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in the development of atherosclerosis. The introduction of a

sensitive procedure for the determination of oxidized low�density

lipoprotein in human circulating plasma using a monoclonal anti�

body recognizing oxidized phosphatidylcholines has opened new

fields of research based on in vivo oxidized low�density lipo�

protein. The plasma oxidized low�density lipoprotein levels are

significantly elevated in patients with acute myocardial infarction,

cerebral infarction or chronic renal failure accompanied by hemo�

dialysis. It was found that the plasma oxidized low�density

lipoprotein level increased prior to aortic atherosclerotic lesion

enlargement in apolipoprotein E�knockout mice. Recent studies

have pointed out that oxidized low�density lipoprotein is trans�

ferrable between vessel wall tissue and the circulation, so it is a

reasonable hypothesis that plasma oxidized low�density lipo�

protein levels reflect the oxidative status at local sites of athero�

genesis. Oxidized low�density lipoprotein measurement has been

applied to human gingival crevicular fluids, which can be collected

easily and safely, and relatively high levels of oxidized low�

density lipoprotein were shown to be present. These findings,

together with recent clinical follow�up studies, suggest that

oxidized low�density lipoprotein is a predictive biomarker of a

variety of diseases related to oxidative stress. This review

summarizes the current understanding of in vivo oxidized low�

density lipoprotein and its potential significance as a biomarker of

disease.
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Detection of OxLDL in Atherosclerotic Lesions

Oxidative stress is involved in a variety of pathological condi-
tions, such as inflammation, atherosclerosis, obesity, and cancer.
Aerobic organisms cannot live without oxygen, and oxygen is an
active molecule which elicits oxidative modifications of essential
compounds of our body. In particular, polyunsaturated fatty acids
(PUFA) are molecules very susceptible to oxidation reactions.

Low-density lipoprotein (LDL) is a major carrier of cholesterol
in the circulation. Since cholesterol is insoluble in water, it resides
in a large complex composed of various lipids and proteins, which
is called lipoprotein. Triglycerides and cholesteryl esters are
packed in the core of the lipoprotein particles, and it is surrounded
by a phospholipid monolayer sheet. In each LDL particle, one
molecule of apolipoprotein B-100 (apoB) is included (Fig. 1).
Nearly 80% of human LDL is composed of lipids, and more than
a half of the lipid molecules are PUFA-containing lipids.(1) When
LDL is exposed to oxidation, the PUFA moieties in those lipids

are easily oxidized so as to produce a variety of oxidation products
containing oxidized functional groups, such as hydroperoxides,
epoxides, endoperoxides, isoprostanes, aldehydes, carboxylic
acids and unsaturated ketones. They are chemically active and
induce secondary reactions with the side chains of amino acid
residues in apolipoproteins. Oxidized low-density lipoprotein
(OxLDL) is characterized by the presence of various oxidized
lipids and amino acid residues modified with oxidized lipids,
and OxLDL is thus a mixture of those heterogeneously modified
LDL particles.

Foam cells, which accumulate neutral lipids in cytoplasmic
lipid droplets, are a typical feature of atherosclerotic lesions.
Chemically modified forms of LDL were first reported to induce
foam cell formation by macrophages in the 1980s.(2) In particular,
the oxidation of LDL was found to occur under various physio-
logical and phathological conditions. This suggested that lipid
oxidation and its products could be important clues to under-
standing the molecular basis of a variety of diseases. Subsequently,
macrophage scavenger receptors, which recognize chemically
modified LDL, including OxLDL, came to be extensively studied.
The first scavenger receptor identified and cloned was SR-A.(3)

Since then, a number of scavenger receptors have been identi-
fied.(4) These in vitro studies strengthened the OxLDL hypothesis,
but further studies are still needed to obtain corroborating in vivo
evidence for the variety of activities of OxLDL.

We have tried to identify the specific materials which are
present in atherosclerotic lesions by raising lesion-related
monoclonal antibodies (mAb).(5–7) Among many antibodies
against atherosclerotic lesions, a clone that strongly reacts with
copper-induced OxLDL was raised.(8) The antibody, DLH3,
recognizes oxidized phosphatidylcholines (OxPC), where 1-
palmitoyl-2-(9-oxo)nonanoyl-PC (9CHO-PC, also called PONPC)
is one of the potent antigenic molecules (Fig. 1).(9)

It has been extensively studied that various short-chain con-
taining PC molecules are produced during oxidative modifica-
tion.(10) Fig. 1B shows a presumed scheme of 9CHO-PC
formation. Linoleate moiety in the PC molecule will be attacked
at 9- or 13-position of the acyl chain. Then 9-alkoxy radical could
cleave C-C bond at 9-10 position to form 9-carbon aldehyde-
containing PC.

The antibody DLH3 was also shown to be useful immuno-
histochemically as a probe for the detection of OxPC in combina-
tion with an anti-apoB polyclonal antibody (pAb). In human
atherosclerotic lesions, immuno-double staining or adjacent serial
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section staining allowed the observation that OxPC was often
specifically present together with apoB in macrophage-derived
foam cells.(8,11,12) The presence of OxLDL in human atheroscle-
rotic lesions was further demonstrated by analysis of the
lipoprotein fraction extracted from carotid plaques obtained from
endarterectomized patients.(12) When either OxLDL or acetylated
LDL is incubated with macrophages in culture, the macrophages
take up the modified LDL particles and then degrade them in their
lysosomes. But the hydrolysis of the modified apoB in the OxLDL
was reported to be incomplete compared with acetylated LDL in
macrophage lysosomes.(13,14) Interestingly, the OxLDL extracted
from the carotid artery lesions was partially degraded.(12) It ranges
between 50–150 kDa, while the native apoB-100 is approximately
500 kDa, suggesting that the OxLDL in the lesions is processed
by the macrophages. This observation is a good evidence for the
presence of OxLDL in vivo (Fig. 2).

Circulating OxLDL and Cardiovascular Diseases

The anti-OxPC antibody was utilized to establish a sandwich
enzyme-linked immunosorbent assay (ELISA) procedure for
detecting even small amounts of OxLDL in human plasma.(15) The
OxLDL present in human plasma LDL fraction was shown to be
detectable even in the LDL from healthy subjects, even though
this amount of OxLDL (approximately 0.1 ng/μg LDL protein)
was very small. The OxLDL levels of LDL fraction from patients
with acute myocardial infarction (AMI), cerebral infarction or
chronic renal failure were significantly higher than control
subjects.(8,11,15,16)

Several research groups have reported methods for the determi-
nation of OxLDL in human plasma with mAbs. These methods use
similar but different mAbs, as well as different ELISA strategies
and standard materials. Thus, the OxLDL values obtained by these
methods cannot be directly compared. Despite such formal
technical differences in these procedures, the changes in OxLDL
levels in patients with severe cardiovascular diseases, including
AMI, were detected by all of these methods, which provide strong
evidence that the circulating OxLDL level changes under these
pathological conditions.(17)

Sandwich ELISA using a DLH3 antibody and anti-apoB pAb
has been shown to be a powerful tool for studying the changes in
the OxLDL levels in human plasma. The plasma OxLDL level is
significantly increased in patients with AMI compared with
normal subjects.(11) In our procedure, the LDL fraction was
separated from each plasma sample using ultracentrifugation，
therefore the value obtained by the measurement is indicated as
“ng of OxLDL per μg of LDL protein”, which represents the
degree of oxidation in the LDL particles.

The time course of the change in the plasma OxLDL levels in
patients with AMI during the time of treatment in the hospital was
studied. It was demonstrated that the plasma OxLDL levels were
significantly high in the acute phase after administration in the
hospital, but went down to a nearly normal level by the time of
discharge.(18) A similar temporal change in plasma OxLDL was
observed in the patients with cerebral infarction.(16) These findings
suggest that plasma OxLDL is released into the circulation from
atherosclerotic lesions upon plaque rapture (Fig. 3).(19)

Tsimikas et al.(20) have extensively studied the plasma OxLDL

Fig. 1. Anti�OxLDL mAb DLH3 recognizes OxPC. A: LDL is composed of a number of lipid molecules surrounded by a single molecule of apolipo�
protein B�100 (apoB). When LDL is oxidized, lipid peroxidation products are primarily derived from PUFA�containing phospholipids and triacylglycerol,
and some of the peroxidation products bind to apoB, thereby modifying the protein structures. B: One of the lipid oxidation products containing a
PC backbone and an aldehyde group, 9CHO�PC. This oxidized PC is recognized by the anti�OxPC mAb DLH3. It is very likely that the 1�palmitoyl�2�
linoleoyl PC is the precursor of 9CHO�PC. Linoleate moiety in the PC molecule will be attacked at 9� or 13�position of the acyl chain. Then 9�alkoxy
radical could cleave C�C bond at9�10 position to form 9�carbon aldehyde�containing PC.
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levels using the mAb EO6. They have also reported increased
OxLDL levels in patients with AMI. The OxLDL levels increased
in the acute phase or after percutaneous intervention and trans-
plantation,(21,22) suggesting that plaque injury after spontaneous
rupture or clinical treatment would release OxLDL from the
atherosclerotic lesions into the circulation. These observations

taken together support the concept that OxLDL is released from
ruptured lesions into the circulation.

A commercial kit to measure OxLDL is available from the
Mercodia AB (Uppsala, Sweden). A number of studies were
carried out using it, and an increase in the plasma OxLDL concen-
tration in the patients with plaque instability was demonstrated.(23)

Fig. 2. Foam cell formation and metabolism of OxLDL in atherosclerotic lesions. LDL particles are transferred into the vessel wall tissues, where
they are oxidized. After the oxidation of LDL, the resulting OxLDL is recongnized by scavenger receptors and taken up by macrophages. A portion
of the intimal smooth muscle cells de�differentiate and migrate into the area of intimal thickening. Activated smooth muscle cells are also able to
accumulate OxLDL. OxLDL is degraded in lysosomes after being taken up by the cells, but this degradation is not fully completed. Partially degraded
modified apoB fragments thus accumulate in the lesions.

Fig. 3. Systemic behavior of OxLDL. OxLDL is thought to be generated in vessel wall tissues even in the early phase of atherogenesis. OxLDL
gradally accumulates in premature lesions, while OxLDL migrates between the vessel wall and the circulation. When plaque is damaged, a thrombus
is generated and the blood flow is occluded. In the acute phase upon plaque ruptures, a portion of the intact OxLDL and degraded OxLDL which has
accumulated in the lesions is released into the circulation. In the peripheral blood, the OxLDL level go up in the acute phase, and it then goes down
as OxLDL is cleared by the liver from the circulation.
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This kit is based on a competitive ELISA using a single anti-
modified apoB mAb. It should be noted, however, that their
method has quite different features from ours in two respects.
First, their mAb binds to a hidden peptide fragment of the apoB
protein which is stretched out along the OxLDL surface by a
conformational change of apoB.(24) Strictly speaking, this epitope
is exposed to the surface of the LDL particles either by oxidation
or other modification of apoB. Second, the assay procedure is a
competitive ELISA using only one mAb, suggesting that the
specificity of the assay may not be sufficiently high to detect very
small amounts of OxLDL in the circulation. Some research groups
have pointed out that this ELISA kit failed to detect differences
between AMI patients and healthy subjects.(25)

Behavior of OxLDL during Atherogenesis

It has been an ongoing debate for many years whether OxLDL
is the cause of atherosclerosis or the result of plaque formation. It
is clear from a number of in vitro studies that OxLDL induces
inflammatory reactions by activating many types of cells in the
vascular wall, including macrophages, smooth muscle cells and
endothelial cells, suggesting these reactions are a strong factor in
the promotion of atherosclerotic lesion formation. And it is also
very likely that inflammation responses increase reactive oxygen
species (ROS) production and may thus initiate oxidation reac-
tions of PUFA.

We thought it is important to study the early events in the vessel
walls which take place in the course of atherogenesis to answer
this question. It is reported that early lesions in human coronary
arteries appear in subjects as young as 20 years old,(26) but it takes
decades to develop large and severe lesions, and cardiovascular
events start to occur in the decades of the age of 50’s or 60’s. Since
it is not easy to study the very early steps of atherogenesis in
humans, we examined apoE-knockout (apoE-KO) mice. ApoE-
KO mice have been used worldwide as a model animal of sponta-
neous hyperlipidemia and atherosclerosis.(27)

ApoE-KO mice were maintained on a normal chow for up to 40
weeks. Very small atherosclerotic lesions appeared as early as 10
weeks, and became extensively enlarged after 20 weeks of age.
The plasma OxLDL level in the apoE-KO mice increased

temporarily at 20 weeks and then decreased to the basal level. This
increase in plasma OxLDL level was observed before the
expansion of the lesion area (Fig. 4).(28) This observation suggests
that LDL is oxidized even in the absence of atherosclerotic
lesions, and that OxLDL may be involved in the subsequent
development of the lesions. We detected two oxidation epitopes,
OxPC and acrolein, in the aortic intima of the apoE-KO mice as
early as 4 week of age.

One interesting question is why the plasma OxLDL level
decreases after the temporal rise at 20 weeks of age. Since the
OxLDL appeared to accumulate in the aortic lesions during the
expansion of the lesions, it seems highly likely that OxLDL is
transferred from the circulation into the vessel wall tissues.
Another question is why OxLDL increases in the plasma, since it
is thought that LDL is oxidized in the vessel wall tissues and the
serum itself has a strong antioxidant capacity. It is possible that
OxLDL may easily move between the circulation and vessel wall
tissues. Witztum and colleagues demonstrated that the OxLDL
levels in the plasma and in lesions change during the progression
and regression of aortic lesions in cynomolgus monkeys.(29) Their
observations also strongly suggest there is active transport of
OxLDL between the circulation and vessel wall tissues.

The Presence of OxPC in Pathological Lesions

Age-related macular degeneration (AMD) is characterized by a
progressive degeneration of the neurosensory retina, retinal
pigment epithelium and choriocapillaris in the macular area. The
number of patients increasing and AMD has become a leading
cause of blindness in the elderly population in Japan. Kamei
et al.(30) found a strong positivity to the mAb DLH3 in retinas
from patients with AMD. OxPC was much less commonly found
in the healthy retina even though the donors were older. The pres-
ence of OxPC-modified proteins in the retina was also confirmed
by Western blotting.

An accumulation of OxPC was found in the chondrocytes in
cartilage from patients with osteoarthritis.(31) Osteoarthritis is a
local inflammatory disease in joint synovial membranes. Cartilage
is a unique tissue in which few cells are scattered in a very thick
layer of extracellular matrix and there are very few vessels.

Fig. 4. The age�dependent changes in the atherosclerotic lesions and plasma OxLDL levels in apoE�KO mice. Male apoE�KO mice were maintained
on a chow diet for up to 40 weeks. A: Whole aortas were stained with oil�red O and the percentage lesion area in the aortic surface was calculated.
B: The LDL fraction was separated from each mouse plasma sample. OxLDL levels in the mouse LDL fractions were measured using the anti�OxPC
mAb DLH3. Data for each mouse (circle) and the mean ± standard deviation (square) are indicated. a, p<0.01 from the value at 4 weeks. b, p<0.05
from the values at 10 and 20 weeks. c, p<0.01 from any other values determined. (Cited from ref. 28 in a modified form with permission by the
publisher.)
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When a peripheral nerve fiber is injured, the axon and myelin
sheath are regenerated. In this process many types of cells are
involved, including Schwann cells, macrophages and fibroblasts
are involved. Macrophages are thought to have a scavenging role
in which damaged cells and cell debris are recognized by
scavenger receptors and cleared away by endocytosis. Oxidative
modification of membranes could be involved in this cellular
damage of nerve cells, since OxPC has been shown to accumulate
in the sciatic nerve of CD36-knockoput mice after crush injury.(32)

Lipid peroxidation can proceed not only in lipoproteins but a
lipid environment, such as cellular membranes. The presence of
OxPC in certain disease lesions suggests that either oxidative
damage of cell components has occurred or oxidized materials
such as OxLDL have accumulated in local tissues. It is thus a
reasonable hypothesis that cellular membranes in the retina,
chondrocytes and nerve cells are oxidized under certain patho-
logical conditions.

The Presence of OxLDL in the Oral Environment

In developed countries, the number of patients with periodontitis
has been increasing, and now periodontitis is the primary cause of
tooth loss. Evidence has accumulated for a close relationship
between atherosclerosis and periodontal diseases. For example,
epidemiological studies have shown a significantly higher proba-
bility of periodontitis in patients with hypercholesterolemia and
cardiovascular disease.(33–35) The presence of Porphyromonas
gingivalis in atherosclerotic lesions, one of the major culprit
bacterial species of periodontitis, has been demonstrated.(36) When
P. gingivalis was injected in apoE-KO mice, the aortic lesions
increased significantly.(37,38)

The gingiva is made up of the tissues surrounding the teeth
and alveolar bones. Since these tissues are exposed to air and/or
food essentially all the time, it is a front-line region of bacterial
infection in oral tissue. Teeth are fixed by the alveolar bones
together with the support of the periodontal ligament, which is
attached to the gingival tissues (Fig. 5). Gingival crevicular fluid
(GCF) is an exudate from gingival tissues that originates from

plasma, so that many of the plasma proteins are detected in GCF
in addition to certain gingival tissue proteins which are secreted.(39)

For example, α-defensin, a potent anti-inflammatory peptide, has
reportedly been found in GCF.(40) However, the information on
GCF thus far is very limited.

One interesting feature of GCF is that it can be easily and safely
recovered from the gingival crevice, suggesting that it is poten-
tially useful as a clinical target of biochemical evaluation. We
collected GCF at the sites of healthy teeth from patients with
dental problems but no evident systemic or other infection. The
presence of apoB was demonstrated by Western blotting and the
presence of OxLDL was observed using sandwich ELISA.(41)

Interestingly, the OxLDL level in GCF from healthy subjects
was 17 times higher than the plasma OxLDL levels in the same
subjects on average, suggesting that LDL is oxidized in local
gingival tissues (Fig. 6). The GCF OxLDL levels relatively large
deviations, it did not reach significant difference. The GCF
OxLDL levels might, therefore, be a useful marker of the
oxidative status in our body. Since the relationship between
periodontitis and metabolic disorders such as diabetic mellitus and
atherosclerosis has come to be a focus of attention recently,(33–38)

it is important to study the relative OxLDL levels in patients with
these metabolic disorders so as to eventually obtain simple and
effective clinical tests.

OxLDL as an Inflammatory Stimulant in Oral Disease

A number of studies have shown that OxLDL is a potent stimu-
lant of various types of activity in vessel wall cells, for example,
the proliferation of endothelial cells, smooth muscle cells and
macrophages,(42,43) the production of cytokines and other media-
tors,(44–46) platelet activation(47) and the induction of cell death.(48,49)

However, the effects of OxLDL on other types of cells, such as
epithelial cells, have not been well studied yet. There is a paper
reporting the effects of OxLDL on NRK52E proximal tubule
epithelial cells, in which the up-regulation of ICAM-1 and focal
adhesion kinase was observed.(50)

We thought that the OxLDL identified in GCF might be actively

Fig. 5. A: An outline of the gingival tissues is illustrated. A tooth is mechanically supported by alveolar bone, and the tooth and the alveolar bone
are surrounded by gingiva. The tooth and the alveolar bone are tightly attached by the thin gingival membrane called periodontal ligament. On
the top of the periodontal ligament, there is gingival crevice which is a small space between the tooth and gingival epithelia. Gingival crevicular
fluid (GCF) is an exudate recovered from the crevice. When the tissue is injured from periodontitis, the alveolar bone and the periodontal ligament
are reduced and the gingival crevice deepens. B: GCF is easily and safely recovered using a needle�shaped filter paper called a paperpoint.
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involved in the inflammatory responses in oral tissues. The oral
epithelial cell line Ca9-22 was incubated with OxLDL and the
effect on the production of inflammatory factors was examined.
Ca9-22 exhibited increased amounts of interleukin-8 (IL-8), pros-
taglandin E2 (PGE2) and IL-1β when stimulated with OxLDL.(51)

Treatment of the cells with lipopolysaccharide from P. gingivalis
did not induce any change in the production of these inflammatory
mediators, suggesting that OxLDL itself, rather than bacterial
infection, stimulates oral epithelial cells. Oral keratinocytes,
primary culture cells originating from human oral tissues, were
also responsive to OxLDL and displayed increased production of
IL-8, PGE2 and IL-1β in the presence of OxLDL.(51)

The cellular signaling mechanisms for the OxLDL-dependent
responses have been extensively studied using macrophages and
endothelial cells. There are many receptor candidates for the
mediation of the cell stimulation by OxLDL. Scavenger receptors
bind OxLDL and take it up into cells. Among the reported
scavenger receptors, CD36 and LOX-1 are thought to mediate
cellular signaling as well as OxLDL uptake.(52–54) In addition to the
scavenger receptors, toll-like receptor 4 (TLR4), a receptor for
bacterial endotoxin lipid A, also binds to OxLDL and is involved
in OxLDL signaling.(55) In the interior of cells, there also are
multiple pathways activated by OxLDL, such as the MAP-kinase
pathway and peroxisome proliferator-activated receptor γ
(PPARγ).(56–58) Recently, another signaling molecule TLR4 that is
activated in a variety of cells by OxLDL has come to be a focus of
attention.(59–61)

It is evidently a very complex situation in which the responsible
receptors and signaling mechanisms are not only multiple they
also depend on the cell type. The effects of OxLDL on Ca9-22
cells were attenuated by fucoidan or dextransulfate, which are
negatively charged polysaccharides, which suggests that there are
scavenger receptors involved in the response.(62) Ca9-22 cells
express the mRNA of the major scavenger receptors, including

CD36 and LOX-1, but we could not detect TLR4 mRNA (unpub-
lished data). More work is needed to clarify the responsible
receptor(s) for the OxLDL-dependent stimulation which takes
place in oral epithelial cells. We also found that the nuclear factor-
kappa B (NF-κB) pathway is involved in the OxLDL-dependent
production of IL-8 in Ca9-22 cells and human oral keratino-
cytes.(51) The NF-κB pathway is a multi-functional gene activating
system, and it is well known that oxidative stress such as ROS
activate the NF-κB pathway in a great variety of cells.

Conclusion

These results, taken together with those reported by others,
suggest that OxLDL is a pro-inflammatory stimulant, and further-
more, that it is involved in not only atherosclerosis, but also other
types of diseases, including periodontitis. Since OxLDL is present
not only in local sites but also the systemic circulation local sites
in various tissues, it has the capacity to induce inflammation in a
variety of tissues, such as the vessel wall, retina, and gingiva. The
systemic OxLDL level in the body may readily lend itself to the
development of tools which will enable an early diagnosis and
faster initiation of treatment.
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AMI acute myocardial infarction
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