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There is a strong link between heart disease and depression, both of which are closely 
related to lifetime stress exposure. Serum/glucocorticoid-regulated kinase 1 (SGK1) is 
a stress-responsive gene with a pivotal role in both the heart and brain. To determine 
the role of SGK1 polymorphisms (rs2758151, rs1743963, rs9493857, rs1763509, 
rs9376026, and rs9389154) in susceptibility to comorbid coronary heart disease (CHD) 
and depression, we conducted a hospital-based case–control study involving 257 CHD 
cases (including 69 cases with depression and 188 cases without depression) and 107 
controls in a Chinese Han population. Six single-nucleotide polymorphisms (SNPs) 
in the SGK1 gene were successfully genotyped by polymerase chain reaction–ligase 
detection reaction (PCR-LDR) assay. Our results showed no significant differences in 
SGK1 genetic polymorphisms between CHD patients and controls, whereas significant 
associations were observed between SGK1 SNPs (rs1743963 and rs1763509) and 
the development of depression in CHD patients (P = 0.018 by genotype, P = 0.032 
by allele; P = 0.017 by genotype, P = 0.003 by allele, respectively). However, none 
of these associations remained significant after Bonferroni correction (P = 0.054 for 
rs1743963; P = 0.051 for rs1763509). Interestingly, both the GG genotype of SGK1 
rs1743963 and AA genotype of SGK1 rs1763509 were associated with a higher risk 
of depression in CHD patients; for rs1763509, the Patient Health Questionnaire-9 
(PHQ-9) scores in the carriers of the risk genotype for comorbid depression, AA, were 
significantly higher than in GG and AG carriers (P = 0.008). Notably, haplotype analysis 
indicated that haplotype GGA significantly increased the risk of depression in CHD 
patients (P = 0.011, odds ratio (OR) = 1.717, 95% confidence interval (CI) = 1.132–
2.605), whereas haplotype AAG may be a protective factor for CHD patients with 
comorbid depression (P = 0.038, OR = 0.546, 95% CI = 0.307–0.972). It should be 
noted that only the significance of haplotype GGA survived after Bonferroni adjustment 
(P = 0.044) and that no significant differences were found for other SGK1 SNPs 
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(rs2758151, rs9493857, rs9376026, and rs9389154) between CHD patients with and 
without depression. These findings, for the first time, elucidate the important role of 
SGK1 variants in the comorbidity of CHD and depression.

Keywords: serum/glucocorticoid-regulated kinase 1, coronary heart disease, depression, polymorphism, stress

inTrODUCTiOn

Coronary heart disease (CHD) is among the most common 
chronic diseases, with a severe impact on human health and 
quality of life. It is also considered to be a psychosomatic 
disease. The poor prognosis and high sudden death rate 
associated with CHD may also result in the development 
of comorbid psychological complications such as anxiety 
and depression. Accumulating evidence shows that CHD 
patients suffer from depression to some extent and that the 
prevalence of depression in CHD patients is twice as high 
as in the general population (Follath, 2003). As a result, 
CHD with comorbid depression has become a concern 
worldwide. An increasing number of studies show that 
CHD and depression share common risk mechanisms, 
including inflammation (Shimohina et al., 2015), autonomic 
dysfunction (Drago et al., 2007), hypothalamus–pituitary–
adrenocortical axis dysfunction (Lederbogen and Strohle, 
2012), and enhancement of platelet aggregation activity 
(Tseng et al., 2010). Multiple genetic factors have also become 
the new focus of scientific studies. Emerging data suggest that 
genetic defects in 5-hydroxytryptamine (5-HT) (Golimbet 
et al., 2012), apolipoprotein E (ApoE) (Fritze et al., 2011), 
endothelial NOS (eNOS) (Salimi et al., 2012; Talarowska 
et  al., 2012), and plasminogen-activator inhibitor-1 (PAI-1) 
(Lahlou-Laforet et al., 2006) may be related to the risk of CHD 
with comorbid depression.

A member of the serum/glucocorticoid-regulated kinase 
(SGK) family, serum/glucocorticoid-regulated kinase 1 (SGK1) 
regulates several ion channels and participates in many cellular 
reactions, including cell growth, proliferation, migration, 
survival, and apoptosis (Talarico et al., 2016). A recent study 
showed that SGK1 contributes to the regulation of renal Na+ 
reabsorption, K+ secretion, and blood pressure (Valinsky et al., 
2018). Given the close association between high blood pressure 
levels and risk of CHD, it is reasonable to speculate that SGK1 is 
related to the risk of CHD. Additionally, SGK1 plays a vital part in 
the regulation of neuronal activity, proliferation, and apoptosis 
and thus is a key determinant of susceptibility to mental illness. 
As the downstream target molecule of the glucocorticoid receptor 
(GR), SGK1 is involved in the development of depression via 
the glucocorticoid signaling pathway. There is also growing 
evidence indicating that SGK1 stimulates the production of pro-
inflammatory cytokines and oxidants (Lang et al., 2010), which 
are also closely related to depression. Taking into consideration 
the complex relationships among SGK1, CHD, and depression, 
we hypothesize that SGK1 may be a co-pathogenic gene 
underlying the comorbid mechanisms of CHD and depression. 
Thus, to further evaluate the role of SGK1 single-nucleotide 

polymorphisms (SNPs) in susceptibility to CHD with comorbid 
depression, we carried out a case–control study involving 257 
CHD patients with or without depression and 107 controls.

MATeriAlS AnD MeTHODS

Subjects
A total of 257 CHD patients were recruited at the outpatient 
clinic of the Jining First People’s Hospital in Shandong 
Province, China. For all patients, the diagnosis of CHD was 
made by at least two experienced cardiologists and confirmed 
using coronary angiography results (significant coronary 
artery stenosis ≥ 50% in at least one of the three major coronary 
arteries or major branches). Those with valvular heart disease, 
severe autoimmunity disease, cancer, or severe liver and/or 
kidney disease were excluded. In addition, all CHD patients 
with or without depression were assessed by at least two 
experienced psychiatrists according to DSM-5 (5th edition 
of the Diagnostic and Statistical Manual of Mental Disorders) 
criteria for major depressive disorder, which is characterized 
by significant depressed mood and anhedonia. Then, the 
severity of depressive symptoms was scored by Patient Health 
Questionnaire-9 (PHQ-9), a nine-item questionnaire that is 
commonly used in outpatients. The scale uses a cutoff score for 
depression analysis of greater than or equal to 5 (Duko et al., 
2018). The 107 age- and sex-matched healthy controls were 
adults without CHD who had undergone a series of assessments 
including clinical physical examination, radiographic chest 
examination, electrocardiogram, and evaluation of medical 
history. Our study received approval from the medical ethics 
committee of the Jining First People’s Hospital, and informed  
consents were obtained from all participants.

genetic Studies (DnA isolation  
and genotyping)
Genomic DNA was isolated from whole blood using a TIANamp 
Blood DNA Kit (TIANGEN, China) following the manufacturer’s 
instructions. The genotypes of polymorphisms were identified 
by polymerase chain reaction–ligase detection reaction (PCR-
LDR) assay. All primer sequences for both PCR and LDR are 
shown in Table 1. After identification using 1.5% agarose gel 
and a multiplex ligase detection reaction with an LDR probe, 
products were determined by direct sequencing with a DNA 
sequencer. To ensure the quality of genotyping, random DNA 
samples accounting for not less than 10% of the total subjects 
were genotyped twice. Genotyping quality assessment of the 
SNPs tested is presented in Supplementary Table 1.
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Statistical Analysis
Demographic and clinical characteristics of the study 
population were evaluated by t-test (for continuous variables) 
and Pearson’s χ2-test (for categorical variables). Genotype 
distributions and allele frequencies of CHD patients and 
controls were analyzed by Pearson’s χ2-test. To evaluate the 
quality of the genotyping data, the SHEsis online haplotype 
analysis software (http://analysis.bio-x.cn/myAnalysis.php) 
was applied to calculate the linkage disequilibrium and check 
Hardy–Weinberg equilibrium in controls based on Pearson’s 
χ2-test. Additionally, the SHEsis online haplotype analysis 
software was also performed for calculating the probability of 
obtaining a difference in the haplotype frequencies observed 
between patients and controls and for analyzing the haplotype 
frequencies and probabilities. Bonferroni adjustment was 
applied to correct for multiple comparisons. Odds ratios 
(ORs) and 95% confidence intervals (95% CIs) were also 
calculated. Differences in PHQ-9 scores among different 
genotypic individuals were assessed using one-way analysis 

of variance (ANOVA) or Student’s t-test, when appropriate. 
All analyses were carried out using SPSS (version 17.0), and 
P < 0.05 was defined as statistically significant.

reSUlTS

Basic Characteristics of Study 
Participants
The demographic and clinical characteristics of the study 
participants are described in Table 2. There were no significant 
differences between the CHD and control groups in terms of age, 
gender, body mass index (BMI), and smoking or drinking (P > 
0.05). Then, CHD patients were further divided into CHD+D and 
CHD-D groups according to whether comorbid depression was 
present. There were still no significant differences concerning the 
basic characteristics between groups (P > 0.05).

Hardy–Weinberg equilibrium Analysis
The locations of the SGK1 gene and six SNPs are presented 
in Supplementary Table 2. The genotypes of all SGK1 SNPs 
in control groups were in Hardy–Weinberg equilibrium 
based on the χ2-test results (rs2758151: χ2 = 0.020, P = 0.887; 
rs1743963: χ2  = 0.115, P = 0.734; rs9493857: χ2 = 0.472, P = 
0.492; rs1763509: χ2 = 0.080, P = 0.778; rs9376026: χ2 = 2.909, 
P = 0.088; rs9389154: χ2 = 0.072, P = 0.789), suggesting that the 
groups are representative of the population.

SGK1 Polymorphisms
Frequency distributions of genotypes and alleles of six SNPs in 
CHD patients and controls are shown in Tables 3 and 4. Our 
results suggest the absence of a significant relationship between 
SGK1 SNPs and CHD risk. However, significant differences were 
found between CHD patients with and without depression in the 
genotype distribution and allele frequency of rs1743963 (A > G) 
and rs1763509 (G > A). For rs1743963, CHD patients with the 
GG genotype showed a significant susceptibility to depression  
(χ2 = 7.988, P = 0.018). Thus, the G allele may be a risk factor in the 
development of depression in CHD patients (χ2 = 4.572, P = 0.032). 
For rs1763509, the AA genotype and A allele were associated with a 
higher risk of depression in CHD patients (χ2 = 8.118, P = 0.017 by 
genotype; χ2 = 8.974, P = 0.003 by allele). However, the significance 
of the genotype distribution frequency could not be confirmed after 
strict Bonferroni adjustment (P = 0.054 for rs1743963; P = 0.051 

TABle 1 | Primers of target gene used in the PCR.

SnP Ancestor 
allele

Primer sequence Product 
size (bp)

rs2758151 C F: 5′-ACGTTGGATGGGTAAAGGG 
AACTTCAGACG-3′

108

R: 5′-ACGTTGGATGGAAGAATCTT 
AGAGCTTCC-3′

rs1743963 A F: 5′-ACGTTGGATGAGCCAGTGCT 
GGCCGGGAA-3′

88

R: 5′-ACGTTGGATGGTGGTAACTT 
GTAACTGCCC-3′

rs9493857 A F: 5′-ACGTTGGATGGATTATTGTTG 
CAATGGAAGG-3′

100

R: 5′-ACGTTGGATGGTGATCATTTG 
ATTACTGC-3′

rs1763509 G F: 5′-ACGTTGGATGGGAGTAGAGA 
GATGAGTTTC-3′

120

R: 5′-ACGTTGGATGTTACACTGAAA 
GAAGTATG-3′

rs9376026 C F: 5′-ACGTTGGATGCTCAGTACTCTT 
AATGGATG-3′

95

R: 5′-ACGTTGGATGCACCTATTAGAT 
GTGTGGTC-3′

rs9389154 G F: 5′-ACGTTGGATGGACCACTTACT 
AAAAGGAAGC-3′

120

R: 5′-ACGTTGGATGTCAGGCTTCCTT 
GAGTTTGG-3′

PCR, polymerase chain reaction; SNP, single-nucleotide polymorphism.

TABle 2 | Demographic and clinical characteristics of the study participants.

Variables CHD (n = 257) Controls (n = 107) P-value CHD+D (n = 69) P-value CHD-D (n = 188) P-value

Age (years) 51.04 ± 6.854 49.84 ± 7.965 0.148a 51.26 ± 6.795 0.224b 51.24 ± 6.897 0.982c

Gender (M/F, n) 136/121 49/58 0.216a 32/37 0.940b 104/84 0.203c

Smoking (n, %) 89 (34.6) 32 (29.9) 0.383a 21 (30.4) 0.941b 68 (36.2) 0.392c

Drinking (n, %) 99 (38.5) 30 (28.0) 0.057a 22 (31.9) 0.585b 77 (41.0) 0.185c

BMI (kg/m2) 23.73 ± 2.821 23.37 ± 2.332 0.245a 23.68 ± 2.543 0.403b 24.17 ± 2.938 0.218c

aCHD versus controls, bCHD+D versus controls, cCHD+D versus CHD-D. BMI, body mass index; CHD, coronary heart disease; CHD+D, CHD with depression; CHD-D: 
CHD without depression.
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for rs1763509). Interestingly, when subdividing these samples into 
GG and AA + AG groups, statistical analysis showed that carriers 
with allele A were more likely to have comorbid depression (χ2 = 
4.238, P = 0.04, OR = 4.213, 95% CI = 0.961–18.466). However, the 
other four SNPs, rs2758151, rs9493857, rs9376026, and rs9389154, 
were not significantly related to the risk of depression in CHD 
patients (as shown in Tables 5 and 6).

Association of SGK1 Polymorphisms With 
Severity of Depressive Symptoms
As shown in Figure 1A, no significant differences in PHQ-9 
scores were observed among the three genotypes of rs1743963 
(P > 0.05). For rs1763509 (Figure 1B), GG and AG carriers were 
combined because of the few GG carriers. The PHQ-9 scores 

in the AA carriers, the risk genotype for comorbid depression, 
were significantly higher than GG and AG carriers (10.63 ± 2.900 
versus 8.62 ± 2.500, P = 0.008).

Haplotype Analysis
As shown in Figure 2, the LD block in the SGK1 gene on 
chromosome 6 comprised rs1743963, rs9493857, and rs1763509, 
with a strong linkage (rs1743963/rs9493857: D′ = 0.793, r2 = 
0.282; rs9493857/rs1763509: D′ = 0.869, r2 = 0.675; rs1743963/
rs1763509: D′ = 0.633, r2 = 0.201). Haplotype frequencies 
indicated that there were no significant differences of haplotype 
distribution between CHD patients and healthy controls (as 
shown in Table 7). Interestingly, haplotype analysis of the 
CHD+D and CHD-D groups revealed that haplotype GGA 

TABle 3 | Genotype distribution of SGK1 gene polymorphisms in CHD and control group.

SnP genotype CHD (n = 257, %) Controls (n = 107, %) Or (95% Ci) χ2 P-value

rs2758151 CC 75 (29.2) 30 (28.0)
(C > T) CT 131 (51.0) 54 (50.5)

TT 51 (19.8) 23 (21.5) 0.139 0.933
CT + TT 182 (70.8) 77 (72.0) 1.058 (0.641–1.744) 0.048 0.826

rs1743963 AA 41 (15.9) 11 (10.3)
(A > G) AG 121 (47.1) 49 (45.8)

GG 95 (37.0) 47 (43.9) 2.667 0.264
AG + GG 216 (84.0) 96 (89.7) 1.657 (0.816–3.361) 1.986 0.159

rs9493857 AA 14 (5.4) 3 (2.8)
(A > G) AG 85 (33.1) 36 (33.6)

GG 158 (61.5) 68 (63.6) 1.308 0.520
AG + GG 243 (94.6) 104 (97.2) 1.997 (0.562–7.097) 0.666 0.414

rs1763509 GG 23 (9.0) 5 (4.7)
(G > A) AG 89 (34.6) 34 (31.8)

AA 145 (56.4) 68 (63.5) 2.197 0.333
AG + AA 234 (91.0) 102 (95.3) 2.005 (0.742–5.422) 1.946 0.163

rs9376026 CC 176 (68.5) 66 (61.7)
(C > T) CT 74 (28.8) 32 (29.9)

TT 7 (2.7) 9 (8.4) 5.546 0.062
CT + TT 81 (31.5) 41 (38.3) 1.350 (0.843–2.160) 1.568 0.211

rs9389154 GG 53 (20.6) 30 (28.0)
(G > A) AG 124 (48.3) 52 (48.6)

AA 80 (31.1) 25 (23.4) 3.402 0.182
AG + AA 204 (79.4) 77 (72.0) 0.667 (0.397–1.120) 2.360 0.125

CHD, coronary heart disease; CI, confidence interval; OR, odds ratio; SNP, single-nucleotide polymorphism.

TABle 4 | Allele distribution of SGK1 gene polymorphisms in CHD and control group.

SnP Allele CHD (2n = 514, %) Controls (2n = 214, %) Or (95% Ci) χ2 P-value

rs2758151 C 281 (54.7) 114 (53.3)
(C > T) T 233 (45.3) 100 (46.7) 1.058 (0.768–1.457) 0.119 0.730
rs1743963 A 203 (39.5) 71 (33.2)
(A > G) G 311 (60.5) 143 (66.8) 1.315 (0.940–1.838) 2.568 0.109
rs9493857 A 113 (22.0) 42 (19.6)
(A > G) G 401 (78.0) 172 (80.4) 1.154 (0.776–1.716) 0.501 0.479
rs1763509 G 135 (26.3) 44 (20.6)
(G > A) A 379 (73.7) 170 (79.4) 1.376 (0.936–2.023) 2.651 0.103
rs9376026 C 426 (82.9) 164 (76.6)
(C > T) T 88 (17.1) 50 (23.4) 1.476 (0.998–2.182) 3.834 0.05
rs9389154 G 230 (44.7) 112 (52.3)
(G > A) A 284 (55.3) 102 (47.7) 0.738 (0.536–1.015) 3.494 0.062

CHD, coronary heart disease; CI, confidence interval; OR, odds ratio; SNP, single-nucleotide polymorphism.
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significantly increased the risk of depression in CHD patients 
(P = 0.011, OR = 1.717, 95% CI = 1.132–2.605), while haplotype 
AAG may be a protective factor against comorbid depression in 
CHD patients (P = 0.038, OR = 0.546, 95% CI = 0.307–0.972). 
After Bonferroni adjustment, only the haplotype GGA remained 
significantly associated with the susceptibility to depression in 
CHD patients (P = 0.044) (Table 8).

DiSCUSSiOn

The gene encoding human SGK1 is located in chromosome 
6q23.2. SGK1 transcripts have been found in virtually all tissues 
tested (Raikwar et al., 2008). A key regulatory enzyme, SGK1 

was originally described as being involved in the hormonal 
regulation of several ion channels (Lang et al., 2011; Chraibi 
and Renauld, 2014). SGK1 is linked to the regulation of Na+ 
and K+ transport in epithelial cells (Valinsky et al., 2018). 
Studies have shown that dysregulation of SGK1 causes renal 
Na+ retention and enhancement of cardiac output, followed 
by elevated blood pressure (Kawarazaki et al., 2012; Nakano 
et al., 2013). Several SGK1 gene variants have been shown to 
affect blood pressure (Busjahn et al., 2002; Rao et al., 2013). 
Accumulating strong evidence indicates a direct connection 
between SGK1 and cardiovascular development via involvement 
in the phosphatidylinositol 3-kinase (Catela et al., 2010) and 
ALK1 (Araki et al., 2018) signaling pathways. Notably, SGK1 has 
been shown to contribute to cardiac remodeling and fibrosis, 

TABle 5 | Genotype distribution of SGK1 gene polymorphisms in CHD+D and CHD-D group.

SnP genotype CHD+D (n = 69, %) CHD-D (n = 188, %) Or (95% Ci) χ2 P-valuea P-valueb

rs2758151 CC 21 (30.4) 54 (28.7)
(C > T) CT 33 (47.8) 99 (52.7)

TT 15 (21.8) 35 (18.6) 0.533 0.766
CT + TT 48 (69.6) 134 (71.3) 1.086 (0.594–1.983) 0.072 0.789

rs1743963 AA 10 (14.5) 31 (16.5)
(A > G) AG 24 (34.8) 97 (51.6)

GG 35 (50.7) 60 (31.9) 7.988 0.018 0.054
AG + GG 59 (85.5) 157 (83.5) 1.165 (0.538–2.524) 0.150 0.698

rs9493857 AA 3 (4.3) 12 (6.4)
(A > G) AG 18 (26.1) 67 (35.6)

GG 48 (69.6) 109 (58.0) 2.924 0.232
AG + GG 66 (95.7) 176 (93.6) 0.667 (0.182–2.437) 0.100 0.752

rs1763509 GG 2 (2.9) 21 (11.2)
(G > A) AG 19 (27.5) 70 (37.2)

AA 48 (69.6) 97 (51.6) 8.118 0.017 0.051
AG + AA 67 (97.1) 167 (88.8) 4.213 (0.961–18.466) 4.238 0.04

rs9376026 CC 48 (69.6) 131 (69.7)
(C > T) CT 20 (29.0) 51 (27.1)

TT 1 (1.4) 6 (3.2) 0.702 0.704
CT + TT 21 (30.4) 57 (30.3) 0.995 (0.546–1.812) 0.000 0.986

rs9389154 GG 10 (14.5) 43 (22.9)
(G > A) AG 38 (55.1) 87 (46.3)

AA 21 (30.4) 58 (30.8) 2.524 0.283
AG + AA 59 (85.5) 145 (77.1) 0.572 (0.270–1.212) 2.165 0.141

aP-value without adjustment; bP-value after Bonferroni adjustment for multiple comparisons; P-value < 0.05 has been bolded. CHD, coronary heart disease;  
CI, confidence interval; OR, odds ratio; SNP, single-nucleotide polymorphism.

TABle 6 | Allele distribution of SGK1 gene polymorphisms in CHD+D and CHD-D group.

SnP Allele CHD+D (2n = 138, %) CHD-D (2n = 376, %) Or (95% Ci) χ2 P-value

rs2758151 C 75 (54.3) 207 (55.1)
(C > T) T 63 (45.7) 169 (44.9) 0.972 (0.657–1.438) 0.020 0.887
rs1743963 A 44 (31.9) 159 (42.3)
(A > G) G 94 (68.1) 217 (57.7) 1.565 (1.036–2.364) 4.572 0.032
rs9493857 A 24 (17.4) 91 (24.2)
(A > G) G 114 (82.6) 285 (75.8) 0.659 (0.400–1.086) 2.696 0.101
rs1763509 G 23 (16.7) 112 (29.8)
(G > A) A 115 (83.3) 264 (70.2) 2.121 (1.288–3.495) 8.974 0.003
rs9376026 C 116 (84.1) 313 (83.2)
(C > T) T 22 (15.9) 63 (16.8) 1.061 (0.625–1.803) 0.048 0.826
rs9389154 G 58 (42.0) 173 (46.0)
(G > A) A 80 (58.0) 203 (54.0) 0.851 (0.574–1.262) 0.647 0.421

P-value < 0.05 has been bolded. CHD, coronary heart disease; CI, confidence interval; SNP, single-nucleotide polymorphism.
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FigUre 1 | Association of SGK1 polymorphisms and PHQ-9 scores in CHD patients with comorbid depression. (A) rs1743963 and (B) rs1763509. **P < 0.01. 
CHD, coronary heart disease; PHQ-9, Patient Health Questionnaire-9.

FigUre 2 | Linkage disequilibrium pattern between three SNPs, rs1743963, rs9493857, and rs1763509, in CHD patients and healthy controls. CHD, coronary 
heart disease; SNP, single-nucleotide polymorphism.
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and development of heart failure. These findings suggest that 
SGK1 regulates blood pressure and participates in cardiovascular 
development and occurrence of heart failure, indicating a 
potential link to CHD. In this regard, we consider that SGK1 
polymorphisms may be related to the occurrence of CHD.

Furthermore, SGK1 participates in the regulation of dendrite 
growth (Lang et al., 2006) and long-term memory formation 
(Ma et al., 2006) and contributes to the pathophysiology 
of several neuronal diseases including Parkinson’s disease, 
Alzheimer’s disease, schizophrenia, and depression (Lang et al., 
2010; Miyata et al., 2015). Animal experiments have shown 
that the mRNA level of SGK1 in the hippocampus of mice 
increased significantly under acute cold water swimming stress 
(Bohacek et al., 2015), suggesting that SGK1 is closely related 
to stress-related mental disorders. Accumulating evidence also 
suggests that SGK1 participates in the occurrence of depression 
via the glucocorticoid (Sato et al., 2008) and brain-derived 
neurotrophic factor (BDNF) (Lang et al., 2007) signaling 
pathway. Similarly, decreased hippocampal neurogenesis 
and structural abnormalities have been reported to occur 
in depressed patients owing to the up-regulation of SGK1 
(Cattaneo and Riva, 2016). SGK1 additionally contributes to 
the regulation of neuroexcitability, inflammation, and oxidative 
stress reactions (Lang et al., 2010), which may be involved in the 
pathogenesis of depression. In view of the complex relationships 
between SGK1, CHD, and depression, SGK1 is likely to be a 
potential co-pathogenic gene underlying susceptibility to CHD 
with depression.

To test this hypothesis, a case–control study was carried out to 
identify the role of SGK1 variants in susceptibility to comorbidity 
of CHD and depression. Six candidate intron variants located 
in the upstream of SGK1 gene were selected. These SNPs were 
reported to have a tight link with multiple disorders, including 
blood pressure and renin response to dietary salt intake, and 
type 2 diabetes (Schwab et al., 2008; Luca et al., 2009; Rao et al., 
2013; Chu et al., 2015), with the possibility to affect the process 
of splicing, processing, and editing of mRNA. Our study of 69 
CHD cases with depression and 188 cases without depression 
found significant differences in the genotype distribution and 
allele frequency of rs1743963 (A > G) and rs1763509 (G > A). 
For rs1743963, CHD patients with the GG genotype showed a 
modest but non-significant susceptibility to depression (P = 
0.054), and the G allele was found to be a risk factor for depression 
in patients with CHD (P = 0.032). Similarly, for rs1763509, the 
allele A was associated with a higher risk of depression in CHD 
patients (P = 0.003). Interestingly, when patients were divided 
into GG and AA + AG groups according to whether they carried 
allele A, CHD patients in AA + AG group are more likely to 
have comorbidity with depression. The PHQ-9 scores in the 
carriers of the risk genotype for comorbid depression, AA, were 
significantly higher than in GG and AG carriers. In support, 
Chu reported that SNP rs1763509 of SGK1 was significantly 
associated with blood pressure response to the intervention 
of dietary sodium (Chu et al., 2015). Notably, single marker 
association analysis is sometimes not sufficient in complex 
diseases, whereas haplotype-based linkage disequilibrium 
mapping has been considered a more informative approach for 
genetic association studies. In the present study, strong linkage 
disequilibrium was observed between the three SNPs rs1743963, 
rs9493857, and rs1763509 in the intron region of SGK1 gene, and 
haplotype analysis suggests that the haplotype GGA is likely to 
be involved in the development of depression in CHD patients 
after Bonferroni adjustment, which may affect RNA splicing, 
processing, and editing. Overall, our study demonstrates for the 
first time the importance of SGK1 variants in the development 
of depression in CHD patients. Although many genome-wide 
association studies (GWASs) on depression or CHD (Li et al., 
2019; Liu et al., 2019; Wong et al., 2019) have been published, 
none of these have identified SGK1 as a risk factor.

The remaining three SNPs, rs2758151 (Rao et al., 2013), 
rs9376026, and rs9389154 (Chu et al., 2015), have been reported 
to be associated with blood pressure response to dietary salt  

TABle 7 | Haplotype frequencies for SGK1 polymorphisms in CHD and  
control group.

Haplotype 
(rs1743963/
rs9493857/
rs1763509)

CHD 2n = 
514 (%)

Controls 2n = 
214 (%)

Or (95% 
Ci)

P-value

AAG 91.39 (17.8) 32.78 (15.3) 1.219 
(0.787–1.888)

0.374

AGA 95.93 (18.7) 35.10 (16.4) 1.192 
(0.778–1.827)

0.418

GGA 280.53 
(54.6)

131.82 (61.6) 0.760 
(0.542–1.066)

0.111

GGG 16.88 (3.3) 5.05 (2.4) 1.428 
(0.521–3.913)

0.487

CHD, coronary heart disease; CI, confidence interval; OR, odds ratio. Haplotypes 
were omitted if the estimated haplotype frequency was <3%.

TABle 8 | Haplotype frequencies for SGK1 polymorphisms in CHD+D and CHD-D group.

Haplotype 
(rs1743963/
rs9493857/
rs1763509)

CHD+D 2n = 138 (%) CHD-D 2n = 376 (%) Or (95% Ci) P-valuea P-valueb

AAG 16.53 (12.0) 73.74 (19.6) 0.546 (0.307–0.972) 0.038 0.152
AGA 24.57 (17.8) 72.42 (19.3) 0.894 (0.537–1.487) 0.665
GGA 85.30 (61.8) 184.04 (48.9) 1.717 (1.132–2.605) 0.011 0.044
GGG 4.12 (3.0) 21.35 (5.7) 0.505 (0.172–1.477) 0.204

CHD, coronary heart disease; CI, confidence interval; OR, odds ratio. Haplotypes were omitted if the estimated haplotype frequency was <3%. aP-value without 
adjustment; bP-value after Bonferroni adjustment for multiple comparisons; P-value < 0.05 has been bolded.
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intake, and rs9493857 was found to regulate SGK1 expression 
in response to stress (Luca et al., 2009). However, no significant 
differences were found between the genotypic and allelic 
frequencies of polymorphic sites of any of these four SNPs 
in our study. These negative results can be explained by the 
relatively small sample size, regional and racial biases, and no 
correction for potential population stratification, which are 
major limitations of the present study. Moreover, our study is 
also limited by the lack of a comparison group of subjects with 
depression but no CHD for the replication of positive results. 
Considering that the interactions between various genes and/
or environmental factors play a part in the effects of SGK1, the 
association between SGK1 polymorphisms and depression in 
CHD patients is likely to be confounded by various potential 
gene–gene and/or gene–environment interactions. Thus, 
additional association studies investigating SGK1 diversity and 
susceptibility to depression in CHD patients are also required 
to replicate the associations. We are additionally unable to 
analyze the expression of SGK1 and the functional consequence 
of these genetic variations. Thus, future studies are needed to 
further examine the effects of these SNPs on the expression 
of key components of SGK1 signaling in the peripheral blood 
mononuclear cells of CHD patients with comorbid depression 
and thus confirm the relationship between SGK1 and 
susceptibility to depression in CHD patients.

COnClUSiOn

In conclusion, the present study supports the hypothesis 
that SGK1 polymorphisms contribute to the susceptibility to 
depression in CHD patients of the Chinese Han population. To 
exclude the many environmental and geographical influences 
on study outcomes, replication studies with large samples are 
needed to verify the role of these SGK1 polymorphisms in CHD 
patients with comorbid depression.
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