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1  | INTRODUC TION

Nest predation is the primary cause of nest failure across a wide 
diversity of bird species and habitats, so nest concealment (in-
cluding nest characteristics such as location and appearance) can 
be important for birds to enhance their reproductive performance 
(Martin,  1993; Ricklefs,  1969; Roff,  2002; Signorell et  al.,  2010). 
Reproductive performance can be subdivided into several different 
components, including clutch size, growth and development rate, and 
nest survival, all of which are important reproductive traits in birds 
(Roff,  2002). A well-concealed site can minimize the transmission 

of auditory, visual, and olfactory cues from the nest to potential 
predators (Martin, 1993), and numerous studies have attempted to 
identify nest-site characteristics that may affect these reproductive 
traits (reviewed in Burhans & Thompson, 1998; Martin, 1992). Some 
studies found positive effects of nest concealment on reproduc-
tive performance (Grendelmeier et al., 2015; Martin, 1992; Martin 
et al., 2000; Remeš, 2005; Weidinger, 2002), whereas others found 
no effects (Burhans et  al.,  2002; Howlett & Stutchbury,  1997; Hu 
et al., 2017; Li, Qin, et al., 2018; Smith et al., 2018). This difference 
can be attributed to factors such as predator type (olfactory vs. 
visual). Birds facing olfactory predators (e.g., snakes or mammals) 
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often have no relation between nest concealment and nest success 
when their nests are accessible (Conover et al., 2010; Oswald et al., 
2020).

A number of studies have conducted interspecific analyses 
to test the effect of nest concealment on life-history traits (e.g., 
Martin,  1995; Martin et  al.,  2017; Martin & Li,  1992; Söderström 
et  al.,  1998; Weidinger,  2004), but most of these earlier analyses 
were performed without controlling for the phylogenetic relation-
ships between the species concerned. This may lead to illusory 
relationships between nest-site characteristics and reproductive 
traits because of the lack of statistical independence among species 
(Felsenstein, 1985; Harvey & Pagel, 1991). Therefore, interspecific 
analyses that control for phylogeny are required to reduce poten-
tial biases in predicting a relationship among variables (Freckleton 
et al., 2002). Borgmann and Conway (2015) conducted phylogenet-
ically controlled analyses regarding nest concealment on reproduc-
tive traits across species of different regions but yielded equivocal 
results. Their study selected only open-cup nest birds and used foli-
age features as indices of nest concealment. In addition, the method-
ology of nest concealment measurement was quite different across 
species (Borgmann & Conway, 2015).

For avian species, building the nest in a location that is difficult 
for predators to access or locate is an effective way to minimize nest 
predation (Martin, 1993; Roff, 2002; Weidinger, 2004). Therefore, 
in addition to foliage features and the nest types that offer differ-
ing levels of nest concealment (Martin, 1995; Watters et al., 2002), 
other nest-site characteristics should be taken into account for 
interspecific analyses, such as nest location in the landscape (e.g., 
on ground, in bush, or on cliff) and tunnel length for cavity nests 
(mostly burrows dug into the ground or cliff). For example, the ex-
tent of nest concealment may differ between open-cup nests on the 
ground and in thorny shrubs above the ground (Campos et al., 2011; 
Martin, 1987), and among cavity nests opening on flat ground and on 
to cliff banks (Li & Lu, 2012b; Li, Peng, et al., 2015).

The majority of previous studies suggest that species with bet-
ter concealed nest have larger clutch sizes and greater nest success 
because they suffer lower predation rates (Li & Lu, 2012a, 2012b; 
Martin & Li, 1992). Larger clutches in better concealed nests could 
evolve as a covariate of reduced nestling growth rates permitted by 
lower predation rates (Lack, 1968). In this paper, we collected data 
on several reproductive traits and the nest characteristics of 21 sym-
patric bird species in a high-elevation habitat on the Tibetan Plateau.

High-elevation communities are understudied in terms of nest 
characteristics and predation risk. Species living sympatrically likely 
experiences a similar biotic and abiotic environment, including cli-
mate and predation risk; an interspecific analysis of sympatric spe-
cies thus provides an opportunity to examine biological traits while 
controlling for the confounding effects of biotic/abiotic factors. The 
habitat at high elevation tends to be more homogenous (Li, Qin, 
et al., 2018; Wang & Lu, 2018), so there are fewer options for nest 
placement than in a forest community and open-cup nests in particu-
lar are more exposed. The challenging climate of high-elevation habi-
tats is also likely a factor in driving the evolution of nest concealment 

(e.g., constraints on thermoregulation and parental care; Ke and Lu, 
2009). Greater exposure could increase predation risk, and thus, 
there should be selective pressures for birds to place their nests in 
more covered or inaccessible sites.

Previous interspecific analyses on the effect of nest concealment 
were mostly based on species of different regions or without con-
trolling for phylogeny. Species living sympatrically can experience 
similar biotic/abiotic conditions, and a number of confound climate 
factors can be excluded. Here, we conducted both phylogenetically 
controlled and conventional analyses to assess the relationship be-
tween nest concealment and reproductive traits in sympatric species 
near the upper limit of their breeding distribution which were not 
included in former studies. The main objectives of this study were to 
test the relationship between nest concealment and clutch size, du-
ration of the incubation period, duration of the nestling period, and 
nest success. We predicted that species with well-concealed nests 
would have greater nest success, allow larger clutch sizes but lower 
growth rate (e.g., longer incubation and nestling periods).

2  | METHODS AND STUDY SITE

Data were collected either from fieldwork during the current study 
or from published studies (details in Table 1) conducted in the same 
area. The collated data mainly included four reproductive traits 
(clutch size, incubation period, nestling period, and nest success; de-
tails on their definitions can be found in Methods below) and several 
nest-site attributes (details also in Methods below).

2.1 | Study site

Fieldwork for novel data was carried out during the 2009–2018 
breeding seasons at Tianjun Prairie on the northeast of Tibet Plateau 
(37°17′N, 99°06′E, 3,400 masl). The study area (ca 600 ha) was mainly 
public grassland, dominated by alpine steppe meadow, mainly used 
for livestock grazing. Two shallow streams which originated from the 
southern mountains run through the grassland. The streams usually 
dry up until the rainy seasons come from June to July. Mean annual 
temperature of this area was −0.5 ± 0.7 (range −1.5–0.9)°C and the 
total annual rainfall 305 ± 64 (range 176–418) mm3 (data from 1989 
to 2010 from a local weather station). More than 30 bird species 
(n = 7 orders) breed in this area. Mammals (e.g., Siberian Weasel M. 
sibirica and Wild Cat Felis silvestris) are predominant predators in our 
study site (Li, Peng, et al., 2015; Li S's unpublished data). Details on 
the study site are available in Li, Shi, et al. (2018).

2.2 | Data collection

We searched the study area for open-cup and cavity nests from 
May to August. Nests were located by flushing the incubating indi-
viduals, following adults with nest material or following them to a nest 
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during the incubation or nestling periods. When a nest was located, 
we recorded the date and nest status (presence of parents, eggs, 
nestlings) with nests then checked every 2–4 days. Open-cup nests 
were checked directly while cavity nests were checked either by a 
pole-mounted miniature camera or through a hole dug at the side of 
the nest chamber (previous studies showed no obvious adverse ef-
fects from these methods; Li, Shi, et al., 2018). For cavity nests, we 
recorded the entrance location (on ground or on cliff bank) and meas-
ured the burrow length from entrance to the burrow chamber with a 
measuring tape to 0.1 cm. When a nest was near hatching or fledging, 
we increased the frequency of checks to every 1–2 days. Nests pro-
ducing at least one fledgling (still not fully grown, but fully leaving the 
nest) were considered successful. Nests were assumed to have failed 
when the nest, eggs, or nestlings disappeared when the length of time 
since nest initiation suggested they were too young to have fledged.

For each species, we scored three nest-site attributes. (a) Nest 
type: as “1” for open-cup nest, “2” for domed nests (enclosed nests), 
“3” for cavity nests of nonexcavating birds, and 4 for cavity nests 
of excavating birds, as predation risk was found to decrease from 
open-cup nesters to cavity nesters and from secondary cavity nest-
ers to primary cavity nesters due to nest concealment (Martin & 
Li, 1992). (b) Nest-site location: Ground nests were scored as “1,” 
nests in bushes aboveground as “2,” and nests on steep slopes or 
banks as “3”; ground nests are assumed to be under higher preda-
tion risk than nests aboveground or on cliffs when mammal pred-
ators occurred more frequently than avian predators (Söderström 
et al., 1998; Wilcove, 1985). Previous studies show that mammals 
are dominant predators in our study site (Li, Peng, et al., 2015; Li's 
unpublished data). (c) Burrow length: It was scored as “0” for open-
cup nests and enclosed nests, “1” for cavity nests with burrow length 
of ≤50 cm, and “2” for cavity nests with burrow length of more than 
50 cm. We extracted the first component as nest concealment for 
each species by Phylogenetic Principal Component Analysis (PPCA) 
for each nest from the three nest-site attributes, because the first 
component accounted for 74.6% of the total variance.

We also compiled the data on nest-site attributes and reproduc-
tive traits (clutch size, incubation period defined as the period from 
the start of incubation to the first egg hatched, nestling period as 
the period from the first egg hatched to the last young fledged, and 
nest success) mentioned above from published studies from the same 
study area. More information on the definitions of the reproductive 
traits can be found in Li and Lu (2012a, 2012b). All these data were 
collated from the literature published by our group as we have studied 
in this area since 2008. A total of 21 species with complete data were 
collected in the full dataset. Among these sympatric species, datasets 
of eight species were collected from published studies by our group 
and datasets of 13 species were from fieldwork (this study; Table 1).

2.3 | Statistical analyses

Before analysis, we assigned each study a qualitative rank score of 
data quality from weak (1), medium (2) to strong (3) based on overall Sp
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impression of data with respect to sample size (roughly n  ≤  10 as 
weak and n ≥ 30 as strong) and the details of behavioral observation 
conducted following Green et al. (2016).

We present and compare the results of both phylogenetically 
controlled and conventional analyses in line with recommendations 
from the literature (Oswald et al., 2020; Schluter, 2000; Swanson & 
Bozinovic, 2011). We first used conventional analysis, fitting general 
linear models to response variables (e.g., clutch size, incubation pe-
riod, nestling period, and nest success) as predicted by nest conceal-
ment, with body mass as a potential confounding effect. Body mass 
is either collected from the references in Table 1 or collected from 
Dunning (2008). Data from these species may be nonindependent 
for the purposes of statistical analysis due to their common phyloge-
netic history (Felsenstein, 1985; Harvey & Pagel, 1991). Therefore, 
we further investigated the effect of nest concealment on repro-
ductive performances across species using phylogenetic generalized 
least squares (PGLS) models that controlled for phylogeny. All these 
PGLS analyses were performed with data quality as a weight vari-
able, despite the fact that comparison between these results and 
those obtained from analyses that omitted the data quality revealed 
qualitative equivalent results in both cases (all models: t  >  2.256, 
p < .037).

We downloaded 100 fully resolved trees from BirdTree project 
(birdtree.org; Jetz et al., 2014) using the Hackett et al. (2008) back-
bone. One species (Alpine Leaf-warbler Phylloscopus occisinensis) 
was not included in the bird tree, so we used the phylogenetic po-
sition of its closest related species Tickell's leaf warbler (P. affinis) 
instead (Martens et al., 2008). With the 100 trees, we built the maxi-
mum clade credibility tree (consensus tree; Figure 1) using R package 
phangorn (Schliep, 2011). PPCA was conducted in R package phytools 
(Revell, 2012). All phylogenic analyses were performed across this 
summary tree. PGLS models were constructed using the R package 
ape (Paradis et al., 2004).

We applied a maximum-likelihood estimation of Pagel's λ for 
phylogenetic dependence. Phylogenetic signal (measured as Pagel's 
λ) was tested using restricted maximum likelihood against a value of 
0 (the evolution of a trait is independent of phylogeny) (Pagel, 1997). 
Phylogenetic signal was considered to be present if λ differed sig-
nificantly from 0 (Revell, 2010). The estimated coefficients from the 
PGLS models reflect the relationship between variables. If the phy-
logenetic signal is absent or weak, results from both analyses are 
acceptable; otherwise, phylogenetically informed analyses would 
be better supported (Freckleton et al., 2002). All statistical analyses 
were performed with R ver. 4.0.2 (R Core Team, 2018). We report 
mean ± SE and two-tailed probabilities with .05 significance thresh-
old throughout the paper.

3  | RESULTS

The mean clutch size and nest success across species were 
4.39 ± 1.05 (range 2.5–6.8) eggs and 0.64 ± 0.24 (range 0.27–1.00), 
respectively. Among the 21 species, twelve were cavity-nesting 

birds while the remainder were either open-cup nesting birds (n = 8) 
or dome-nesting birds (n = 1). For these sympatric species, eight are 
ground nesters (n = 3 on the ground; n = 8 in burrows), five placed 
their nests above the ground in bush, and the others (n = 8) built 
their nests on bank or cliff.

PGLS models that examined the relationship between nest 
concealment and four reproductive traits (Table 2) produced λ val-
ues which were significantly different from 0 for two reproductive 
traits (nestling period and nest success: λ > 0.820, χ2 > 5.296, p < 
.021). This implies a strong phylogenetic signal for these two cor-
relations (Table 2). However, the λ value between nest concealment 
and clutch size and incubation period was not significantly different 
from 0 (Table  2), indicating a weak phylogenetic signal for these 
traits.

Conventional analyses (general linear models) without phy-
logenetic controls revealed that nest concealment strongly cor-
related with each reproductive trait when controlling for body 
mass and including data quality as a weight variable (all models: 
t  >  2.379, p  <  .029; Table  3). Similar to the conventional anal-
ysis, phylogenetically informed models yielded qualitatively 
equivalent results for all these correlations (all models: t > 2.461, 
p < .024; Table 3). Across 21 species, clutch size was significantly 
positively correlated with nest concealment, and the length of 
incubation and nestling period increased significantly with nest 
concealment (Table  3, Figure  2). There was also a significantly 
positive correlation between nest success and nest concealment 
(Table 3).

F I G U R E  1   The maximum clade credibility tree (consensus tree) 
built with the 100 trees from the BirdTree Project for 21 avian 
species in sympatric area
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4  | DISCUSSION

In this study, we investigated the relationship between nest con-
cealment and four reproductive traits across sympatric species 
using both phylogenetically informed and conventional analyses. 
Qualitatively equivalent results were yielded by both approaches: 
All the reproductive traits (clutch size, incubation period, nestling 
period, and nest success) were strongly and positively correlated 
with nest concealment across 21 bird species. This supported our 
prediction that species with well-concealed nests would lead to 
larger clutch sizes but longer incubation and nestling periods, 
and achieve greater nest success. These findings (the correlation 
between nest concealment and reproductive traits) are similar 
to the results from some previous phylogenetic meta-analyses 
(Borgmann & Conway,  2015) and nonphylogenetic analyses 
(Grendelmeier et al., 2015; Martin & Li, 1992; Weidinger, 2002). 
Our study addressed the relationship between nest concealment 
and reproductive traits in such a high-elevation bird community 
(3,400 asl) that is lacking in the previous literature. Therefore, this 
study may advance the field and stimulate further study in harsher 
environment of high-elevation habitat.

Life-history theory predicts that clutch size should increase with 
greater nest success across species (Lack, 1968; Martin & Li, 1992). 

Reduced nest success is primarily caused by nest predation in bird 
species, and the general interspecific association of larger clutch size 
with reduced nest loss is widely accepted (Martin, 1993; Roff, 2002). 
Our study provides further evidence that increased nest conceal-
ment is associated with larger clutch size and greater nest success 
(Figure 2, Table 3; Martin & Li, 1992). Therefore, in our sample of 
species, it may be that better concealed nests had lower rates of 
predation, allowing them to produce larger clutches to increase their 
future fitness during long evolutionary history.

We also detected a positive and significant effect of nest con-
cealment on incubation period when controlling for body mass. 
Shorter incubation periods are often found in species that face 
higher levels of nest predation risk (Li & Lu, 2012b; Martin, 2002; 
Ricklefs, 1993), so birds may have longer incubation periods when 
predation risk is lower. Predation risk increases with time in the nest, 
so if predation risk is lower overall, development can be longer with 
minimal cost. The selective pressure for a shorter development pe-
riod is relaxed. This suggests that longer incubation period can be a 
by-product of high nest success from better concealed nests. There 
is also evidence that slower development is adaptive in stochastic 
environments where severe weather may disrupt resource availabil-
ity (Arendt, 1997; de Zwaan et al., 2019). Therefore, nest-site selec-
tion that allows for reduced predation risk and longer development 
times can reflect a balance between both weather and predation risk 
constraints.

Our results revealed a positive relationship between nest con-
cealment and length of the nestling period (Table 3, Figure 2). Longer 
nestling periods are usually associated with greater nest success in 
bird species (Li & Lu, 2012; Martin & Li, 1992) because of weaker 
selection for rapid nestling growth or development as mentioned in 
the previous paragraph. In this study, compared with less concealed 
nests (e.g., open nests on ground), better concealed locations (e.g., 
cavity nests on cliff) could be more inaccessible for predators. Thus, 
nestlings in better concealed nests are safer and can have a longer 
nestling period, which subsequently contribute to better developed 
fledglings (e.g., well-developed immune systems) and increased prob-
ability of future survivals (Breitwisch, 1989; Roff, 2002). By contrast, 
reduced fledgling quality from faster development can lead to lower 
survivorship in some species (Greño et  al.,  2008; Magrath,  1991; 
Thompson & Flux, 1991).

TA B L E  2   Significance of phylogenetic signal λ estimated 
by restricted maximum likelihood in PGLS models for nest 
concealment in relation to clutch size, incubation period, nestling 
period, or nest success when controlling for body mass (λ was 
tested against a value of 0)

Relationship between 
variables

Null model (λ = 0)

λ χ2 p

Clutch size ~Nest 
concealment

0.637 1.948 .113

Incubation period ~Nest 
concealment

−0.110 0.037 .847

Nestling period ~Nest 
concealment

1.065 7.772 .005

Nest success ~Nest 
concealment

0.820 5.296 .021

Bold values mean significant effects.

TA B L E  3   Results of the general linear models and PGLS models to determine whether variation in nest concealment affect clutch size, 
incubation period, nestling period, or breeding success when controlling for body mass across 21 coexisting species

Relationship

General linear models PGLS models

β ± SE t p β ± SE t p

Clutch size ~Nest concealment 0.505 ± 0.121 4.185 <.001 0.411 ± 0.116 3.536 .002

Incubation period ~Nest concealment 0.490 ± 0.206 2.379 .029 0.500 ± 0.203 2.461 .024

Nestling period ~Nest concealment 3.461 ± 0.443 7.818 <.001 2.866 ± 0.335 8.059 <.001

Nest success ~Nest concealment 0.122 ± 0.021 5.759 <.001 0.133 ± 0.019 7.060 <.001

Note: Body mass as a covariate was positive and significant (p < .01) in all analyses regardless of phylogenetic controls.
Bold values mean significant effects.
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As we predicted, better concealed nests are associated with 
larger clutch sizes, longer incubation and nestling periods, and 
achieve greater nest success across 21 coexisting species at high 
elevation. High elevation means adverse environment conditions 
(e.g., cold weather, strong wind, and thin oxygen) and more homog-
enous habitat with less option for birds to place their nests. Under 
these conditions, nest concealment should be more important and 
thus significantly affect their reproductive traits. To our knowledge, 
few previous studies have tested the association among nest con-
cealment and reproductive traits at such a high elevation (more than 
3,400 masl). This study adds to the evidence that there is a positive 
effect of nest concealment on reproductive performance at high 
elevation. However, these analyses should benefit from more spe-
cies with larger samples. The challenging climate and low breeding 

density of avian communities at high-elevation habitats may make 
it more difficult to collect large number of species with large sam-
ples, when compared with studies at low elevations. Longer-term 
fieldwork (more species with larger samples) and well-designed ex-
periments would be particularly helpful to explain the relationship 
between nest concealment and breeding performance at high eleva-
tion in further studies.
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