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Abstract: The failure of chemotherapy is a major challenge nowadays, and in order to ensure
effective treatment of cancer patients, it is of great importance to reveal the molecular pathways
and mechanisms involved in chemoresistance. Cisplatin (CP) is a platinum-containing drug with
anti-tumor activity against different cancers in both pre-clinical and clinical studies. However,
drug resistance has restricted its potential in the treatment of cancer patients. CP can promote
levels of free radicals, particularly reactive oxygen species (ROS) to induce cell death. Due to the
double-edged sword role of ROS in cancer as a pro-survival or pro-death mechanism, ROS can result
in CP resistance. In the present review, association of ROS with CP sensitivity/resistance is discussed,
and in particular, how molecular pathways, both upstream and downstream targets, can affect the
response of cancer cells to CP chemotherapy. Furthermore, anti-tumor compounds, such as curcumin,
emodin, chloroquine that regulate ROS and related molecular pathways in increasing CP sensitivity
are described. Nanoparticles can provide co-delivery of CP with anti-tumor agents and by mediating
photodynamic therapy, and induce ROS overgeneration to trigger CP sensitivity. Genetic tools,
such as small interfering RNA (siRNA) can down-regulate molecular pathways such as HIF-1α and
Nrf2 to promote ROS levels, leading to CP sensitivity. Considering the relationship between ROS and
CP chemotherapy, and translating these findings to clinic can pave the way for effective treatment of
cancer patients.

Keywords: cisplatin; reactive oxygen species; drug resistance; chemoresistance; nanoparticles; gene
therapy; anti-cancer therapy
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1. Introduction

The field of cancer chemotherapy is suffering from a number of challenges; drug resis-
tance is the most significant. In respect to the benefits of chemotherapy in the treatment
of cancer patients, factors responsible for mediating chemoresistance should be identified
in further studies, in order to prevent drug resistance [1–7]. Cisplatin (CP) is a platinum-
containing drug that was first discovered in 1965 and became famous due to its great
antimicrobial activity. More experiments demonstrated that platinum-containing agents
can possess anti-cancer activity [8–13]. As an electrophilic reagent, platinum can interact
with nucleophilic residues of nucleobases, including guanine and adenosine by forming
covalent bonds. Due to the presence of nucleophilic residues on a wide variety of cellular
components, platinum-containing compounds can interact with ribosomes, spliceosomes,
RNA and proteins [14–17]. The major pathway for suppressing cancer progression by CP
is inducing DNA damage by forming adducts with DNA, resulting in apoptosis and cell
cycle arrest [18]. More efforts in revealing anti-tumor activity of CP revealed that CP has
the capacity of internalization in organelles, such as endoplasmic reticulum (ER), mito-
chondrion, lysosomes, and nucleus. This demonstrates that, in addition to DNA damage,
CP can induce cell death by impairing homeostasis of vital organelles, such as ER and
mitochondrion [19,20]. However, this impact may negatively affect anti-tumor activity of
CP. It has been reported that in spite of impairing homeostasis of proteins and organelles in
cytoplasm upon CP accumulation, pro-survival mechanisms, such as autophagy, unfolded
protein response (UPR) and other protective processes may be activated [21–23]. These
mechanisms may induce cancer cells resistance to CP chemotherapy.

Upon administration, CP immediately emerges in blood circulation. A high amount of
CP (up to 98%) can be found in status of connected to plasma proteins, such as human serum
albumin (HAS) [24,25]. Each HAS can bind to five CP molecules. One of the problems in
patients receiving CP is the emergence of zinc imbalance. This is due to binding capacity of
HAS-CP to histidine residues that are involved in transportation of Zn2+ ions in cells [26,27].
The penetration of CP into cells is performed via passive diffusion [28].

The benefits of using CP in cancer chemotherapy became absent as a result of chemore-
sistance. Cancer cells no longer become responsive to CP chemotherapy and can upregulate
molecular pathways to induce drug resistance [29–31]. A wide variety of factors are consid-
ered as key players in mediating CP resistance. Drug transporters participate in triggering
CP resistance. ATP7A and ATP7B are copper transporters that can bind to cysteine residue
of CP to diminish its internalization in cells, leading to chemoresistance [32]. It has been
reported that enhanced activity and expression of P-glycoprotein (P-gp) can also stimulate
CP resistance [33]. On the other hand, in CP-resistant cancer cells, pro-apoptotic factors,
such as BCL2 associated X (BAX) undergo down-regulation, while an increase occurs in the
expression of anti-apoptotic factors, such as Bcl-2 to trigger CP resistance [34,35]. It seems
that glutathione peroxidase 4 (GPX4) upregulation prevents ferroptosis in cancer cells to
mediate CP resistance [31]. In this case, the inhibition of these antioxidant agents can pre-
dispose cancer cells to CP chemotherapy. In head and neck cancer cells, down-regulating
glutaredoxin 5 stimulates ferroptosis, leading to CP sensitivity [36]. Transcriptional ac-
tivation of RAD51 by CtBP1 results in CP resistance [37]. Noteworthy, it appears that
CP administration can significantly promote metastasis and invasion of cancer cells by
inducing macrophages [38]. The experiments have also tried to target molecular pathways
involved in CP resistance via anti-tumor agents. For instance, propofol and hederagenin
are among anti-tumor agents that can promote CP sensitivity of cancer cells by down-
regulating Wnt signaling and suppressing autophagy [2,39].

As mentioned earlier, the impact of CP on intracellular organelles might pave the way
for CP resistance. In the present review, our aim is to reveal the role of reactive oxygen
species (ROS) in mediating/suppressing CP resistance. This review focuses on molecular
pathways to relate ROS generation with efficacy of CP chemotherapy in cancer therapy.
Future experiments can focus on targeting molecular pathways involved in this review
articles and we have provided some examples in this case.
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2. ROS: Dual Role in Cancer Progression/Inhibition
2.1. Basics

Reactive species have gained much attention in the field of biology and medicine,
and to date, different kinds of reactive species have been recognized, based on their source,
being either oxygen, nitrogen or sulfur [40–42]. ROS are derived from oxygen through
some reactions such as reduction-oxidation reactions or electronic excitation [43]. There are
four major types of ROS, including superoxide, hydrogen peroxide, peroxyl radical and
lipid peroxidase [44–46]. As chemically active free radicals, ROS play a remarkable role in
tissue homeostasis. The production of ROS occurs in mitochondrion and this is performed
during mitochondrial respiration and inducing the partial reduction of oxygen [45,47,48].
In addition to mitochondria, other cellular organelles, such as ER and peroxisomes can
participate in ROS formation [49,50]. It has been reported that ROS can interact with proteins,
lipids and genetic materials in cells [51,52]. The imbalance in the generation of ROS can
lead to the emergence of oxidative stress with the dual role of being beneficial or harmful.
The physiological functions of cells, such as aging, inflammation and immune responses are
governed by ROS [53–55]. Therefore, the presence of ROS is vital for normal function of cells.
However, increased levels of ROS production can result in the development of pathological
events, including neurodegenerative diseases, diabetes and cancer [56–58].

ROS participate in redox signaling and in this case, their low level generated by mito-
chondrial respiration or nicotinamide adenine dinucleotide phosphate oxidase (NADPH)
oxidase (NOX) is required [59]. In redox signaling, ROS regulate a variety of molecules,
including protein kinases and transcription factors to monitor proliferation, differentiation,
migration and cytokine production. The opposite term of redox signaling is redox modula-
tion that ROS action does not rely on first messenger (extracellular stimuli) and ROS induce
changes in characteristics of redox-sensitive molecules, such as nucleic acid and metabolic
enzymes [60]. One of the most well-known pathways that ROS participate is apoptosis
induction. Enhanced generation of ROS disrupts mitochondrial homeostasis, and this
leads to the upregulation of apoptotic factors, such as Bax and Bid, and down-regulation
of anti-apoptotic factors, such as Bcl-2. Then, the release of cytochrome C (cyt C) from
mitochondrion occur, leading to activation of caspase cascade and apoptotic cell death.
Furthermore, ROS can impair ER homeostasis to stimulate apoptosis [61].

2.2. ROS Role in Cancer

In the previous section, we have summarized the role of ROS production, their role
in physiological conditions and related pathways. In this section, an overview of the
ROS role in cancer progression/inhibition is provided to shed some light on its targeting
pathways in cancer therapy. The molecular pathways that are regulated by ROS are of
importance in cancer therapy [62–64]. Increased ROS generation leads to the activation
of p38 and extracellular signal-regulated kinase (ERK), which subsequently stimulates
cell death and cell cycle arrest at S and G2/M phases [65]. Organelles are vital targets of
ROS in cancer cells. Upon ROS overgeneration, ER stress occurs, and related molecular
pathways, including glucose regulated protein 78 (GRP78) and C/EBP homologous protein
(CHOP) undergo upregulation that trigger anti-tumor activity [66]. Previously, it was
mentioned that an increase in ROS generation impairs mitochondrial homeostasis. It has
been reported that by triggering mitochondrial damage, ROS promotes the expression
level of FOXO3a in mediating its nuclear translocation. In the nucleus, FOXO3a enhances
expression level of tumor-suppressing factors, such as Bim caspase-3 and phosphatase
and tensin homolog (PTEN) to induce apoptosis in cancer cells [67]. This study clearly
demonstrates that by regulating mitochondria, ROS can induce apoptosis. In addition to
apoptotic cell death, ROS overgeneration can stimulate ferroptosis in decreasing prolif-
eration and viability of cancer cells [68]. Autophagy is another programmed cell death
(PCD) mechanism that can be stimulated by ROS levels in cancer therapy [69,70]. In lung
cancer cells, increased ROS generation leads to stimulation of mitogen-activated protein
kinase (MAPK) that in turn, induces ERK and c-Jun N-terminal kinase (JNK) pathways.
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Then, autophagic cell death occurs that remarkably diminishes proliferation and growth of
lung cancer cells [71]. Therefore, elevating ROS generation is the most important pathway
that anti-tumor agents follow in cancer elimination [72]. One of the forms of autophagy
is mitophagy that degrades damaged mitochondrion [73]. ROS overgeneration leads to
mitochondrial injury and provides the conditions for mitophagy, resulting in a decrease
in cancer cell viability [74]. Noteably, in respect to the role of ROS in reducing cancer cell
viability, it has been reported that cancer stem cells (CSCs) preserve ROS generation at low
levels to obtain chemoresistance [75]. Therefore, using agents that enhance ROS generation
is improtant in providing chemosensitivity. Overall, studies are in agreement with anti-
tumor activity of ROS and their capacity in regulating various molecular pathways [76–80].
However, there are controversies about the role of ROS in cancer cells. Although previ-
ous statements demonstrate the role of ROS as anti-tumor agents, there are experiments
showing the tumorigenesis role of ROS. Immune system plays a significant role in cancer
therapy. In impairing anti-tumor activity of immune system, cancer-associated fibroblasts
(CAFs) enhance ROS generation to provide polarization of monocytes to myeloid-derived
suppressor cell (MDSC) [81]. It appears that hepatitis B virus (HBV) can enhance ROS
generation in hepatocellular carcinoma. Enhanced ROS production leads to IQGAP1 and
Rac1 interaction that overexpressed Rac1 induces Src/FAK signaling via phosphorylation
to promote migration and invasion of cancer cells, and stimulate anoikis resistance [82].
These studies demonstrate the dual role of ROS in cancer. In the next sections, a mechanistic
discussion of ROS role in CP sensitivity/resistance is provided [83].

3. ROS, Cisplatin Chemotherapy and Related Molecular Pathways
Cisplatin Sensitivity

The Krüppel-like factor 4 (KLF4) is a zinc finger-containing transcription factor capa-
ble of regulating different biological activities such as differentiation and tumorigenesis.
The interaction partner and cell type determine role of KLF4 as a tumor-suppressing
or tumor-promoting factor [84]. The overexpression of KLF4 is in favor of enhancing
CP-mediated apoptosis in cancer cells [85]. In CP resistant-cancer cells, KLF4 and ROS
undergo down-regulation that are responsible for increased cell viability [86]. As their
levels decrease simultaneously, KLF4 upregulation may promote ROS levels in enhancing
CP sensitivity of cancer cells.

MicroRNAs (miRNAs) are regulators of different biological processes in cells, such as
proliferation, migration, differentiation, apoptosis and autophagy [87]. In addition to
physiological roles, miRNAs also play a significant role in pathological events via regu-
lating various molecular pathways [88]. MiRNA-124 is a new emerging miRNA in cancer
chemotherapy that its upregulation down-regulates oncogenic signal transducer and ac-
tivator of transcription 3 (STAT3) pathway to promote CP sensitivity [89]. Furthermore,
it can be considered as a biomarker for determining response to CP chemotherapy, so that
gastric cancer patients with low levels of miRNA-124 have poor response to CP chemother-
apy [90]. Noteworthy, miRNA-124 can regulate ROS levels in affecting CP response of
cancer cells. In this way, miRNA-124 decreases SIRT1 expression to increase ROS levels
that subsequently, stimulate JNK phosphorylation, leading to increased CP sensitivity
of hepatocellular carcinoma cells [91]. The same phenomenon occurs by miRNA-519d
in colorectal cancer cells. MiRNA-519d is a critical regulator of cancer response to CP
chemotherapy. MiRNA-519d can reduce expression level of XIAP to potentiate CP cytotoxi-
city against cancer cells [92]. Furthermore, miRNA-519d impedes CP resistance by inducing
apoptosis through MCL-1-dependent mitochondrial pathway [93]. In colorectal cancer
cells, miRNA-519d down-regulates the expression level of tripartite motif 32 (TRIM32) to
enhance ROS levels, leading to mitochondrial dysfunction and increased CP sensitivity [94].
Investigating the expression level demonstrates that miRNAs with tumor-suppressing role
undergo down-regulation in CP resistant-cancer cells. Such phenomenon is obvious in
cervical cancer in which miRNA-497 shows low expression, while an increase occurs in
expression profile of transketolase (TKT) (upregulation in 81.1% of samples). By reducing
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TKT expression, miRNA-497 promotes ROS levels, while induces GSH depletion, leading
to cancer cell death and CP sensitivity [95].

Recent experiments have focused on revealing role of sirtuin-2 (SIRT2) in cancer
and providing rationale for its therapeutic targeting [96]. SIRT2 can suppress migration
and invasion of cancer cells via isocitrate dehydrogenase 1 (IDH1) deacetylation [97].
Furthermore, SIRT2 can inhibit proliferation and colony-formation capacity of cancer
cells [98]. In ovarian cancer cells, enhancing SIRT2 expression paves the way for CP
sensitivity. CP administration significantly increases ROS levels to induce SIRT2 expression,
resulting in ovarian cancer suppression [78].

One of the targets in cancer therapy is ER, so that inducing ER stress enhances efficacy
of chemotherapy in cancer eradication [99]. Triggering ER stress and activating UPR
are followed by CP in cancer treatment [100]. In ovarian cancer cells, CP enhances ROS
levels to induce ER stress. Then, UPR activates that overcomes drug resistance [101].
It seems that ROS levels can be considered as a biomarker for predicting response of cancer
cells to chemotherapy. For this purpose, Sun and colleagues have developed a scoring
system, based on ROS, for predicting cancer patients’ response to CP chemotherapy. In this
system, there are 25 scores in which scores 0–12 demonstrate low score groups, while
scores 13–25 show high score groups. As ROS overgeneration enhances CP sensitivity and
apoptosis induction, by enhancing ROS levels, patients are included in high score groups,
which have high overall survival and good prognosis [102]. This score can be used in
clinical course. Furthermore, down-regulating molecular pathways modulating ROS can
pave the way for CP sensitivity. The human paraoxonase (PON) family has three distinct
members including PON1, PON2 and PON3. PON1 and PON3 are expressed in the liver,
while PON2 demonstrates expression in various tissues and intracellular accumulation
upon translation [103]. It has been reported that PON2 possesses antioxidant activity in
different tissues, such as the intestine and nervous system [104–106]. The overexpression of
PON2 is correlated with CP resistance. In order to increase CP sensitivity of melanoma cells,
silencing PON2 promotes ROS levels, resulting in decreased viability and proliferation [107].
Figure 1 and Table 1 demonstrate an overview of molecular pathways involved in CP
sensitivity via ROS regulation.
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Figure 1. Molecular pathways regulating ROS generation and their role in CP sensitivity. The in-
teresting point is the overgeneration and inhibition of ROS levels in CP sensitivity. ROS can affect
migration and proliferation of cancer cells in CP sensitivity. MiRNAs can also function as upstream
mediators of ROS in CP sensitivity.
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Table 1. Enhanced CP sensitivity of cancer cells via ROS regulation.

Cancer Type In Vitro/In Vivo Cell Line/Animal Model Signaling Network Remarks Refs

Osteosarcoma In vitro MG63/DDP and
Saos-2/DDP cells STAT3/Nrf2/GPX4

High expression of STAT3,
Nrf2 and GPX4 in CP
resistant-cancer cells

STAT3 inhibition promotes
CP sensitivity

Agonist of ferroptosis
enhances CP sensitivity

ROS overgeneration partially
is involved in triggering

CP sensitivity

[108]

Sarcoma In vitro MG-63 cells Id3/ROS

Enhancing Id3 expression
increases CP sensitivity of
cancer cells by apoptosis

induction via ROS
overgeneration

[109]

Human maxillary
cancer In vitro IMC-3CR cells SESN1/ROS

Reducing apoptosis induction
Enhancing viability and
survival of cancer cells

SENS1 decreases ROS levels

[110]

Tongue squamous
cell carcinoma In vitro CAL27 cells -

ROS overgeneration enhances
anti-tumor activity of CP

Simultaneous induction of
apoptosis and autophagy

[111]

Ovarian cancer In vitro OVCAR-3 cells -

Higher levels of
mitochondrial ROS in CP

sensitive-cancer cells
compared to CP

resistant-cancer cells
Boosting CP-mediated

apoptosis via enhancing
ROS levels

[112]

Non-small cell lung
cancer In vitro A549 cells MiRNA-

140/SIRT1/ROS/JNK

MiRNA-140 functions as a
tumor-suppressing factor
SIRT1 down-regulation

Activating ROS/JNK axis
Increasing CP sensitivity

[113]

Breast cancer In vitro MCF-7 cells ACO2/ROS

ACO2 promotes ROS
accumulation in cancer cells
Subsequent stabilization and
stimulation of p53 in nucleus

and mitochondria
Apoptosis induction

[114]

Colorectal cancer In vitro HT29 and SW480 cells MiRNA-
519d/TRIM32

Down-regulating TRIM32 by
miRNA-519d

Promoting CP sensitivity via
ROS generation,

and mediating mitochondrial
pathway of apoptosis

[94]

Colon cancer In vitro HCT-15 cells -
Reduced levels of ROS

Down-regulation of KLF4
CP resistance

[86]

Hepatocellular
carcinoma In vitro HepG2 and Huh7 cells MiRNA-

124/SIRT1/ROS/JNK

SIRT1 inhibition
Triggering JNK

phosphorylation via ROS
overgeneration

Mediating CP sensitivity

[91]

4. Cisplatin Resistance

Inhibiting the expression of molecular pathways that reduce ROS levels and confer
CP resistance is important in effective cancer chemotherapy. That is the reason why
experiments have focused on the identification of such pathways and disrupting their
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expression. In head and neck cancers, ROS inhibition is associated with CP resistance.
Enhancing ROS levels mediates ferroptosis and cell death. Nuclear factor erythroid 2-
related factor 2 (Nrf2) is suggested to diminish ROS levels upon CP chemotherapy of
head and neck cancer cells. Nrf2 signaling inhibition promotes ROS levels, potentiating
ferroptosis and providing CP sensitivity [115].

It seems that ROS can provide metabolic reprograming to enhance resistance of non-
small cell lung cancer (NSCLC) cells to CP. In this way, exposing NSCLC cells to CP
is associated with an increase in mitochondrial function, PPAR-gamma coactivator-1α
(PGC-1α) and mitochondrial. Simultaneously, glycolysis down-regulation occurs, but this
does not affect cell cycle progression of cancer cells. These metabolic changes are mediated
via ROS, so that ROS can promote PGC-1α expression and mitochondrial mass that are in
favor of CP resistance. The inhibition of PGC-1α or suppressing oxidative phosphorylation
enhance CP sensitivity of NSCLC cells [116]. This experiment highlights the fact that
we should consider metabolic reprogramming resulted from ROS and take strategies for
overcoming this condition. The stimulation of factors involved in reducing ROS levels
can promote CP resistance of NSCLC cells. Nrf2 participates in regulating redox balance
and its activation is correlated with a decrease in ROS levels, and protecting cells against
cell death [117,118]. Furthermore, Nrf2 activation can diminish ROS levels and prevent
ferroptosis in cancer cells [119]. However, Nrf2 activation can diminish ROS levels in
favor of inhibition of cell death in cancer cells and providing chemoresistance [98,120].
Such association has been examined in triggering CP resistance. It has been reported that
polarity protein Scribble enhances CP sensitivity of NSCLC cells. However, in vitro and
in vivo experiments have shown down-regulation of this factor in CP resistant-NSCLC
cells. Upon Scribble down-regulation, proteasomal degradation of NADPH oxidase 2
(Nox2) occurs that subsequently, ROS levels decrease. On the other hand, Nrf2 signaling
activation results from Scribble down-regulation that can also participate in decreasing
ROS levels. These impacts together lead to the development of CP resistance in NSCLC
cells and a reduction in CP-mediated apoptosis [121]. This experiment has potential
application in clinical studies, since CP poses increasing challenges in the treatment of
cancer patients, and if such signaling networks are affected in clinical course, we can
prevent chemotherapy failure.

ROS inhibition can activate molecular pathways involved in cancer progression and
phosphoinositide 3-kinase (PI3K)/protein kinase-B (Akt) is one of them. It has been
reported that activation of PI3K/Akt axis not only promotes proliferation and metastasis
of cancer cells [122–125], but also triggers chemoresistance [126–129]. Therefore, it is
important to reveal the role of this molecular pathway in CP resistance of cancer cells and
providing prospects for its targeting. In CP-resistant NSCLC cells, glutathione peroxidase 1
(GPX1) remarkably diminishes ROS levels to stimulate Akt signaling, as a tumor-promoting
factor for CP resistance. The investigation of molecular pathways demonstrates that master
transcription factor nuclear factor-kappaB (NF-κB) functions as upstream mediator of
GPX1 in CP resistance, so that NF-kB inhibition leads to CP sensitivity of NSCLC cells [89].
GPX2 is also involved in CP resistance via reducing ROS levels, paving the way for failure
of CP in lung cancer chemotherapy [130].

To be more specific about mechanisms involved in CP resistance, the significant role
of drug transporters in this process should be considered and how they interact with ROS
overgeneration. The enhanced activity of ATP-binding cassette (ABC) transporters such
as multidrug resistance protein 1 (ABCB1) is suggested to induce CP resistance [111,131].
Importantly, revealing molecular pathways, regulating ABCB1 expression and activity, is of
importance for providing a platform for next targeting in cancer treatment and enhancing
CP sensitivity. It has been reported that EF hand domain-containing protein 2 (EFHD2)
as a calcium-binding protein enhances production of NOX4 to promote ROS generation.
Subsequently, ROS generation function as upstream mediator of ABCB1 to enhance its
expression, resulting in CP resistance [132].
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In the tumor microenvironment of cancer cells, some changes can occur to ensure
progression and proliferation. The pyruvate kinase isoenzyme type M2 (PKM2) is a
regulator of Warburg impact in cancer cells and can enhance glycolysis in cancer cells via
catalyzing synthesis of pyruvate from phosphoenolpyruvate (PEP). Increasing evidence
demonstrate the therapeutic potential of targeting PKM2 in cancer and enhancing CP
sensitivity [133–136]. Exosomal transfer of PKM2 in hypoxic condition results in the
generation of reductive metabolites that counter CP-mediated ROS production, preventing
apoptosis and DNA damage and providing condition for CP resistance [137].

Thioredoxin (TRX1) is a disulfide-reducing dithiol enzyme and as an antioxidant
enzyme plays a vital role in reduction of enzymes [138]. Recently, attention has been di-
rected towards the role of TRX1 in cancer, particularly drug resistance. It has been reported
that TRX inhibition inhibits drug resistance and viability of cancer cells via suppressing
Akt phosphorylation and promoting caspase-3 expression [139]. Anti-tumor compounds,
such as isodeoxyelephantopin are capable of down-regulating TRX1 and stimulating ROS-
induced JNK signaling, leading to enhanced CP sensitivity [140]. Down-regulating TRX1 is
suggested to promote dependency of cancer cells on oxidative metabolism. Furthermore,
TRX1 down-regulation enhances ROS generation in cancer cells to increase their CP sensi-
tivity [141].

One of the important aspects is the regulation of CP sensitivity by miRNAs [142]. Fur-
thermore, miRNAs can modulate ROS levels in cells [143,144]. Therefore, understanding
the role of miRNAs in regulating ROS levels in CP chemotherapy is significant. MiRNA-
140 is a tumor-suppressing factor that enhances CP sensitivity of cancer cells via down-
regulating Wnt signaling [97]. In increasing CP sensitivity, miRNA-140 down-regulates
SIRT1 expression to promote ROS levels. Then, ROS induces JNK phosphorylation to
increase CP-mediated apoptosis [113]. As more experiments are performed, different
molecular pathways are revealed that mediate CP resistance of thoracic cancers. The tu-
mor necrosis factor receptor-associated protein 1 (TRAP1) is a new therapeutic target in
cancer. This mitochondrial heat shock protein can be found in other locations of cells such
as nucleus, cytoplasm and endoplasmic reticulum [145,146]. It seems that upregulation
of TRAP1 triggers drug resistance of cancer cells and prevents apoptosis [147]. The CP
resistant-lung cancer cells demonstrate high expression level of TRAP1 and apoptosis inhi-
bition. Silencing TRAP1 is associated with increase in capacity of CP in cancer elimination
by enhancing ROS levels and mediating mitochondrial dysfunction [148].

In the introduction section, it was mentioned that ROS can induce apoptosis via
triggering mitochondrial dysfunction. Furthermore, it was described that enhanced ROS
overgeneration can enhance tumorigenesis. Such an association between ROS and mito-
chondrial dysfunction in enhancing gastric cancer progression has been evaluated. The eu-
karyotic initiation factor 2α (eIF2α)-ATF4 axis is a regulator of stress response and can
provide conditions in favor of cell survival upon stressful conditions and preventing
apoptosis [149,150]. There are different contributors of elF2a including dsRNA-activated
protein kinase R (PKR), heme-regulated inhibitor eIF2α kinase (HRI), protein kinase R-like
endoplasmic reticulum kinase (PERK), and general control nonderepressible-2 (GCN2) that
are stimulated in various stress conditions [149]. When mitochondrial dysfunction occurs,
GCN2 or PERK can enhance elF2α expression [151,152]. Exposing gastric cancer cells to
CP increases expression level of SLC7A11 (×CT). It seems that mitochondrial dysfunction
is responsible for enhanced ×CT and GSH expressions. Studies of the molecular pathways
demonstrate that GCN2 can stimulate eIF2α/ATF4 axis to induce mitochondrial dysfunc-
tion, leading to enhanced ×CT and ROS levels, as well as triggering CP resistance [153].
Another experiment also reveals role of ×CT in CP resistance. However, in this study,
upstream mediator of salubrinal plays an important. Salubrinal enhances expression level
of ×CT to increase GSH expression, and silencing ×CT is associated with inability of salu-
brinal in triggering CP resistance, showing that ×CT is vital for this process. Furthermore,
as ×CT enhances GSH expression, they may involve in reducing ROS levels and triggering
CP resistance [154].
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Noteworthy, molecular pathways that protect cancer cells against oxidative stress
damage, can lead to CP resistance. Peroxiredoxin 2 (PRDX2) is a supporter of cells against
oxidative damage via reducing ROS and H2O2 levels [155]. In gastric cancer cells, PRDX2 in
cooperation with NF-kB-p65 subunit diminish ROS levels to suppress DNA damage and
cell death, leading to CP resistance [156]. It seems that ROS participate in mechanisms that
suppress CP-mediated apoptosis and mediate chemoresistance [157].

Recent years, much emphasis has been directed towards role of tumor microenviron-
ment in cancer progression. Low levels of angiogenesis and high proliferation of cancer
cells induce hypoxic conditions in the tumor microenvironment that are accompanied
by an increase in expression level of hypoxia inducible factor-1α (HIF-1α) providing the
conditions for cancer growth [158–160]. On the other hand, in response to different changes
in the tumor microenvironment, alterations in structures and dynamics of mitochondria
occur. The dynamin-related protein 1 (Drp1) is involved in mitochondrion dynamics and its
phosphorylation level determines its activation or inhibition. For instance, Drp1 phosphory-
lation at serine 616 in results in its activation and mitochondrial fission, while phosphoryla-
tion at serine 637 prevents Drp1 activation and subsequent mitochondrial fission [161–163].
A recent study has clearly shed some light on the associations between mitochondria,
hypoxia and CP resistance. In hypoxic conditions, an increase occurs in levels of ROS in
ovarian cancer cells that subsequently, down-regulate the expression level of Drp1 (serine
637), resulting in mitochondrial fission and CP resistance. Furthermore, Mitofusins 1 and 2
(Mfn1 and 2) involving in mitochondrion dynamics are suppressed by hypoxia-mediated
ROS to induce mitochondrial fission and CP resistance [164].

It is worth mentioning that ROS can associate metabolism and metastasis of cancer
cells. Then, this relationship can be extended to even affect result of immunotherapy.
Therefore, it is of great importance to understand ROS interaction with mechanisms
involved in cancer metastasis and its association immune factors. Such relationships have
been investigated in CP chemotherapy. It has been reported that high levels of ROS change
the metabolic profile of lung cancer cells. This metabolism alteration leads to the reliance of
lung cancer cells to mitochondrial oxidative metabolism than glucose. More investigations
demonstrate that this metabolic alteration significantly enhances migration and invasion of
lung cancer cells via EMT induction. Besides, EMT participates in triggering programmed
death ligand-1 (PD-L1) upregulation that provides immune evasion of cancer cells [165].
This study clearly demonstrates that ROS, proliferation, metastasis and the response of
cancer cells to chemotherapy and immunotherapy are in close relationship with each other,
and ROS play the central and key role.

One of the pathways CP follow in cancer suppression is inducing DNA damage
and preventing cancer progression. However, activation of signaling networks involved
in DNA damage repair can provide CP resistance of cancer cells. Such phenomenon
in ovarian cancer cells that can be targeted in next studies for triggering CP sensitivity.
Dual oxidase 1 (DUOX1) is a carcinogenesis factor via increasing hydrogen peroxide lev-
els [166]. Besides, DUOX1 can enhance ROS level to inhibit cell differentiation [167]. On the
other hand, ataxia telangiectasia and Rad3-related protein (ATR) is a serine/threonine
protein kinase modulating DNA damage [168]. It has been reported that ATR can induce
Checkpoint kinase 1 (Chk1) to trigger DNA damage repair [169,170]. In ovarian cancer
cells, DUOXA1 significantly elevates the production of ROS in stimulating ATR/Chk1 axis,
leading to CP resistance. The in vitro and in vivo experiments have confirmed role of
DUOXA1-mediated ROS overgeneration in CP resistance, and for overcoming poor prog-
nosis in patients, targeting this pathway is of importance [171].

In previous sections, we discussed how Nrf2 signaling can participate in CP resistance.
Another experiment also demonstrates role of Nrf2 signaling in CP resistance with an
emphasis on upstream mediator of signaling. Increasing evidence shows tumor-promoting
role of sirtuin-5 (SIRT5) in different cancers [172–174]. There is a dual relationship between
SIRT5 and Nrf2 signaling in CP chemotherapy, so that SIRT5 can regulate Nrf2 signaling
in reducing nephrotoxicity of CP [173]. In ovarian cancer cells, overexpression of SIRT5 is
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associated with CP resistance and prevents CP-mediated proliferation inhibition and
DNA damage via reducing ROS levels. In this way, SIRT5 stimulates Nrf2 signaling
and its downstream target heme oxygenase-1 (HO-1) to reduce ROS levels [175]. In fact,
SIRT5/Nrf2 axis results in a reduction in ROS levels, and silencing SIRT5 or Nrf2 provides
the way for CP sensitivity via ROS overgeneration. Another experiment also confirms how
Nrf2 regulation by an upstream mediator can lead to CP resistance. In ovarian cancer cells
with high expression level of p62, cancer cells are resistance to anti-tumor activity of CP.
The investigation of molecular pathways demonstrates that p62 induces Nrf2 signaling
via Keap1 down-regulation, resulting in reinforcement of antioxidant defense system and
protection of cancer cells against inhibitory impact of CP [176]. It has been reported that
ROS can function as upstream mediator of tumor-promoting factors in CP resistance.
Previously, we described the role of PGC-1α in CP resistance. In ovarian cancer cells,
mitochondrial dysfunction enhances ROS levels to stimulate PGC-1α expression, leading
to CP resistance [177]. As more experiments are performed, more signaling networks
involved in CP resistance of ovarian cancer cells are revealed [178]. Figure 2 and Table 2
provide a summary of ROS and related molecular pathways in CP resistance.
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Table 2. Experiments related to CP resistance and role of ROS generation.

Cancer Type In Vitro/In Vivo Cell Line/Animal
Model Signaling Network Remarks Refs

Urothelial carcinoma In vitro T24 and
UMUC3 cells MUC1-C/xCT/GSH

Reducing ROS levels
MUC1 enhances expression level of xCT

to promote GSH level
Inducing CP resistance

[179]

Squamous cell
carcinoma In vitro EC109 cells MUTYH/ROS

Down-regulation of MUTYH occurs in
CP resistant cancer cells

MUTYH down-regulation is associated
with decreased levels of ROS

[180]

Oral squamous cell
carcinoma In vitro Tca8113 cells SIRT1/ROS

Reducing ROS accumulation in
cancer cells

Inducing CP resistance
[181]

Bladder cancer In vitro HT1376 cells AKR1C2/ROS

Reducing AKR1C2 expression promotes
CP sensitivity of cancer cells,

determining oncogene role of this factor
AKR1C2 diminishes ROS levels in

mediating CP resistance

[182]

Bladder urothelial
carcinoma In vitro NTUB1 cells CEBPD/ROS

Upregulation of CEBPD in Cp
resistant-cancer cells

Decreasing ROS levels
Apoptosis inhibition

[183]

Osteosarcoma In vitro MG63, U2OS and
143B cells TERT/ROS

Telomerase diminishes ROS levels
in cells

Reducing apoptosis
Improving mitochondrial function

Inducing CP resistance

[184]

Osteosarcoma In vitro U2OS, SAOS2,
MG-63 and HOS cells APE1/ROS

Overexpression of APE1 is observed in
CP resistant-osteosarcoma cells
APE1 upregulation diminishes

apoptosis and DNA damage
Preventing ROS generation by

APE1 upon exposure to CP

[185]

Different cancers In vitro 293T, Caov-3, BG-1,
and KB-3-1 cells IP4/NOX4/ROS

Inhibition of NOX4 by IP4
Reducing ROS levels

Triggering CP resistance
[186]

Different cancers In vitro H1299 and P31 cells SIRT3/ROS
HIF-1α/ROS

Increased levels of ROS in CP
resistant-cancer cells, showing oncogene

role of ROS
Simultaneous upregulation of HIF-1α

with ROS overgeneration
SIRT3 down-regulation with

simultaneous ROS overgeneration

[187]

Ovarian cancer In vitro SKOV3 cells P62/Keap1/Nrf2/ARE

Upregulation of p62 in CP
resistant-ovarian cancer cells

Induction of Nrf2/ARE axis via
Keap1 down-regulation

Reducing ROS levels
Preventing apoptosis

[176]

Ovarian cancer In vitro SKOV3 and
A2780 cells RIP1/ROS

Acting as a tumor-promoting factor via
reducing ROS accumulation

Enhancing ROS accumulation promotes
apoptosis and necroptosis in cancer cells

[188]

Human
mesothelioma In vitro ZL55 cells ROS/PKC-

α/EGFR/ERK1/2

CP induces ROS overgeneration that in
turn, stimulates PKC-α

Activation of EGFR and subsequent
phosphorylation of ERK1/2 are

responsible for reduced CP cytotoxicity
against cancer cells

[189]

Non-small cell lung
cancer In vitro H460 cells ROS/CAV1

ROS overgeneration upon sub-toxic
exposure to CP results in

CAV1 upregulation and anoikis
resistance, reducing efficacy of

chemotherapy

[190]
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Table 2. Cont.

Cancer Type In Vitro/In Vivo Cell Line/Animal
Model

Signaling
Network Remarks Refs

Glioma In vitro U251 cells ROS/Akt/mTOR

Inducing Akt/mTOR signaling via
ROS overgeneration

Promoting autophagy
Triggering CP resistance

Reducing ROS levels inhibit Akt
signaling, showing role of ROS in

CP resistance

[191]

Gastric cancer In vitro SNU-16 cells -

Enhancing ROS levels
Inducing Akt signaling
Providing CP resistance

Upregulating p53 expression
suppresses CP resistance of

cancer cells

[192]

5. Therapeutic Targeting

In respect of the fact that molecular pathways involved in CP resistance and their
regulatory impact on ROS levels and signaling have been identified, experiments have
focused on using anti-tumor compounds, which are mostly phytochemicals. In the section,
we provide a mechanistic discussion around using these compounds and their signaling
targets. Plant derived-natural compounds have opened a new gate in cancer therapy due
to their multitargeting capacity [193–196]. Melatonin is a hormone of pineal gland that is
synthesized in other organs with higher concentrations [197]. Recent studies have shown
different biological and therapeutic activities of melatonin that anti-tumor activity is among
them. Noteworthy, melatonin can be considered as a potent chemosensitizer agent [198].
In this way, melatonin can also enhance anti-tumor activity of CP. For instance, it has been
reported that melatonin can activate caspase-3/7 cleavage and induce cell cycle arrest in
potentiating cytotoxicity of CP against lung cancer cells [199]. Importantly, ROS plays a
key role in mediating anti-tumor activity of melatonin and its capacity in promoting CP
sensitivity. By enhancing ROS levels, melatonin activates intrinsic pathway of apoptosis,
resulting in enhanced CP sensitivity of cervical cancer cells [200]. In addition to apopto-
sis, melatonin can affect other pathway of programmed cell death, known as autophagy.
Generally, autophagy is a “self-digestion” mechanism and its induction is of importance in
cancer therapy [201,202]. Increasing evidence demonstrate the close relationship between
autophagy and ROS, so that ROS overgeneration can stimulate autophagy [203,204]. By en-
hancing ROS levels, melatonin simultaneously induces autophagy and apoptosis [205].
A similar strategy is followed by withaferin-A in enhancing CP sensitivity of oral cancer
cells via enhancing ROS levels and triggering both apoptosis and autophagy [206]. How-
ever, one hint should be considered that autophagy may stimulate chemoresistance [207],
and when investigating dual relationship between autophagy and ROS, this aspect of
autophagy should be highlighted and considered.

Emodin is a plant derived-natural compound with high anti-tumor activity [208,209].
This potent anti-tumor agent can suppress cancer metastasis via inhibiting epithelial-to-
mesenchymal transition (EMT) [204]. The anti-tumor activity of emodin is dose-dependent
and can affect different molecular pathways, such as miRNA-34a and vascular endothelial
growth factor receptor (VEGFR) [210]. In enhancing CP sensitivity of endometrial cancer
cells, emodin targets ROS levels. In this way, emodin diminishes ROS levels to induce
apoptosis and suppress tumor growth (both in vitro and in vivo) [211]. Another experiment
also confirms the role of emodin in increasing ROS levels, and potentiating the anti-tumor
activity of CP against bladder cancer cells [212]. In fact, several signaling networks are
affected by anti-tumor compounds in triggering CP sensitivity that enhancing ROS levels
is one of them [213].
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Previously, it was shown that Nrf2 signaling activation is in favor of CP resistance
via reducing ROS levels. Noteworthy, anti-tumor compounds targeting Nrf2 signaling
and enhancing CP sensitivity have been discovered. Exposing head and neck cancer
cells to wogonin, as a flavonoid compound, significantly reduces expression level of Nrf2,
leading to CP sensitivity through increasing ROS accumulation [214]. Another experiment
also reveals the down-regulation of Nrf2 upon CP and a novel polyphenol, known as
(E)-3-(3,5-dimethoxyphenyl)-1-(2-methoxyphenyl)prop-2-en-1-one (DPP-23), to enhance
ROS accumulation, resulting in cell death and increased CP sensitivity [215]. However,
we still have a long way in regulating Nrf2 signaling, since this study has just examined the
expression level of Nrf2. What about anti-tumor compounds targeting Keap1 or nuclear
translocation of Nrf2? Future experiments will appropriately respond to this question.

Allicin is another naturally occurring compound with the capacity to suppress cancer
proliferation, increase radio-sensitivity, and down-regulate NF-κB signaling [216]. Allicin is
extensively applied with other chemotherapeutic agents. For instance, allicin can promote
chemosensitivity of cancer cells via apoptosis induction, enhancing miRNA-486-3p level
and reducing cancer cell viability [217,218]. A newly conducted experiment has obviously
demonstrated the role of allicin in CP sensitivity of lung cancer cells. In this way, allicin
increases ROS levels to induce both autophagy and apoptosis, and trigger cell cycle ar-
rest (S/G2-M phase) [219]. By increasing ROS levels, a decrease occurs in intracellular
level of GSH that is in favor of apoptosis induction via caspase-3 and -7 stimulation [220].
Previously, it was discussed that Akt phosphorylation and activation can promote cancer
progression and induce chemoresistance [221,222]. Interestingly, ROS can function as an
upstream mediator of Akt signaling [223,224]. Piperlongumine as an anti-tumor agent,
promotes ROS levels and accumulation in lung cancer cells to suppress Akt signaling, lead-
ing to CP sensitivity [225]. Another aspect is related to impact of anti-tumor compounds
on CP-mediated DNA damage, so that by increasing ROS levels, anti-tumor compounds
enhance p53 phosphorylation to induce DNA damage and cell death [226]. The importance
is efficacy of this combination in enhancing anti-tumor activity of CP in vivo, so that the
combination of CP and shikonin effectively suppresses tumor growth in colon cancer
(HCT116 xenograft tumor) [227]. Therefore, the next step can be translating these findings
to clinical application for enhancing the overall survival of cancer patients and preventing
chemotherapy failure.

Clarithromycin (CAM) is a well-known antibiotic that was first applied in 2005.
CAM can affect both apoptosis and autophagy by enhancing cytotoxicity of 5-fluorouracil
as a chemotherapeutic agent against colorectal cancer cells [228]. A similar phenomenon
occurs during CP chemotherapy. In this way, CAM significantly enhances ROS levels to
impair ovarian cancer growth in vitro and in vivo, leading to CP sensitivity [229]. However,
the story is not always so simple. The dual role of ROS as a pro-survival and pro-death
mechanism was extensively discussed in the introduction section. AXL is a receptor
tyrosine kinase with a role in cancer that has been suggested to be tumor-promoting. In in-
creasing metastasis of breast cancer cells and providing their immune evasion, AXL and
Mertk cooperate together [230]. It has been reported that the overexpression of AXL can
induce mitogen-activated protein kinase (MAPK) and triggering therapy resistance [231].
In ovarian cancer cells, decreasing AXL expression is correlated with CP sensitivity by
suppressing glycolysis [232]. A combination of CP and pemetrexed can sufficiently stimu-
late cell death in mesothelioma cells via enhancing ROS levels. However, ROS signaling
activates AXL, which diminishes cytotoxicity against cancer cells. In providing effective
cancer chemotherapy, it is better co-administer a AXL blocker such as BGB324 with CP and
pemetrexed [233]. This study reminds us that although anti-tumor compounds enhance
ROS production in providing CP sensitivity, it should be noted that ROS can activate
downstream targets with tumor-promoting roles such as AXL.

It is worth mentioning that CP can promote ROS levels in mediating cell death in
cancer cells. However, when an anti-tumor agent, such as vitamin D is co-administered
with CP, its potential in enhancing ROS levels enhances [234]. Furthermore, a combination
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of CP with other anti-tumor compounds provide conditions for suppressing molecular
pathways that can enhance cancer progression. For instance, plumbagin and CP induce
JNK signaling, while they inhibit Akt/mTOR signaling to enhance ROS levels, leading to
apoptosis, autophagy and decreased viability of tongue squamous cell carcinoma cells [235].
NF-κB signaling pathway is a molecular pathway where overexpression paves the way for
chemoresistance of cancer cells [206,236]. Triptolide promotes intracellular accumulation
of ROS to inhibit NF-κB signaling and down-regulate Bcl-2 and X-linked inhibitor of apop-
tosis protein (XIAP) as anti-apoptotic factors, increasing CP sensitivity of ovarian cancer
cells [237]. Reducing glycolysis (Warburg effect) and impairing mitochondrial function
are induced by ascorbate in increasing CP sensitivity of osteosarcoma cells (Figure 3) [238].
Overall, the following points can be concluded about using anti-tumor compounds, which
are mostly phytochemicals and have roles in enhancing CP sensitivity of cancer cells:

• Anti-tumor compounds significantly promote intracellular accumulation of ROS to
mediate intrinsic pathway of apoptosis via mitochondrial dysfunction [239–250],

• Molecular pathways responsible for cancer progression and mediating CP resistance
are suppressed by anti-tumor compounds upon increasing ROS levels [251–254],

• Most of the anti-tumor compounds applied with CP in cancer chemotherapy are plant
derived-natural products, and one of their drawbacks is their poor bioavailability that can
be overcome using nanoparticles. This aspect is discussed in next section (Tables 3 and 4).
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Table 3. Anti-tumor compounds applied in regulating ROS levels and enhancing CP sensitivity.

Anti-Tumor
Compound Cancer Type In Vitro/In

Vivo
Cell Line/Animal

Model Study Design Signaling Network Remarks Refs

Disulfiram Breast cancer In vitro
MCF-7, SKB-R3,

and MDA-MB-435S
cells

1 µM
24 h - Enhancing ROS levels

Potentiating cytotoxicity of CP against breast cancer cells [255]

FK228 Breast cancer In vitro MCF10A cells 0–1 nM ERK/NOX/ROS

Stimulating ERK/NOX axis via affecting Ras signaling
Increasing intracellular accumulation of ROS in cells

Mediating cell death and apoptosis
Enhancing CP sensitivity of cancer cells

[256]

CA-4 (microtubule
inhibitor) Lung cancer In vitro A549 cells 0.21 µM -

Enhancing ROS generation
Subsequent loss in mitochondrial membrane potential

Activating apoptosis through inducing caspase cascade
Enhancing CP sensitivity

[257]

LW6 (HIF-1α inhibitor) Non-small cell
lung cancer In vitro A549 cells 0–96 h -

Suppressing hypoxia-mediated resistance to CP chemotherapy
Increasing ROS levels

Decreasing MRP1 and MDR1 levels
Triggering CP sensitivity

[258]

4-phenylbutyrate Ovarian cancer In vitro A2780 cells 0–50 µM -
Increasing ROS generation

Inhibiting activity of histone deacetylase
Inducing apoptosis and DNA damage

[259]

ABT737 Ovarian cancer In vitro SKOV3 cells 0–40 µM -
Down-regulating Bcl-2 expression

Impairing glucose metabolism
Potentiating anti-tumor activity of CP

[260]

Brown algae
phlorotannins Ovarian cancer In vitro

In vivo
A2780 and SKOV3 cells

Mouse model 75 and 150 mg/kg ROS/Akt/NF-κB

Increasing ROS levels and subsequent inhibition of
Akt/NF-κB axis

Inducing cell death and tumor growth inhibition in vitro and
in vivo

[261]

Bithionol Ovarian cancer In vitro
A2780 /A2780-CDDP

and IGROV-1/,
IGROV-1CDDP cells

12.5 µM -

Triggering ROS-mediated apoptosis
Down-regulation of XIAP, Bcl-2 and Bcl-Xl as pro-survival factors

Upregulating PARP, and caspase-3/7 as pro-apoptotic factors
Triggering cell cycle arrest via p21 and p27 upregulation

[262]

Emodin Ovarian cancer In vitro COC1 cell line 12.5, 25 and 50 µM ROS/MRP1 Down-regulating MRP1 expression via ROS overgeneration
Promoting CP sensitivity [263]

Metformin Colorectal cancer In vitro SW480 and SW620 cells 0–20 mM ROS/PI3K/Akt
Inducing ROS overgeneration

Subsequent inhibition of PI3K/Akt signaling
Increasing CP sensitivity

[264]



Molecules 2021, 26, 2382 16 of 37

Table 3. Cont.

Anti-Tumor
Compound Cancer Type In Vitro/In

Vivo
Cell Line/Animal

Model Study Design Signaling Network Remarks Refs

Benzyl Isothiocyanate Leukemia In vitro HL-60 cells 0–5 µM -

Reducing GSH levels
Inducing ROS overgeneration

Promoting cell death
Providing CP sensitivity

Triggering ERK signaling pathway

[265]

Chloroquine Cholangiocarcinoma In vitro QBC939 cells 50 µM -

Reducing G6PDH activity
Promoting ROS accumulation

Autophagy inhibition
Sensitizing to cell death and enhancing CP sensitivity

[266]

Chloroquine Urothelial cancer In vitro

NTUB1 and N/P
(cisplatin-resistant
sub-line) urothelial

cancer cells

10 µM ROS/LC-3II

Enhancing ROS generation
ROS scavenger reduces LC-3II accumulation, showing role of

ROS in upregulating LC-3II levels
Inducing cell death independent of caspase and based

on autophagy
Increasing CP sensitivity

[267]

Table 4. Plant derived-natural compounds regulating ROS levels in CP chemotherapy.

Anti-Tumor
Compound Cancer Type In Vitro/In Vivo Cell Line/Animal

Model Study Design Signaling Network Remarks Refs

Alpha-lipoic acid Breast cancer In vitro MCF-7 cells 0.05 mM TRPV1/ROS
Inducing TRPV1 and subsequent increase in ROS levels

Decreasing viability and proliferation of cancer cells
Enhancing CP sensitivity

[268]

Neferine Lung cancer In vitro A549 cells 10 µM -
Enhancing ROS levels

Inducing mitochondrial dysfunction
Apoptosis induction

[269]

Miltirone Lung cancer In vitro A549 cells 0–40 µM - Reducing ROS levels to promote p53 expression, demonstrating
oncogene role of ROS [270]

Bu-Zhong-Yi-Qi
Decoction Lung cancer In vitro A549 cells 0–5000 µg/ml ROS/Apoptosis

ROS/Autophagy

Enhancing ROS generation and inducing cell death, both autophagy
and apoptosis

ROS scavenger reduces cell death, showing role of ROS in
CP-mediated cell death in cancer cells

[271]
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Table 4. Cont.

Anti-Tumor
Compound Cancer Type In Vitro/In Vivo Cell Line/Animal

Model Study Design Signaling Network Remarks Refs

Auranofin Lung cancer In vitro
In vivo

H69 and H196 cells
Xenografts

500 and 1000 nM
10 mg/kg -

Inducing ROS overgeneration
Triggering mitochondrial dysfunction

Enhancing DNA damage
Suppressing tumor growth in vivo

Increasing CP sensitivity

[272]

Gallic Acid Small cell
lung cancer In vitro H446 cell line 3 µg/mL

24 h -
Suppressing cancer growth

Apoptosis induction
Enhancing ROS levels

[273]

Osthole derivative Lung cancer In vitro A549 cells 0–10 µM - Triggering oxidative stress via ROS overgeneration
Enhancing CP sensitivity [274]

Yu Ping Feng San Lung cancer In vitro
In vivo

A549 cells
Tumor-bearing mice

0–20 µM
4 g/kg -

Decreasing tumor volume
Reducing cancer cell viability

Increasing ROS levels
Promoting CP sensitivity

[275]

Curcumin Bladder
cancer In vitro 253J-Bv cells 10 µM ROS/ERK1/2

Enhancing ROS levels to induce ERK1/2
Apoptosis induction

Providing CP sensitivity
[276]

Matrine
Urothelial

bladder
cancer

In vitro EJ, T24, BIU, 5637 cells 1–16 mM - Increasing ROS generation and sensitizing cancer cells to apoptosis
Promoting CP sensitivity [277]

β-elemene Bladder
cancer In vitro T24 and 5637 cells 0–75 µg/ml ROS/AMPK

Preventing cancer cell proliferation
Triggering cell cycle arrest (G0/G1 phase)

Increasing intracellular accumulation of ROS
Stimulating AMPK signaling

Apoptosis induction

[278]

Osthole derivative Lung cancer In vitro A549 cells 0–10 µM - Triggering oxidative stress via ROS overgeneration
Enhancing CP sensitivity [274]

Yu Ping Feng San Lung cancer In vitro
In vivo

A549 cells
Tumor-bearing mice

0–20 µM
4 g/kg -

Decreasing tumor volume
Reducing cancer cell viability

Increasing ROS levels
Promoting CP sensitivity

[275]

Curcumin Bladder
cancer In vitro 253J-Bv cells 10 µM ROS/ERK1/2

Enhancing ROS levels to induce ERK1/2
Apoptosis induction

Providing CP sensitivity
[276]
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Table 4. Cont.

Anti-Tumor
Compound Cancer Type In vitro/In vivo Cell Line/Animal

Model Study Design Signaling Network Remarks Refs

Matrine
Urothelial

bladder
cancer

In vitro EJ, T24, BIU, 5637 cells 1–16 mM - Increasing ROS generation and sensitizing cancer cells to apoptosis
Promoting CP sensitivity [277]

β-elemene Bladder
cancer In vitro T24 and 5637 cells 0–75 µg/mL ROS/AMPK

Preventing cancer cell proliferation
Triggering cell cycle arrest (G0/G1 phase)

Increasing intracellular accumulation of ROS
Stimulating AMPK signaling

Apoptosis induction

[278]

Withaferin A Ovarian
cancer In vitro A2780 and

A2780/CP70 cells 0–7 µM - Inducing DNA damage through promoting ROS levels and
sensitizing cancer cells to CP chemotherapy [279]

Cucurbitacin B Ovarian
cancer In vitro A2780 cells 0–8 µM -

Significant decrease in viability and proliferation of cancer cells
Increasing their sensitivity to CP

Promoting ROS production
[280]

Curcumin
Laryngeal
squamous
cell cancer

In vitro Hep2 cells 1 µM -

CP administration enhances ROS levels to induce apoptosis in
cancer cells

Combination chemotherapy with curcumin increases TRPM2 level to
potentiate cytotoxicity against cancer cells and enhance efficacy of CP

in increasing ROS levels

[281]

Asteriscus graveolens Lymphoma In vitro BS-24-1 cells 0–8 µg/ml - Enhancing ROS levels
Sensitizing cancer cells to CP-mediated apoptosis [282]

Zinc protoporphyrin IX Liver cancer In vitro HepG2 cells 10 µmol/L HO-1/ROS

Down-regulating HO-1 expression
Increasing ROS levels
Activating caspase-3

Sensitizing to CP-mediated cell death

[283]

Tigecyclin Hepatocellular
carcinoma In vitro HepG2 and HuH6 cells 1, 5 and 10 µM -

Inducing oxidative stress through ROS overgeneration
Decreasing mitochondrial respiration

Increasing CP sensitivity
[284]

α-Hederin Gastric
cancer

In vitro
In vivo

SGC-7901, HGC-27,
and MGC-803 cells

Xenograft mouse model
4 mg/kg -

Enhancing tumor growth inhibition capacity of CP in vivo
Promoting expression level of apoptosis proteins

Increasing ROS levels
[285]

α-Hederin Gastric
cancer

In vitro
In vivo

HGC27 cells
Nude mice

0-25 µM
2, 4 and 6 mg/kg -

Apoptosis stimulation
Triggering GSH depletion

Increasing intracellular accumulation of ROS
[286]

Docosahexaenoic acid Gastric
cancer In vitro SNU-601 cells and

SNU-601/cis2 cells 0-200 µM GPR120 GPR120 mediates capacity of DHA in increasing ROS levels and
inducing apoptosis in cancer cells [287]
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Table 4. Cont.

Anti-Tumor
Compound Cancer Type In vitro/In vivo Cell Line/Animal

Model Study Design Signaling Network Remarks Refs

Oxymatrine Gastric
cancer In vitro BGC-823 and

SGC7901 cells 1 mg/mL Akt/ERK
Inducing apoptosis in cancer cells in a ROS-dependent manner

Suppressing Akt/ERK axis
Upregulating p21 and p27 levels

[288]

Resveratrol Mesothelioma
cells In vitro MSTO-211H and

H-2452 cells 30 µM -

Increasing ROS generation
Triggering loss of mitochondrial membrane potential

Enhancing Bax/Bcl-2 ratio
Apoptosis induction

Providing CP sensitivity

[289]

Macrovipecetin Melanoma In vitro SK-MEL-28 cells 0–1 µM -
Impairing cancer proliferation

Decreasing ROS levels, showing tumor-promoting role of ROS
Promoting CP sensitivity

[290]

Indicaxanthin Cervical
cancer In vitro HeLa cells 60 µM ROS/p53

Enhancing ROS levels
Activating p53 and p21

Apoptosis induction
[291]

Hederagenin Head and
neck cancer

In vitro
In vivo

AMC-HN2–10,
SNU-1041, SNU-1066,
and SNU-1076 cells

50 and 100 µM
100 and 200 mg/kg Nrf2/ARE

Inhibiting Nrf2/ARE axis
Enhancing p53 expression

Subsequent increase in ROS levels
Increasing GSH depletion

Inducing cell death

[292]

Ethaselen Leukemia In vitro K562 cells 1.5 µmol/L TrxR/ROS

Increasing ROS generation via TrxR inhibition
Bax upregulation and Bcl-2 down-regulation

Cytochrome C release
Apoptosis induction

NF-κB down-regulation

[293]

Ascorbate Osteosarcoma In vitro U2OS and 143B cells 0–100 µM -

Increasing ROS levels to impair glycolysis and mitochondrial function
in cancer cells

Reducing cell sphere formation capacity
Increasing CP sensitivity

[238]
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6. Gene Therapy

In relation to the fact that molecular pathways, responsible for CP resistance, have been
identified, genetic tools can be employed in providing CP sensitivity. This strategy can
be specified by targeting molecular pathways that regulate ROS in CP chemotherapy.
Although a few experiments have evaluated role of gene therapy in affecting ROS and CP
sensitivity, this section provides a mechanistic discussion with future prospects to show
how genetic tools can be utilized for affecting ROS and CP sensitivity.

Previously, it was mentioned that HIF-1α is activated in hypoxic conditions and
can promote cancer progression [294–299]. As there is a close relationship between HIF-
1α and cancer metabolism, targeting this molecular pathway is of importance in CP
sensitivity. Among genetic tools, small interfering RNA (siRNA) has shown high potential
in promoting CP sensitivity via down-regulating tumor-promoting factors [296,300,301].
In this case, HIF-1α down-regulation by siRNA leads to a change in cancer metabolism from
aerobic glycolysis to mitochondrial oxidative phosphorylation. Then, ROS overgeneration
occurs, resulting in apoptosis and increased CP sensitivity. This experiment obviously
demonstrates impact of siRNA on ROS-related molecular pathways and their role in CP
chemotherapy. Furthermore, in order to promote the potential of siRNA in gene silencing,
its delivery by attenuated Salmonella has been performed [302]. In addition to HIF-1α,
Nrf2 signaling role in CP resistance has been discussed before [303]. It seems that down-
regulating Nrf2 expression by siRNA paves the way for CP sensitivity via inhibiting HO-1,
subsequent increase in ROS generation and promoting CP-mediated cell death [304]. Future
experiments can focus on developing nanoparticles for siRNA delivery, affecting molecular
pathways regulating ROS and promoting CP sensitivity. More experiments are needed
to target factors regulating ROS levels in CP chemotherapy, paving the way for cancer
elimination. Furthermore, other kinds of genetic tools, such as CRISPR/Cas9 system and
short-hairpin RNA (shRNA) can be utilized in this case.

7. Nanotherapeutics

In the previous section, a mechanistic discussion of the role of molecular pathways
regulating ROS levels in CP resistance/sensitivity was provided. Then, it was shown that
anti-tumor compounds can affect ROS levels in mediating CP sensitivity. However, these
therapies suffer from poor bioavailability and provide a platform for their targeted delivery
is important in increasing their efficacy in triggering CP sensitivity. Furthermore, upstream
mediators of ROS can be targeted by genetic tools, such as siRNA. However, siRNA should
first circulate in blood and then move to the tumor site. It may be degraded by enzymes,
while circulating in blood, and also, its efficacy increases by targeted delivery thereby
promoting its intracellular accumulation [305,306]. In this section, we demonstrate how
nanocarriers can be helpful in regulating ROS levels and providing CP sensitivity.

Nanoscale delivery systems can significantly promote intracellular accumulation of
drugs in cells via mediating endocytosis [307,308]. Another benefit of using nanocarriers is
providing simultaneous chemotherapy and phototherapy in cancer eradication [309,310].
Such a strategy has been applied for CP delivery and preventing drug resistance. In this
case, mesoporous silica nanoparticles (MSNs) have been developed for CP delivery. In order
to provide phototherapy capacity of MSNs, their surface modification by chlorin e6 (Ce6)
was performed. The nanocarriers demonstrated good properties such as particle size
of 100 nm and zeta potential of 18.2 mV. These nanoparticles penetrate into cancer cells
through endocytosis to promote intracellular accumulation of CP. Exposure to 660 nm
light irradiation induces phototherapy effect and significantly promote ROS production in
lung cancer cells, leading to enhanced efficacy of CP in cancer elimination [311]. Another
experiment also demonstrates the role of photodynamic therapy in increasing ROS levels,
and sensitizing cancer cells to apoptosis that are of importance in promoting their CP
sensitivity [312]. Overall, irradiation and photo-excitation are vital for promoting ROS
levels and activating pro-apoptotic factors, such as p38 MAPK to increase CP sensitivity of
cancer cells [313]. It is worth mentioning that nanoparticles can also mediate co-delivery of
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CP with other anti-tumor compounds. Metformin is a potent anti-tumor compound that
suppresses mammalian target of rapamycin (mTOR) via AMP-activated protein kinase
(AMPK) upregulation, leading to CP sensitivity of cancer cells [314]. For enhancing
the efficacy of metformin and CP in cancer chemotherapy, nanoplatforms have been
developed [315]. It is worth mentioning that metformin- and CP-loaded nanoparticles
can affect ROS. In this way, exposing colorectal cancer cells to CP- and metformin-loaded
nanocubosomes is associated with an increase in ROS levels, that subsequently, enhance
NADPH oxidase, while decreasing lactate dehydrogenase (LDH), leading to caspase-
3 cleavage and chemosensitivity [316].

Curcumin is also a plant derived-natural compound with diverse therapeutic effects
that anti-tumor activity is among them [317–321]. Curcumin is extensively applied with
CP in suppressing progression of cancer cells and providing their chemosensitivity via
targeting molecular pathways and mechanisms such as apoptosis, metastasis, KLF4 and
SOX2 [322,323]. Loading CP and curcumin on liposomal nanocarriers increases their poten-
tial in enhancing ROS levels and suppressing hepatocellular carcinoma progression [324].
Another experiment also reveals role of curcumin-loaded nanoparticles in increasing ROS
levels in oral cancer cells and sensitizing them to CP-mediated cell death [325]. In fact,
the field of materials science can direct us towards using agents capable of promoting
ROS levels and reversing CP resistance. Such a strategy has been utilized recently by Sun
and colleagues. In this way, they synthesized nanogel by conjugating chitosan to diallyl
disulfide, and then, its grafting with valproate. The interesting point is that valproate
induces 18-fold increase in p53 expression, and simultaneously, diallyl disulfide triggers
8-fold increase in ROS levels, leading to CP sensitivity. Furthermore, in vivo experiment
also confirmed role of this nanogel in reducing tumor growth inhibition and CP sensi-
tivity [326]. A newly conducted experiment demonstrates that tocotrienols-, caffeic acid-
and CP-loaded nanoemulsions can enhance ROS production up to 16.9%, and 30.2% in
lung and liver cancers, respectively [327], that are importance in mediating cell death and
preventing cell cycle progression.

Notably, carbon nanomaterials, such as graphene possess carcinogenesis impact [296].
Applying such carriers for CP delivery may exert reverse effect and promote drug resis-
tance of cancer cells. It has been reported that CP-loaded multiwalled carbon nanotubes
significantly diminish ROS levels and induce failure of CP in mediating apoptosis in
breast cancer cells, leading to development of drug resistance [328]. Therefore, this aspect
should be considered while synthesizing nanocarriers for CP delivery and suppressing
cancer progression.

Overall, studies are in line with the fact that using nanoparticles is of importance
in increasing ROS levels and sensitizing cancer cells to CP chemotherapy. Furthermore,
nanocarriers can undergo surface modification to enhance their selectivity towards cancer
cells. Finally, nanoparticles can provide phototherapy in promoting ROS generation,
resulting in an increase in efficacy of CP in cancer chemotherapy (Figure 4) [298,329–331].
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8. Conclusions and Remarks

In the present review, a comprehensive discussion of ROS role in CP resistance/sensitivity
was provided. Due to frequent application of CP, cancer cells have obtained resistance
to this chemotherapeutic agent, and if an effective cancer chemotherapy is performed,
molecular pathways and mechanisms responsible for CP resistance should be identified so
they can be targeted through novel therapeutics. The exact role of ROS in cancer cells has
not been completely determined, and it may act as a pro-survival or pro-death mechanism.
This context-dependent role of ROS has resulted in much attention in revealing its role
in CP resistance/sensitivity. Upstream mediators of ROS can affect response of cancer
cells to CP chemotherapy, and noteworthy, downstream targets also play a significant role,
as shown in this review. The important hint is that experiments have used therapeutic
agents in targeting ROS and providing CP sensitivity. In this case, both genetic and phar-
macological interventions have been performed. Anti-tumor compounds that are mostly
phytochemicals, enhance ROS levels to mediate mitochondrial dysfunction and cell death.
It should be noted that ROS can activate both autophagy and apoptosis. In contrast to apop-
tosis, autophagy can promote the progression of cancer cells [332]. Therefore, if autophagy
activation occurs following pharmacological intervention and enhancing ROS levels in
CP chemotherapy, the exact role of autophagy should be determined, and if autophagy
functions as a pro-survival mechanism, autophagy inhibitors, such as chloroquine can
be utilized.

Another important aspect is using gene therapy to influence levels and CP chemother-
apy. Similar to pharmacological intervention, genetic tools can also promote CP sensitivity
via regulating ROS levels. However, the drawbacks of these strategies should also be
considered. For instance, anti-tumor compounds suffer from poor bioavailability. Genetic
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tools, such as siRNA may undergo degradation while circulating in blood and it has an off-
targeting feature. To overcome the aforementioned disadvantages, scientists have focused
on developing nanoarchitectures. These nanocarriers provide targeted delivery, co-delivery
with other anti-tumor agents and genetic tools, increased intracellular accumulation in
cancer cells and promote ROS generation that are important in CP sensitivity. Although
pre-clinical studies have investigated ROS and CP chemotherapy, future experiments can
focus on developing novel therapies for targeting ROS in the treatment of cancer patients.
Furthermore, if nanoparticle application is applied in this field, a biocompatibility profile
should be considered.
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