat-
egory. This finding has been well documented previously in the con-
text of 16S rRNA sequencing (Nguyen et al., 2016; Shah et al.,
2018). Clustering in this manner effectively hides the taxonomic ori-
gin of all but the gene sequences selected as cluster representatives.
As a result, each species in a catalog might have a different propor-
tion of genes that are not represented (that are hidden by the genes
of other species), genes that are represented once and genes that are
represented in multiple copies. This can introduce bias in down-
stream analyses that aim to explore the presence or abundance of
taxa across samples, a bias already noted in the community
(McLaren et al., 2019). For example, if a catalog contains multiple
variants of a gene from a species, metagenomic reads from that gene
and species might map to multiple variants in the catalog either
uniquely or by multimapping. Through our analysis of the hidden
species of the SPGC and the E.coli core genes, we have shown that
this effect is non-uniform across taxonomic groups and can result in
the biased recruitment of reads across taxa.

Another common source of error for gene catalog construction is
the clustering of genes of widely different lengths. This can result in
clusters where there is little or no overlap between cluster members.
While it is not currently possible to confirm the functional consistency
of all clusters in a gene catalog, if cluster members share little se-
quence similarity with the representative (which is treated as the func-
tional homolog of all cluster members) it is likely that they do not
share the same function. Furthermore, assessing the relationship be-
tween sequence and functional similarity is non-trivial (Ellens et al.,
2017) even in the absence of the confounding information introduced
by the co-clustering of sequences with widely divergent lengths.

The iterative clustering of catalogs can further exacerbate all of
the previously mentioned issues by amplifying the differences be-
tween sequences assigned to a cluster. Among the gene catalogs we
have explored (Table 2), the use of a multi-step clustering process is
typically used for two purposes: to mitigate computational costs,
and/or to update an old catalog by merging it with a newer one.
However, none of the studies we analyzed took into account the
amount of error introduced by iterative clustering. It is certainly de-
sirable to develop computationally efficient catalog construction
methods as datasets increase in size, as well as to efficiently incorp-
orate new data into existing catalogs. Our analysis, however,T
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suggests that it is important to ensure that the fidelity of the clusters
is not impacted by computational convenience, and highlights the
need for additional research in this field.

Coupled with the issues arising from the structure of the clusters
themselves, we have shown that the use of the IGC to analyze a real
metagenomic sample induces many analytical artifacts, including a
high false positive rate—IGC clusters that are not actually found in
a sample, but which ‘recruit’ many reads nonetheless. Conversely, as
the number of species and the number of their gene variants repre-
sented in the catalog increases, so will the number of reads that map
ambiguously (Nasko et al., 2018). As a result, using gene catalogs
that are constructed similarly to the IGC for metagenomic studies
will likely introduce analytical artifacts that outweigh the benefit of
the common frame of reference these catalogs provide.

While raising these concerns, we agree with the authors of the
IGC that properly constructed gene catalogs can be an effective ref-
erence for metagenomic studies. However, to maximize their useful-
ness, gene catalogs should either be created directly from the
samples being analyzed or from closely related samples. Our find-
ings indicate that the goal of tracking individual clusters across stud-
ies is not met by the IGC and other similarly constructed catalogs.
We believe that universal taxonomic identifiers and gene ontologies
represent a better approach for relating findings across gene catalogs
and metagenomic studies. For gene catalogs to be used as global
resources for metagenomic data analysis, new methods for updating
catalogs and accounting for biases introduced by read mapping tools
needs to be researched. For now, we believe the best use case for
gene catalogs is within the narrow context of the samples used to
create them.

Our results highlight pitfalls that need to be avoided when con-
structing such catalogs and reveal several best practices:

• The iterative integration of clusters should be avoided as it

amplifies the errors inherent to the clustering process. A multi-

step clustering process may be necessary to mitigate computa-

tional costs, however we recommend limiting the number of

rounds and accounting for the growth in cluster diameter that is

due to the multi-round process.
• Arbitrary similarity thresholds should be avoided, and instead

researchers should use approaches that are able to dynamically tune

clustering parameters (Callahan et al., 2016; Hao et al., 2011;

Navlakha et al., 2010; Shah et al., 2018; White et al., 2010).
• The clustering procedure should ensure all sequences within a

cluster are of similar length.
• The construction of gene catalogs should not exclusively rely on

data from metagenomic experiments, but rather should be aug-

mented with genomic sequences from organisms that are com-

monly found at low abundance in the samples of interest

(including eukaryotes and viruses), as such organisms are unlike-

ly to be assembled sufficiently well within the metagenomic data.
• The alignment of sequences to the catalog, as well as estimation of

gene abundances from the alignments, should be conducted in a

way that adequately addresses non-specific mapping. Several

approaches have been developed for RNA-seq analysis that effect-

ively handle multi-mappings in an alignment-free manner (Bray

et al., 2016; Patro et al., 2014, 2017), though it remains to be

seen whether these are sufficiently effective in metagenomic set-

tings or whether the underlying algorithms need to be adapted.

During the preparation of our manuscript, a new catalog was
published (Almeida et al., 2021), which partly addresses some of the
issues we have highlighted above. The underlying data being clus-
tered were derived from cultured genome sequences and metage-
nome-assembled sequences, potentially ensuring a higher quality
protein catalog (the Unified Human Gastrointestinal Protein cata-
log). Gene-level clustering was performed at the protein level in one
round of clustering, thereby avoiding transitive clustering error.

Notably, the authors of this new study re-clustered the genes from
the IGC and appear to be unaware of the blow-up in divergence
caused by the iterative process used by the IGC: ‘We clustered the
IGC only at 90% and 50% protein identity, as it was originally de-
replicated at 95% nucleotide identity’ (Almeida et al., 2021). The
Unified Human Gastrointestinal Protein catalog was provided as
multiple catalogs constructed with different similarity thresholds,
acknowledging that no threshold is appropriate for all analyses.
Some of the pitfalls identified above, however, still apply to the new
catalog. When clustering protein sequences, Almeida et al. only con-
trol the fraction of the clustered sequence that needs to match the
cluster representative (80% in this case), raising the possibility of
artifacts such as that highlighted in Supplementary Figure S2.
Furthermore, the new catalog includes the Unified Human
Gastrointestinal Genome catalog which is constructed in a two-step
process to address the computational cost of clustering. The paper
does not indicate that the authors are aware of the additional se-
quence divergence introduced by this process.

A full-fledged analysis of the new catalog, similar to what we
have described above, is beyond the scope of this manuscript.
However, as discussed here, it is apparent that issues such as those
we have described are not widely appreciated in our community. We
hope that our manuscript provides readers with an appreciation for
the complexity of sequence clustering, particularly as it relates to
metagenomic sequence analysis, and leads to a more thoughtful con-
sideration of the pitfalls we have identified when using gene catalogs
as a reference for data analysis.
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