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ABSTRACT
Objective The goal of this work is to evaluate if there 
is an increase in the risk of thromboembolic events 
(TEEs) due to concomitant exposure to dexamethasone 
and apixaban or rivaroxaban. Direct oral anticoagulants 
(DOACs), as well as corticosteroid dexamethasone, are 
commonly used to treat individuals hospitalised with 
COVID- 19. Dexamethasone induces cytochrome P450- 
3A4 enzyme that also metabolises DOACs apixaban 
and rivaroxaban. This raises a concern about possible 
interaction between dexamethasone and DOACs that 
may reduce the efficacy of the DOACs and result in an 
increased risk of TEE.
Design We used nested case–control study design.
Setting This study was conducted in the National COVID 
Cohort Collaborative (N3C), the largest electronic health 
records repository for COVID- 19 in the USA.
Participants Study participants were adults over 18 years 
who were exposed to a DOAC for 10 or more consecutive 
days. Exposure to dexamethasone was at least 5 or more 
consecutive days.
Primary and secondary outcome measures Our 
primary exposure variable was concomitant exposure 
to dexamethasone for 5 or more days after exposure to 
either rivaroxaban or apixaban for 5 or more consecutive 
days. We used McNemar’s Χ2 test and adjusted logistic 
regression to evaluate association between concomitant 
use of dexamethasone with either apixaban or 
rivaroxaban.
Results McNemar’s Χ2 test did not find a discernible 
association of TEE in patients concomitantly exposed to 
dexamethasone and a DOAC (χ2=0.5, df=1, p=0.48). In 
addition, a conditional logistic regression model did not 
find an increase in the risk of TEE (adjusted OR 1.15, 95% 
CI 0.32 to 4.18).
Conclusion This nested case–control study did not find 
evidence of an association between concomitant exposure 
to dexamethasone and a DOAC with an increase in risk of 
TEE. Due to small sample size, an association cannot be 
completely ruled out.

INTRODUCTION
Approximately a decade ago, direct oral anti-
coagulants (DOACs) introduced a new phar-
macological mechanism in the prophylaxis 
and treatment of thromboembolic events.1 
Until that time, patients with thromboem-
bolic disorders or atrial fibrillation (AF) were 
prescribed the vitamin K antagonist warfarin 
in the USA and acenocoumarol in Europe. 
The narrow therapeutic index for warfarin 
and acenocoumarol required patients to 
have a laboratory test to measure the inter-
national normalised ratio (INR) at least once 
monthly to assure the INR is in therapeutic 
range.2 Since 2012, many patients needing 
an anticoagulant were prescribed a DOAC 
because it does not require therapeutic dose 
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monitoring and has a well- understood efficacy and safety 
profile.3–5 In addition, DOACs have less documented 
drug–drug interactions (DDIs) than warfarin.1

The use of DOACs for AF treatment is expected to rise 
to an estimated 6–12 million people in the USA and almost 
18 million in Europe by 2050.6 Two currently approved 
DOACs, apixaban and rivaroxaban, are primarily metab-
olised by the cytochrome P450- 3A4 (CYP3A4) enzyme 
system.7 8 Evidence of safety concerns from interactions 
with drugs that affect the function of CYP3A4 is mixed. 
The Food and Drug Administration Prescribing Infor-
mation warns of concomitant use with CYP3A4 inducers 
because a decrease in plasma levels could lead to a poten-
tial decrease in its anticoagulant mechanism.9 10 However, 
a post- hoc analysis of data from the ARISTOTLE trial did 
not find differences in the efficacy and safety of apixaban 
compared with warfarin while on medications that could 
either induce or inhibit CYP3A4.11

During the COVID- 19 pandemic, serious infections 
were found to be associated with abnormal coagulation 
values that resulted in severe haemostatic disorders and 
higher risk of thromboembolic events in hospitalised 
patients even up to 6 weeks after discharge.12–15 Clinical 
guidelines for COVID- 19 evolved and addressed whether 
patients should be prophylactically treated with antico-
agulant regimens even when not hospitalised.16–18 The 
National Institutes of Health COVID- 19 treatment guide-
lines from February 2022 did not recommend anticoag-
ulants for non- hospitalised patients with COVID- 19. If 
hospitalised, it was recommended to receive thromboem-
bolic event prophylaxis as the standard of care, and to 
continue on anticoagulant treatment if the patient was 
already receiving it before the diagnosis of COVID- 19.19 
The American Society for Hematology recommended 
prophylactic intensity over intermediate intensity for 
patients with COVID- 19- related critical illness who do not 

have suspected or confirmed thromboembolic event.20 
Also, patients on vitamin K antagonist treatment during 
the pandemic who had difficulties to accurately control 
their INR values were recommended to be switched to 
DOAC to facilitate care.21

During this time period, it was demonstrated that corti-
costeroids were effective in improving respiratory distress 
among hypoxic patients with COVID- 19. Dexametha-
sone, a glucocorticoid with a potent anti- inflammatory 
effect and long duration of action (36–72 hours), 
showed lower rates of mortality in patients on mechan-
ical ventilation or receiving oxygen in the RECOVERY 
trial.22 23 However, dexamethasone has been shown to 
induce CYP3A4 activity, though the clinical relevance of 
the induction when concomitantly administered with a 
CYP3A4 substrate is still uncertain.24

Given the potential pharmacokinetic interactions 
of dexamethasone and apixaban or rivaroxaban, our 
goal was to evaluate the odds of concomitant exposure 
to dexamethasone in apixaban and rivaroxaban users 
among persons with (cases) or without (controls) throm-
boembolic events in patients with COVID- 19.

METHODS
Study design and identification of cases and controls
We performed a nested case–control study of adults 
exposed to either apixaban or rivaroxaban for 10 or more 
consecutive days (figure 1). This time period was chosen 
to allow for steady- state blood levels of the DOAC. Cases 
were patients who experienced a thromboembolic event 
on or after 10 days of exposure to either apixaban or rivar-
oxaban. Cases were divided into three groups: patients 
who have no history of a thromboembolic event, patients 
who had an event within 30 days prior to entering the 
cohort and those who had an event more than 30 days 

Figure 1 Schematic diagram representing retrospective observational nested case–control study design used in this study. 
DOAC, direct oral anticoagulant.
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prior to entering the cohort. The reason for this stratifi-
cation was to focus the study on individuals who had new 
thromboembolic events versus history of thromboembolic 
events (recent and long term). Controls were patients 
who were also exposed to either apixaban or rivaroxaban 
but did not experience a thromboembolic event during 
the same month and year, also matching on sex, age (±5 
years), date of SARS- CoV- 2 infection (up to 60 days) and 
prior thromboembolic event. The cohort entry date was 
defined by the apixaban/rivaroxaban prescription date 
for both cases and controls. Matching on the SARS- CoV- 2 
infection was done to reduce confounding.

We defined thromboembolic events as events that have 
SNOMED- CT (Systematized Nomenclature of Medicine 
-- Clinical Terms) or ICD- 10 (International Classifica-
tion of Diseases 10th Revision) diagnostic code for deep 
venous thrombosis, pulmonary embolism, arterial throm-
boembolism, myocardial infarction, ischaemic stroke, 
disseminated intravascular coagulation or sepsis- induced 
coagulopathy. The complete listing of diagnostic identi-
fiers is provided in online supplemental material.

Setting and study period
The data used in this study were from the National 
COVID Cohort Collaborative (N3C), the largest national 
repository of patients who meet a phenotype definition of 
COVID- 19 diagnosis matched to non- infected individuals. 
The dataset includes harmonised de- identified data from 
the electronic health records of more than 72 sites from 
across the USA, and provides data about demographics, 

health conditions, laboratory test results, medications, 
procedures and encounters (medical appointments, inpa-
tient visits, emergency visits and other visit types).25 All 
data are transformed by contributing sites to the Obser-
vational Health Data Sciences and Informatics Common 
Data Model prior to its inclusion in the N3C.26 Approved 
researchers conducted data analyses within the N3C 
‘Enclave’, a secure cloud- based platform developed by 
Palantir Technologies and hosted by National Institutes 
of Health National Center for Advancing Translational 
Sciences that provides a set of tools for data transforma-
tion and analysis.

While the N3C was designed to study patterns in patients 
with COVID- 19, it also includes longitudinal data since 
2017 for some patients. We used data from the Limited 
Dataset present in the Enclave from prior to the start of 
the COVID- 19 pandemic (1 March 2018) until 30 April 
2021. Data prior to March 2018 were excluded from data 
analysis due to sparse data from that time period. Some 
contributing data partners use patient- level date shifting 
in the Limited Dataset as additional step to protect 
patients’ privacy. In this study, we only included data from 
the Limited Dataset for which information about date 
shifting was provided. The flow of data for this study is 
shown in figure 2.

Variables
We defined our primary exposure variable as concomi-
tant use of dexamethasone with apixaban or rivaroxaban 
for 5 or more days after exposure to either DOAC for at 

Figure 2 Schematic diagram representing the flow of data for cohort formation and selection of cases and controls. DEX, 
dexamethasone; DOAC direct oral anticoagulant; N3C, National COVID Cohort Collaborative; TEE, thromboembolic event.
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least 5 consecutive days. The underlying mechanism of 
the potential pharmacokinetic interaction between dexa-
methasone (the putative precipitant drug) and apixaban 
or rivaroxaban (the putative object drug) is induction of 
CYP3A4. Because it could take up to a month after expo-
sure to a medication that induces CYP3A4 metabolism to 
return to baseline, concomitant exposure was considered 
to continue up to 30 days past the stop of dexametha-
sone.27 More details on the definition of these drug expo-
sures are in the online supplemental material.

Use of other medications included aspirin, CYP3A4 
inhibitors, CYP3A4 inducers, antiplatelets, unfractionated 
heparin and low molecular weight heparin (LMWH). We 
included the following comorbidities: diabetes, pulmo-
nary diseases, heart failure, AF, hypertension, various 
cancers, history of smoking, obesity and Charlson Comor-
bidity Index. We imputed body mass index using the prev-
alence of obesity among US adults aged 60 years and over 
according to Centers for Disease Control and Prevention 
definitions.28

The primary analysis was repeated using prednisone 
that was prespecified as a comparator corticosteroid 
because it is widely used but not known to induce CYP3A4. 
We repeated the analysis using concomitant exposure of 
prednisone with apixaban or rivaroxaban for 5 or more 
days after exposure to either DOAC for at least 5 consecu-
tive days as the primary independent variable.

Statistical methods
Descriptive statistics were used to describe the cohort and 
examine the prevalence of cases and controls. The crude 
marginal homogeneity of concomitant exposure to dexa-
methasone between cases and controls was calculated 
using McNemar’s Χ2 test for paired data. We used condi-
tional logistic regression to estimate ORs and 95% CIs, 
while adjusting for all covariates listed in table 1. Since 
control patients were sampled at each point in time when 
a case occurred (ie, ‘density’ or ‘risk set’ sampling), and 
the risk of concomitant exposure was calculated at that 
point of time, the ORs for concomitant exposure (expo-
sure OR) calculated in this study estimated the rate ratio 
from the cohort of patients with data present in the N3C.29 
However, because the N3C cohort was itself designed to 
have COVID- 19 cases and controls, the actual interpre-
tation of the rate ratio estimates is complex. Therefore, 
we refer to these simply as ‘exposure OR’. All analyses 
were repeated using prednisone as the negative control 
precipitant drug.

We performed prespecified sensitivity analyses by (1) 
changing the age matching window from 5 years to 3 years 
and (2) removing the restriction on the data partner date 
shifting to include more data from more sites in the anal-
ysis. We also conducted three post- hoc sensitivity analyses: 
(1) removing the restriction for cohort entry order so that 
the dexamethasone exposure can occur anytime while on 
apixaban or rivaroxaban; (2) changing the criteria for 
concomitant dexamethasone/apixaban or rivaroxaban 
exposure from 5 to 2 days; and (3) adding race (black or 

African American) as a covariate to the original logistic 
regression model.

Patient and public involvement
Patients or members of the public were not involved in 
the study concept or design.

RESULTS
Study participants
A total of 141 811 patients were taking either apixaban or 
rivaroxaban between the second quarter of 2018 and 30 
May 2021 (table 1). All patients are over 18 years of age. 
Of these, 172 patients were identified as cases matched 
to 344 controls. The mean age was 67.9 years for cases 
and 67.6 years for controls. For both cases and controls, 
38.4% of patients were female and 61.6% were male. Of 
cases, 25.6% were identified as black or African Amer-
ican, 62.2% white, and 12.2% as other or unknown. 
The race identity of controls was 17.7% black or African 
American, 66.0% white, and 16.3% other or unknown. A 
greater proportion of cases were black or African Amer-
ican compared with controls (25.6% vs 17.7%, p<0.05).

The majority of both cases (81.98%) and controls 
(73.84%) were exposed to apixaban rather than rivar-
oxaban (p<0.05). Exposure to dexamethasone was 
slightly higher in the controls (50.29%) compared with 
cases (43.61%). The proportion of cases and controls 
receiving LMWH was 61.63% for cases and 66.28% for 
controls. Around half of the cases and controls (52.91%) 
were COVID- 19 positive at the index date (equal due to 
matching). Both cases and controls had high proportion 
of hypertension (89% cases and 81% controls, p=0.01).

Study outcomes
McNemar’s Χ2 test did not find a difference between cases 
and controls in concomitant use of dexamethasone with 
either apixaban or rivaroxaban (Χ2=0.5, df=1, p=0.48). 
After adjustment, we continued to find no discernible 
increase in thromboembolic events (adjusted relative risk 
1.15, 95% CI 0.32 to 4.18) (table 2).

The logistic regression model identified several statis-
tically significant associations: aspirin (OR=2.4, 95% CI: 
1.4 to 4.0) and LMWH (OR=4.5, 95% CI: 1.9 to 10.7), 
as well as presence of the diagnoses of heart failure 
(OR=1.7, 95% CI: 1.1 to 2.8), hypertension (OR=2.0, 
95% CI: 1.0 to 3.9) and obesity (OR=0.4, 95% CI: 0.2 to 
0.7). These results were robust to the prespecified and 
post- hoc sensitivity analyses both for dexamethasone and 
for prednisone.

Analysis of prednisone showed a crude association 
using the McNemar test (Χ2=10.562, df=1, p=0.001) but 
no discernible association in the conditional logistic 
model (online supplemental material). The full set of 
conditional logistic regression results is shown in the 
online supplemental material.

Table 3 summarises results of the four sensitivity analyses 
and compares the resulting ORs with the baseline analysis. 

https://dx.doi.org/10.1136/bmjopen-2022-066846
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None of the sensitivity analyses changed the overall finding 
of no association with concomitant exposure to dexameth-
asone and apixaban or rivaroxaban and a thromboembolic 
event (to see the complete results of the sensitivity analyses, 
please see online supplemental material).

DISCUSSION
Because DOACs apixaban and rivaroxaban are metabo-
lised primarily by the P- glycoprotein and CYP3A4, there 

is a concern that dexamethasone, a CYP3A4 inducer, may 
lower concentration of a DOAC and result in a reduced 
anticoagulant effect that, in turn, may increase the risk of 
thromboembolic events for a patient. A limited number 
of studies have focused on this pharmacokinetic inter-
action. It is important to study this interaction because 
concomitant use of these drugs may be clinically neces-
sary for certain patients, particularly for those who have 
medium to severe COVID- 19. In this work, we approach 

Table 1 Baseline characteristics of cases and controls

Baseline characteristic
Cases
(n=172, 100%)

Controls
(n=344, 100%) P value*

Age, years

  Mean (SD) 67.92 (11.71) 67.63 (11.98) 0.40*

  Median (range) 69.0 (25–90) 68.0 (28–95)

Sex female 66 (38.37) 132 (38.37) N/A

Race and ethnicity

  Black or African American 44 (25.58) 61 (17.73) <0.05†

  White 107 (62.21) 227 (65.99) 0.45

  Other or unknown 21 (12.21) 56 (16.28) 0.28

Medications

  Apixaban 141 (81.98) 254 (73.84) <0.05†

  Rivaroxaban 60 (34.88) 118 (34.30) 0.97

  Prednisone 58 (33.72) 103 (29.94) 0.44

  LMWH 106 (61.63) 228 (66.28) 0.35

  Unfractionated heparin 65 (37.79) 98 (28.49) 0.04†

  Hormone replacement therapy 0 0

  Aspirin 102 (59.30) 185 (53.78) 0.27

  Antiplatelets 34 (19.77) 50 (14.53) 0.16

  CYP3A4 inducers <20 <20 ‡

  CYP3A4 inhibitors 63 (36.63) 86 (25.00) 0.01†

  Dexamethasone 75 (43.61) 173 (50.29) 0.18

Conditions

  Thrombotic event before cohort entry date 165 (95.93) 330 (95.93) N/A

  Over 30 days <20 <20

  Up to 30 days 160 318

  Smoking 21 (13.37) 20 (6.40) 0.01†

  COVID- 19 positive 91 (52.91) 182 (52.91) N/A

  Cancer 57 (33.14) 119 (34.59) 0.82

  Pulmonary disease 51 (29.65) 96 (27.91) 0.76

  Hypertension 150 (87.21) 265 (77.03) 0.01†

  Heart failure 76 (44.19) 102 (29.65) 0.01†

  Diabetes mellitus 68 (39.53) 136 (39.53) 1

  Atrial fibrillation 61 (35.47) 113 (32.85) 0.62

*Two- sample t- test was used for comparing age means and Pearson’s Χ2 test with Yates’ continuity correction was used to compare all other 
non- outcome variables.
†Variables that show statistically significant difference between cases and controls (N/A represents matched covariates).
‡Low cell counts; the prevalence of thrombotic events is based on the number of thrombotic events prior to entering the study cohort.
CYP3A4, cytochrome P450- 3A4; LMWH, low molecular weight heparin; N/A, not applicable.

https://dx.doi.org/10.1136/bmjopen-2022-066846
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this question by analysing real- world data from the N3C 
Enclave and looking for evidence of an increased rate 
of thromboembolic events among patients who were 
exposed to dexamethasone while taking a DOAC, as 
compared with those who have not been exposed to dexa-
methasone while taking a DOAC.

The main outcome of this study is that we did not find 
evidence of an association between concomitant exposure 
to dexamethasone and a DOAC with a further increase 
in risk of thromboembolic events in the N3C population. 
Our findings were consistent across several sensitivity 
analyses in which we varied our definition for the age 
matching window, date shift restriction and cohort entry 
order, as well as shortened the required dexamethasone 
exposure time and added African American race as a 
covariate. Due to small sample size, however, the 95% CI 
for the non- significant exposure OR is rather wide (0.3 to 

4.2). As such, it does not allow us to rule out a very protec-
tive association, or a very harmful one.

In a recent experimental study conducted in Italy, 
DOAC (apixaban, rivaroxaban and edoxaban) plasma 
levels were prospectively measured during and after expo-
sure to dexamethasone in 26 patients who were hospital-
ised with COVID- 19.30 Patients in that study were treated 
with a 6 mg dose of dexamethasone once a day, which 
is also a recommended dose for treating patients with 
COVID- 19 in the USA. It was reported that dexametha-
sone did not systematically affect DOAC plasma levels in 
study subjects, suggesting that a clinically relevant interac-
tion is unlikely. This finding does not rule out the poten-
tial for an interaction at higher doses or longer exposure 
to dexamethasone. Our findings are qualitatively concor-
dant with results of this study, though we were not able 
to obtain dosing information from the N3C Enclave to 
evaluate dose–response relationship.

Previously, N3C data have been used to address 
other pharmacoepidemiological questions relevant to 
COVID- 19 outcomes.31 While N3C is a very large and 
useful database of persons with COVID- 19, it is not a 
complete account of all health information as many 
observations lacked laboratory markers useful for iden-
tifying and validating thromboembolic events. Several 
retrospective manuscripts on laboratory markers and 
COVID- 19 severity and risk of complications have been 
published; however, to date, there are no clear results on 
the implications in clinical practice and even particular in 
the anticoagulation field for patients with COVID- 19.32 33

The nested case–control study design was chosen for 
this study because it is an efficient approach to studying 
a suspected risk factor for thromboembolic events, which 
are relatively uncommon. This study design allows for 
smaller sample sizes to detect safety signals as compared 
with retrospective cohort studies or prospective 
randomised or observational studies. A main disadvan-
tage of the nested case–control design is that the findings 
might not generalise to populations that are dissimilar to 
the cohort that the case–control is nested in, and there 
can be concerns about unbalanced data capture between 
cases and controls, such as lack of details about under-
lying severity of disease.

Confounding by indication is a common concern in 
pharmacoepidemiological studies using observational 
retrospective designs. Since our focus was on concomitant 

Table 2 Association between dexamethasone and 
thromboembolic events in the primary analysis

Characteristic
Adjusted OR
(95% CI)

Medications

  Dexamethasone 1.2 (0.3 to 4.2)

  Aspirin 2.4 (1.4 to 4.0)

  CYP3A4 inhibitor 2.1 (0.9 to 5.1)

  CYP3A4 inducer 2.2 (0.4 to 14)

  Antiplatelet 1.0 (0.4 to 2.5)

  Unfractionated heparin 1.7 (0.6 to 4.8)

  Low molecular weight heparin 4.5 (1.9 to 10.7)

Conditions

  Diabetes 0.6 (0.4 to 1.0)

  Pulmonary 0.8 (0.5 to 1.3)

  Heart failure 1.7 (1.1 to 2.8)

  Atrial fibrillation 0.9 (0.5 to 1.4)

  Hypertension 2.0 (1.0 to 3.9)

  Cancer 0.7 (0.5 to 1.2)

  Smoker 1.9 (0.9 to 4.3)

  Obese 0.4 (0.2 to 0.7)

  Mild comorbidity 0.7 (0.4 to 1.3)

CYP3A4, cytochrome P450- 3A4.

Table 3 Association between dexamethasone and thromboembolic event in the sensitivity analyses

Sensitivity 
analysis

Base analysis
OR
(95% CI)

Relax age 
matching 
window
OR (95% CI)

Allow data 
from sites that 
perform date 
shifts >35 days
OR (95% CI)

Change cohort 
entry order 
(dexamethasone 
can start before 
DOAC)
OR (95% CI)

Shorten 
dexamethasone 
drug era
OR (95% CI)

Add race as a 
covariate in the 
logit model
OR (95% CI)

Dexamethasone 1.2 (0.3 to 4.2) 2.8 (0.9 to 8.6) 0.8 (0.3 to 2.6) 1.3 (0.7 to 2.6) 1.4 (0.6 to 3.6) 1.3 (0.4 to 4.8)

DOAC, direct oral anticoagulant.
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use of dexamethasone with the CYP3A4- metabolised 
apixaban or rivaroxaban, the specific concern would be 
if there were clinical indications associated with both the 
concomitant drug use of interest and thromboembolic 
events. We addressed this by matching cases and controls 
on history of thromboembolic events and by adjusting for 
the conditions shown in table 1 as well as other potential 
confounders. However, it is possible that there are other 
conditions that we did not adjust for because we were not 
aware of them as potential confounders.

This study has other limitations. First, a number of drug 
exposure records in the N3C do not provide end dates. 
We used the exposure dates that were inferred by the N3C 
according to a set of rules and extrapolations described in 
the online supplemental material. This may affect validity 
of our results given that our study design requires accu-
rate estimates of the drug exposure. Second, we found 
that the drug dosing data in the N3C were too sparse to 
study the dosing effects on the outcome, in other words 
we have not been able to explore heterogeneity of the 
treatment effects. The data for various biomarkers such as 
platelet count, D- dimer, C reactive protein and estimated 
glomerular filtration rate were also too sparse to analyse. 
Moreover, we did not control for mechanical ventilator 
exposure and oxygen requirements as these data are 
known to be incomplete in the N3C Enclave and it is 
not likely that patients are exposed to apixaban or rivar-
oxaban while under ventilation. Third, for the sake of 
protecting patient data, some contributing sites perform 
patient- level date shifting in the Limited Dataset. We did 
not include data from those sites in the primary analysis 
because our study design requires exact knowledge of 
the exposure dates to evaluate the length of exposure to 
dexamethasone and apixaban or rivaroxaban.

The N3C Enclave is a new platform and the process of 
improving data collection and analysis tools is ongoing. 
Despite some limitations mentioned above, we found the 
N3C Enclave to be a unique source of healthcare data 
that can be used to generate evidence for important clin-
ical research questions related to potential DDIs. For 
example, one could investigate whether rifampin results 
in a reduction in edoxaban bioavailability through induc-
tion of CYP3A4/P- glycoprotein, as suggested in the work 
conducted previously in healthy subjects.34 In addition, 
the amount of data available in the N3C Enclave, and 
the fact that they are contributed by different sites from 
across the country, provide clinical heterogeneity. Also, 
all of the research artefacts created for studies, including 
ours, are saved in the Enclave in a way that makes them 
reproducible and therefore our results can be verified 
independently. We think that the workflow for this study 
could be used for other similar studies in the N3C Enclave.

CONCLUSION
While there is a theoretical concern of a pharmacokinetic 
DDI between dexamethasone and apixaban or rivar-
oxaban, this nested case–control study did not identify 

a discernible increase in the exposure OR of concomi-
tant dexamethasone with CYP3A4- metabolised DOACs 
(apixaban and rivaroxaban) and thromboembolic events. 
Future studies with larger sample size or prospective clin-
ical studies are needed to confirm our study findings.
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