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Abstract 

Maintaining consistent quality in biopharmaceutical manufacturing is essential for 

producing high-quality complex biologics. Yet, current process analytical technologies (PAT) 

struggle to achieve rapid and highly accurate monitoring of small molecule critical process 

parameters and critical quality attributes. While Raman spectroscopy holds great promise as a 

highly sensitive and specific bioanalytical tool for PAT applications, its conventional 

implementation, surface-enhanced Raman spectroscopy (SERS), is constrained by considerable 

temporal and spatial intensity fluctuations, limiting the achievable reproducibility and reliability. 

Herein, we introduce a deep learning-powered colloidal digital SERS platform to address these 

limitations. Rather than addressing the intensity fluctuations, the approach leverages their very 

stochastic nature, arising from highly dynamic analyte-nanoparticle interactions. By converting 

the temporally fluctuating SERS intensities into digital binary “ON/OFF” signals using a 

predefined intensity threshold by analyzing the characteristic SERS peak, this approach enables 

digital visualization of single-molecule events and significantly reduces false positives and 

background interferences. By further integrating colloidal digital SERS with deep learning, the 

applicability of this platform is significantly expanded and enables detection of a broad range of 

analytes, unlimited by the lack of characteristic SERS peaks for certain analytes. We further 

implement this approach for studying AMBIC 1.1, a chemically-defined, serum-free complete 

media for mammalian cell culture. The obtained highly accurate and reproducible results 

demonstrate the unique capabilities of this platform for rapid and precise cell culture media 

monitoring, paving the way for its widespread adoption and scaling up as a new PAT tool in 

biopharmaceutical manufacturing and biomedical diagnostics. 
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1. Introduction 

Maintaining consistent quality in biopharmaceutical manufacturing is essential for 

producing complex biologics, such as monoclonal antibodies, viral vectors, and cell therapies.1 

Even small variations in key process parameters or critical quality attributes (CQAs) can result in 

expensive batch failures, product recalls, and significant regulatory challenges.2 To mitigate 

these risks, real-time process analytical technologies (PAT) are essential for monitoring key cell 

culture parameters, such as metabolite concentrations, and providing actionable feedback on 

critical process parameters (CPPs), including protein aggregation and glycosylation patterns.3-4 

However, current monitoring methods, such as high-performance liquid chromatography 

(HPLC) and mass spectrometry, are costly, require extensive offline analysis, and can introduce 

production delays of up to 48 hours. These delays in real-time data capture and analysis create 

bottlenecks in bioprocess optimization and batch control, leading to inefficiencies and increased 

production costs.5-7 Although recent PAT advances in spectroscopic methods, capacitance 

sensors, and off-gas analyzers has provided a sophisticated degree of monitoring and control of 

both the bioreactor environment and cellular properties,5 there is an urgent need for innovative 

PAT tools that can offer rapid, precise, and cost-effective analytical solutions to enhance 

biopharmaceutical manufacturing practices.  

Raman spectroscopy is a nondestructive bioanalytical technique with high molecular 

specificity.8-9 Its ability to monitor multiple molecules simultaneously, on-line and at-line, is 

particularly attractive as a PAT tool and in both upstream and downstream application.10-11 

Building on this capability, surface-enhanced Raman spectroscopy (SERS) leverages plasmonic 

nanostructures to boost weak Raman signals and provides the sensitivity required for detecting 

key metabolites, impurities, and other critical process parameters (CPPs).12-13 Nevertheless, 
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conventional SERS suffers from considerable intensity fluctuations.14-16 This can be attributed to 

various reasons, such as the inhomogeneous distribution of both hotspots and analytes on a 

plasmonic substrate,17-21 as well as the highly dynamic analyte-metal interactions,14-16 which 

compromises the achievable reproducibility. While single antibody-based spectro-immunoassays 

displayed strong capability to overcome the SERS intensity fluctuations by transducing 

frequency-shift signals based on nanomechanical perturbations of antibody-conjugated Raman 

molecules as a result of antibody-antigen interactions, 21-28 this approach can be hardly extended 

for label-free analysis of cell culture media.  

Recently, a digital SERS protocol for chemical analysis 29-30 was proposed to overcome 

the SERS intensity fluctuation issues by converting SERS intensity signals into a digital binary 

signal in the form or “ON” or “OFF” based on a predefine intensity threshold. This effectively 

reduces false positives and allows digital visualization of single-molecule events, which 

significantly facilitates ultrasensitive detection of analytes, particularly at ultralow concentrations 

where the analyte-metal interactions primarily occur at the single-molecule level. Nevertheless, 

the performance of substrate-based digital SERS is predicated on rationally designed two-

dimensional (2D) plasmonic substrates to maximize SERS enhancement,30 and therefore, is still 

vulnerable to the inhomogeneous distribution of hotspots and analytes on the plasmonic 

substrate. Moreover, the short spatial decay length of the plasmonic fields perpendicular to the 

substrate limits the effective SERS enhancement to a very thin layer in close proximity to the 

surface of the substrate.31 Additionally, the dewetting process of analytes on a substrate is time-

consuming, often occurs in an uncontrolled manner, and could even prevent the analytes from 

being in close contact with the substrate owing to the difference in their respective surface 
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energy. This further underscores the plethora of challenges confronting the substrate-based SERS 

arrays. 

While 2D plasmonic substrates are constrained by those challenge, colloidal plasmonic 

nanoparticles (e.g. gold, silver, copper, and metallic alloy nanoparticles, et al.) could provide a 

highly reproducible liquid plasmonic platform for digital SERS analysis of various analytes 

owing to their colloidal homogeneity.32-34 Given the stochastic nature of the interactions between 

colloidal plasmonic nanoparticles and the analytes, especially when the analytes have a low 

concentration, the digital SERS analysis can accurately capture positive nanoparticle-analyte 

interaction events and convert them into digital signals that are not directly affected by the 

absolute SERS intensity. Recent demonstrations of digital colloid-enhanced Raman spectroscopy 

validated the feasibility of colloidal digital SERS assays, where reproducible quantification of 

various analytes were demonstrated with single-molecule counting at very low concentrations, 

limited only by the Poisson noise of the measurement process.35-36 Despite the promise, existing 

digital colloidal SERS is limited by the modest SERS enhancements from sphere-shaped gold 

nanoparticles and requires the analytes to possess a characteristic SERS peak, which 

significantly limits its applicability. 

Herein, we propose to develop a deep learning-powered colloidal digital SERS assay by 

combining artificial intelligence with gold nanostar-based SERS spectroscopy. The enabling 

innovations of this integrated deep learning-SERS assay platform include: first, the 

homogeneous distribution of the colloidal plasmonic nanoparticles and analytes can deliver a 

high level of reproducibility, which remains elusive for substrate-based SERS assays. Second, 

the dynamic colloidal environment allows all the analytes to interact with the plasmonic 

nanoparticles based on concentration-correlated probability, allowing quantitative digital SERS 
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analysis. In contrast, for substrate-based SERS assays, only these analytes located within the 

plasmonic field decay length can be effectively detected, while those beyond the decay length 

are largely missed in the acquired SERS spectra. Third, geometrically heterogeneous colloidal 

plasmonic nanoparticles, such as gold nanostars, possess significant SERS enhancements and 

wide spectral tunability, while the prevailing gold nanoparticles with a sphere shape can only 

provide a modest SERS enhancement with limited spectral tunability. Fourth, digital SERS 

analysis circumvents the SERS intensity fluctuation issues and eliminates false signals. 

Leveraging the digital SERS counts to establish the correlation with the analyte concentration 

also enables single-molecule events to be accurately captured, which could either be missed 

because of limited sampling for substrate-based SERS assays or obscured by the background 

after averaging if the mean SERS intensity-based traditional approach was implemented. Fifth, 

the deep learning regression analysis leverages the artificial neural network (ANN) algorithm to 

predict the analyte concentration by extracting the hidden features based on studying the entire 

spectral features,37-41 which, without relying on any characteristic peaks, significantly expands 

the applicability of the colloidal SERS assay. Ultimately, the integrated deep learning-powered 

colloidal digital SERS assay platform provides a highly promising and scalable strategy for rapid 

and accurate monitoring various components in cell culture media. 
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Figure 1. Scheme for deep learning-powered SERS for cell culture media monitoring. (a) Schematic
of a bioreactor, (b) mixing of media analytes and colloidal gold nanostars (inset: a TEM image of a gold
nanostar) and loading of the mixture into a quartz capillary tube, (c) protocol for Raman spectroscopy
measurements and digital SERS analysis (d) schematic SERS dataset, (e) artificial neural networks-
based deep learning model, (f) regression analysis, and (g) concentration prediction. 

 

2. Results and Discussion 

2.1 Principle of deep-learning powered SERS for cell culture media monitoring 

Underpinning the colloidal digital SERS assay is the homogeneous colloidal mixture of

cell culture media and gold nanostars (Fig. 1a-b), where the gold nanostars were synthesized

based on our previously reported approach.21, 42 The stochastic analyte-nanoparticle interactions

produce temporal SERS intensity fluctuations. By converting each SERS spectrum based on a

predefined intensity threshold using the characteristic SERS peak into a binary digital signal in

the form of “ON” or “OFF”, positive analyte-nanoparticle interactions can be accurately

captured (Fig. 1c). For instance, for a given analyte, if its SERS characteristic peak intensity  is
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equal to or higher than five times the standard deviation � of the background as compared to the 

mean intensity of the background ��, this SERS spectrum is defined as a positive digital SERS 

count. Otherwise, a negative SERS count is returned. In this way, all the acquired SERS spectra 

can be converted into binary digital SERS signals. This effectively addresses the SERS intensity 

fluctuations by leveraging their stochastic nature while enabling digital visualization of single-

molecule events.  

While the obtained digital SERS count can be directly correlated with the analyte 

concentration to establish the calibration curve, the entire SERS spectra can also be analyzed 

using deep learning. Specifically, ANN is adopted to handle these high-dimensional SERS 

datasets (Fig. 1d). The SERS datasets are first preprocessed by background removal using the 

fifth-order polynomial correction and normalized to properly scale the input features. Outliers 

are rejected using the robust principal component analysis (RPCA), which separates the SERS 

datasets into low-rank components that represent the underlying structure of the data and sparse 

components that capture outliers.43-44 Through properly thresholding the sparse components, 

outliers can be identified and removed. The cleaned SERS datasets are further split into training 

and testing subgroups using an 80-20 partition, where 80% of the cleaned datasets are allocated 

for training while the remaining 20% for testing. The 80-20 partition is a standard practice in 

deep learning that balances sufficient data for model training while reserving enough unseen data 

for reliable performance evaluation. Subsequently, the training datasets are fed into the input 

layer of the ANN architecture (Fig. 1e). The input layer has the exact same number of features 

that correspond to that of input features in the cleaned SERS dataset. The following three fully 

connected (FC) hidden layers are made to have a progressively decreasing number of artificial 

neurons, from 100, down to 50 and 25, where a rectified linear unit (ReLU) activation function is 
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implemented to enable the extraction of nonlinear relationships and complex patterns in the

SERS dataset. As the ANN algorithm trains the model based on the labelled SERS datasets, it

continuously adjusts the weights of each artificial neuron, which effectively optimizes its ability

to predict the outcome for the unlabeled testing datasets. Eventually, the output layer has a single

artificial neuron and returns the predicted value (Fig. 1f-g).  

 

Figure 2. Colloidal SERS assay for detection of R6G in D.I. water. (a-c) SERS intensity analysis,
where (a) represents the acquired SERS spectra with various R6G concentrations as specified, (b) the
SERS intensity in relation to R6G concentration, and (c) the corresponding coefficient of variations (CV).
(d-f) Digital SERS analysis, where (d) represents the distribution of digital SERS signals with various R6G
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concentrations across three repeats, (e) percentage of positive digital SERS counts in relation to the R6G 
concentration, and (f) the corresponding CV. (g-i) Deep learning analysis, where (g) represents the side-
by-side comparison and (h) the correlation between the true and predicted concentrations, (i) the 
corresponding CV. 

 

2.2 Colloidal SERS detection of R6G in D.I. water 

 To assess the performance of the deep learning-powered colloidal digital SERS assay 

platform, we started by implementing it to detect a standard Raman molecule, rhodamine 6G 

(R6G), in D.I. water. Following the protocol laid out in Fig. 1, a series of R6G-gold nanostar 

colloidal mixtures with various R6G concentrations were first created and loaded into a quartz 

capillary tube for Raman spectroscopy measurements. A total of 1600 spectra were collected in 

about 16 minutes by a confocal Raman microscope at an excitation wavelength of 785 nm. The 

mean SERS spectra were displayed in Fig. 2a, where the shaded regions represent the standard 

deviation for the corresponding spectra collected at a given R6G concentration and the spectra 

were vertically offset for better visualization. We performed three types of data analysis, 

including the conventional SERS intensity analysis, digital SERS analysis, and deep learning 

analysis. 

 The conventional SERS intensity analysis was performed at the characteristic SERS peak 

at about 1520 cm-1, which has an origin of the symmetric stretching mode of carbon-carbon 

bonds in the xanthene framework.45 The mean peak intensity was found to decrease quickly with 

a decreasing R6G concentration (Fig. 2b). Below 10-5 M, no further intensity change was 

observed. The coefficient of variation (CV) typically exceeded 20% (Fig. 2c), which could be 

ascribed to the high dynamic nature of the R6G-gold nanostar interactions.  

 Furthermore, digital SERS analysis was performed using the same peak. The converted 

digital SERS signals were spatially mapped across various concentrations and repeats, as 
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presented in Fig. 2d, where a gradual decrease of positive digital SERS counts was observed as 

the R6G concentration became lower. The mean digital SERS count was found to similarly 

decrease with a decreasing R6G concentration (Fig. 2e), but with a lower detectable 

concentration down to 10-7 M as compared to the conventional SERS intensity analysis. Besides 

the observed lower detectable concentration, digital SERS analysis also returned a much lower 

CV, almost all of which are below 10% (Fig. 2f). This suggests that a higher detection precision 

was achieved, which can be ascribed to the distinct advantage of digital SERS, which effectively 

suppressed background interference by assigning these signals as negative.  

 Additionally, deep learning analysis was conducted based on the ANN architecture to 

predict R6G concentrations. Through side-by-side comparison, the predicted concentrations were 

found to be consistently aligned closely with the true concentrations across all the studied 

concentration range down to 10-8 M (Fig. 2g). Meanwhile, the predicted concentrations were 

found to correlate with the true concentration with a high coefficient of determination (R²) value 

of 0.98 and small CVs that are all below 5%, as shown in Fig. 2h-i. These observations 

underscore the accuracy of the ANN algorithm to capture complex nonlinear relationships by 

extracting the hidden features within the high-dimensional SERS datasets.  

 Taken together, the above analysis demonstrated the strong capability of both the digital 

SERS and deep learning, which displayed distinct advantages over conventional SERS intensity 

analysis, featuring a higher detection sensitivity and precision. Given the fact that not all analytes 

possess well-defined SERS peaks which precludes the possibility of digital SERS analysis, deep 

learning is thus expected to play a dominant role in detecting these analytes and can significantly 

expand the applicability of the colloidal SERS approach.  
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Figure 3. Digital SERS analysis of (a-b) glucose and (c-d) tryptophan, both in D. I. water. (e-f) Deep
learning analysis of glutathione in D.I. water. 

 

2.3 Detection of key cell culture media components in D.I. water 

To demonstrate practical applicability, we extended the approach to detect key

components in cell culture media, including glucose, tryptophan, and glutathione, following the

same protocol outlined in Fig. 1. Digital SERS analysis successfully detected glucose and

tryptophan with strong correlations between digital SERS counts and analyte concentrations

(Fig. 3a-d). Deep learning analysis of glutathione showed near-perfect alignment between
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predicted and true concentrations (Fig. 3 e-f), highlighting the method's versatility and sensitivity 

as an analytical platform. The ability to detect these molecules with high sensitivity and 

reproducibility offers significant advantages for rapid bioprocess control, as fluctuations in 

metabolite concentrations can directly affect product quality and yield. The detection of glucose 

and tryptophan, two critical metabolites in cell culture processes, underscores the utility of the 

digital SERS method for quantifying biologically relevant analytes with high precision. Glucose, 

a primary energy source, plays a central role in cell metabolism, and has long served as a critical 

process parameter in many culturing platforms; as such, glucose remains among the most widely 

monitored culture media components due to its impact on cell growth and productivity.46 

Tryptophan, an essential amino acid, is involved in protein synthesis and metabolic regulation, 

making its monitoring crucial for maintaining optimal cell culture conditions. Tryptophan 

supplementation has been shown to increase both titer and peak cell density in CHO fed-batch 

culture.47 For glutathione, the deep learning analysis overcame the limitations posed by the lack 

of well-defined SERS peaks. This demonstrates the versatility of the deep learning-powered 

platform, as it can analyze entire spectral datasets to extract hidden features and predict analyte 

concentrations with exceptional accuracy. The high coefficient of determination and low CV 

observed in the deep learning results validate the robustness of the approach for handling 

complex, high-dimensional data. These findings highlight the ability of the deep learning-

powered colloidal digital SERS platform to achieve sensitive and precise detection of diverse 

cell culture media components and offers a scalable solution for monitoring critical metabolites 

and ensuring consistent biopharmaceutical manufacturing outcomes. 
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Figure 4. Cell culture media monitoring (AMBIC media 1.1). Detection of (a-c) tryptophan, (d-f)
phenylalanine, and (g-i) glucose in cell culture media. 

 

2.4 Cell culture media detection 

We further implement the deep learning-powered colloidal digital SERS for conducting

rapid monitoring of cell culture media (AMBIC 1.1). The components and their concentrations in

the AMBIC 1.1 media are detailed in Table S1. To perform a proof-of-concept demonstration,

we selected three common analytes, including tryptophan, phenylalanine, and glucose. These

analytes were individually spiked into fresh AMBIC 1.1 media to assess how well the digital

SERS method could detect and quantify their concentrations. The addition of these analytes

resulted in new media samples with known concentrations, which allowed us to systematically

investigate the correlation between SERS signals and analyte levels. Specifically, we prepared

three separate sets of media samples for each analyte, each containing varying concentrations of

the respective compound. Analyte concentrations were evenly spaced on a log scale from the

fresh media concentration up to the analytes’ solubility limit. For example, when tryptophan was
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introduced into AMBIC 1.1 media in increasing amounts, three new samples were created, each 

with a higher concentration of tryptophan. The same approach was used for phenylalanine and 

glucose, ensuring that we could measure a wide range of concentrations for each analyte. 

The resulting SERS spectra for the newly created media samples are presented in Fig. 4a, 

d, g, where the analyte concentrations are labeled next to the vertically offset spectra. We 

observed that, for all the three sets of media samples, the characteristic SERS peak intensity 

increased proportionally with concentration, which is indicative of a strong relationship between 

analyte concentration and the detected signal. To quantify this relationship, we first employed 

the digital SERS approach. Fig. 4b, e, h shows that there was a robust linear correlation between 

the digital SERS counts and the concentration of each analyte across the measured range. 

Notably, glucose detection presented a slightly higher coefficient of variation (CV) at the lowest 

concentration tested (around 15%), which could be attributed to the challenges in detecting 

glucose. However, for the other analytes, the CV remained well below 10%, indicating high 

reproducibility and low measurement uncertainty across all tested concentrations. Furthermore, 

the deep learning-based analysis of the full SERS spectra revealed an even more compelling 

result. When the entire spectra were fed into the ANN algorithm, the predicted concentrations of 

the analytes closely aligned with the actual concentrations across all samples, as shown in Fig. 

4c, f, i. This indicates that the deep learning model was able to extract complex features from the 

spectra and provide an accurate prediction of analyte concentration, even in the presence of 

matrix effects from the complex cell culture media. The successful demonstration of this method 

highlights the strong capability of the deep learning-powered colloidal digital SERS for precise, 

label-free monitoring of small molecule cell culture media components. The precision and 

reproducibility of the method make it ideal for real-time monitoring of cell culture component 
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concentrations, which is critical for optimizing cell-based assays, biomanufacturing processes, 

and other biomedical applications.  

3. Conclusion 

In summary, we developed a deep learning-powered colloidal digital SERS platform for 

rapid and precise monitoring of cell culture media. By converting stochastic SERS intensity 

fluctuations into binary digital signals using the characteristic SERS peak, this method 

overcomes the limitations of conventional SERS, particularly the intensity fluctuations. By 

further leveraging deep learning for spectral analysis, the applicability of the approach is 

significantly expanded and can detect analytes even without well defined SERS spectral peaks. 

This platform demonstrated superior sensitivity, reproducibility, and accuracy for detecting key 

analytes in both simple and complex cell culture media. Given the generalizability of this 

platform, we envision that this approach can be further scaled and adapted to monitor a broader 

range of analytes in various experimental conditions, opening up new possibilities for real-time, 

non-invasive monitoring in cell biology, as well as for large-scale, high-throughput screening 

assays and point-of-care diagnostic devices in clinical settings. 
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