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Abstract: Cardiac signals have complex structures representing a combination of simpler structures.
In this paper, we develop a new data analytic tool that can extract the complex structures of cardiac
signals using the framework of multi-chaotic analysis, which is based on the p-norm for calculating
the largest Lyapunov exponent (LLE). Appling the p-norm is useful for deriving the spectrum of
the generalized largest Lyapunov exponents (GLLE), which is characterized by the width of the
spectrum (which we denote by W). This quantity measures the degree of multi-chaos of the process
and can potentially be used to discriminate between different classes of cardiac signals. We propose
the joint use of the GLLE and spectrum width to investigate the multi-chaotic behavior of inter-beat
(R-R) intervals of cardiac signals recorded from 54 healthy subjects (hs), 44 subjects diagnosed with
congestive heart failure (chf), and 25 subjects diagnosed with atrial fibrillation (af). With the proposed
approach, we build a regression model for the diagnosis of pathology. Multi-chaotic analysis showed
a good performance, allowing the underlying dynamics of the system that generates the heart beat to
be examined and expert systems to be built for the diagnosis of cardiac pathologies.

Keywords: Lyapunov exponent; chaos; R-R interval time series; logistic regression model

1. Introduction

In modern society, heart disease is one of the major causes of mortality [1].Most
clinical research in cardiology is based on the analysis of electrocardiograms (ECGs). One
important characteristic of an ECG is the duration of one cardiac cycle, namely, the R-
R interval. Indeed, R-R interval time series may contain information that indicates the
presence of certain cardiovascular diseases. There has been considerable attention devoted
to investigating the various aspects of the cardiac physiology using methods for nonlinear
analysis, such as fractal analysis [2–4], chaos theory [5–9], and others [10,11]. One of the
goals of such studies is to determine the most effective parameters for building expert
systems for the diagnosis (and differentiation) of cardiac diseases. This is a particularly
important issue, especially when creating modern portable devices for monitoring cardiac
activity. Therefore, it is necessary to develop mathematical tools for non-linear analysis that
can discriminate between healthy physiological and pathological R-R interval time series.

Many biomedical signals, such as cardiac signals, have complex structures repre-
senting a combination of simpler structures. These interactions reflect the influence of
numerous vital processes. For example, recent studies have shown that many biomedical
signals have a multifractal structure [12–15]. Such signals represent a complex fractal struc-
ture, which cannot be sufficiently characterized by a single summary value (e.g., the Hurst
exponent). Multifractal signals are a combination of various simpler monofractal structures,
each characterized by a single Hurst exponent. Therefore, to characterize a multifractal
signal, the spectrum of generalized Hurst exponents is used, where each generalized Hurst
exponent characterizes a certain monofractal structure.
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To obtain this spectrum from the signal, Kennel et al. [16] suggested applying the q-th
order fluctuation function, where q 6= 0. This procedure is called a multifractal detrended
fluctuation analysis (MFDFA). Therefore, the MFDFA procedure for a stochastic time series
{X(t)} consists of calculating the q-th order fluctuation function [12,16]:

Fq(∆t) ≡
(

1
(n− 1)(N

n )
×

n−1

∑
j=1

N/n

∑
i=1

[
F2(∆t)

]q/2
)1/q

, (1)

where the square bias F2(∆t) = (Y((j− 1)× ∆t + i)− P((j− 1)× ∆t + i))2 is defined
over each sliding window of interval ∆t, and time series {Y(t)} is determined in the
following way:

Yt =
t

∑
i=1

(Xi − 〈X〉i), (2)

where 〈X〉i defines the cumulative moving average for X1, . . . , Xi; P(x)—a line of best
fit over each sliding window of length ∆t; N is the number of points; and ∆t = int(N

n ),
where n = 2, 3, 4, . . . , nmax [12].The value nmax depends on the maximum size of the
time series. In order to reduce the saturation effects owing to the finite size, it should be
nmax << N [12]. The ln–ln plot of Fq(∆t) ∼ ∆th(q), as a function of ∆t, yields a straight
line with slope h(q), defined as the generalized Hurst exponent h(q). Figure 1 shows the
ln–ln plot of Fq(∆t) ∼ ∆th(q) for random time series data (white noise) for q = −1, 2, and 5.
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Figure 1. This plot shows the relationship between ln(Fq(∆t)) and ln(∆t) for random time series
data for q = −1, 2, and 5.

The generalized Hurst exponent h(q) indicates the multifractal property of a signal. For
a monofractal signal, h(q) is a constant, equaling the Hurst exponent h(q) = H. Conversely,
for a multifractal signal, h(q) decreases as q increases. The singularity spectrum is assessed
using the succeeding relation:

α = h(q) + qh′(q) and f (α) = q[α− h(q)] + 1, (3)

where α defines the strength of a singularity spectrum and f (α) is the fractal dimension of
a points set with a particular α value. For a monofractal signal, the series f (α) is converted
into a single point. The measure of degree of multifractality is estimated by the width of its
spectrum, which evaluates the range of α where f (α) > 0:

W = αmax − αmin, (4)
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where f (αmax) = f (αmin) = 0. Larger values for the width indicates a higher level of
multifractality of the spectrum [12,16,17].

This approach is a powerful tool for analyzing biomedical signals. In [13], MFDFA
was applied to a human gait time series to compare and contrast the pathology and non-
pathology group. The results of the research suggested that the degree of multifractality is
higher for non-pathology groups. Using the multifractal spectrum of electroencephalogram
(EEG) signals, the authors of [14] developed a technique for the automated detection of
epilepsy, and in [15], the analysis reveals interesting results on neural activation of the
alpha (8–12 Hertz) and theta (4–8 Hertz) brain rhythms while listening to simple acoustical
stimuli. This research demonstrates the ability to qualify emotions using MFDFA.

The work [12] shows the high efficiency of applying the multifractal approach for
analyzing R-R interval time series. Therefore, using the q-th order fluctuation function, we
built a two-factor logistic regression model for diagnosis of the pathology of cardiac signals
with an area under the receiver operating characteristic curve (ROC curve) of 0.96 (95% CI
0.92–0.99).These results serve as inspiration for creating a four-factor logistic regression
model that is able to differentiate between congestive heart failure (chf) signals from other
pathologies, namely, the atrial fibrillation (af) and sudden death (sd) groups. Here, the area
under the ROC curve is 0.91 (95% CI 0.84–0.97).

However, unlike fractal analysis, which permits the structure of signals to be evaluated,
chaos analysis explores the base dynamics of the system, which forms the observed signal.
Therefore, fractal analysis does not allow a more detailed study of the dynamic properties
of the system [18]. Therefore, it is necessary to develop mathematical tools for chaotic
analysis which has the power to differentiate between healthy and pathological signals
(and moreover, finer differentiation across different subclasses of the pathology).

Chaotic analysis usually begins with reconstructing the phase space of a dynamical
system. For reconstructing the phase space of a dynamical system, two parameters, specifi-
cally, the embedding dimension m and time delay J, are used [19,20].The time delay J is
usually estimated either by examining the autocorrelation function (acf) [20] or mutual
information (MI) [21]. The estimate of the time delay J is the smallest possible value that
produces reconstructed attractors whose coordinates are as independent as possible (as
measured by correlation or MI). Using the acf, the time delay J is generally chosen in accor-
dance with the lag, where the absolute value of the acf first attains a zero (or close to it) and
then flattens out. This method is quite simple and does not require massive calculations.
Moreover, for Gaussian signals, a zero autocorrelation for some lag J or beyond implies the
independence of observations at time points with absolute lag of at least J. However, for
non-Gaussian signals, a zero correlation does not necessarily imply independence. For this
reason, the delay J derived from the autocorrelation may produce misleading results.

Fraser and Swinney [21] have demonstrated that the MI function is a more accurate
measure of independence compared to the acf. In the method proposed by Fraser and
Swinney, the optimal time delay J is selected according to the first minimum MI function.
Liebert and Schuster [22] demonstrated that the minima of the MI function match the
minima of the correlation integral function, which requires less computation than the
MI function [22]. Therefore, the application of the correlation integral function is more
convenient for practical use.

The following approaches can be used to estimate the embedding dimension: The
false nearest neighbor (FNN) method [23], Cao’s method [24], or the correlation dimen-
sion method [25,26]. The idea of the FNN method was developed using the factthat
when the embedding dimension is small, points that are distant in the original phase
space are brought together in the reconstruction space [24]. If m is defined as an embed-
ding dimension by the embedding theorems [27,28], then the true neighbors are any two
points which are close in the m-dimensional reconstructed space and that remain close
in the (m + 1)-dimensional reconstructed space. On the contrary, there are false neighbors.
However, the FNN method is not accurate enough to determine the parameters Rtol and
Atol .Therefore, this approach may lead to incorrect estimation of the embedding dimension.
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Cao’s method [24] overcomes the shortcomings of the nearest neighbor method, which
makes it more attractive for practical applications such as cardiac signals.

One of the conditions for the chaotic state of a dynamic system is sensitivity to the
values of the initial conditions [19,20]. The largest Lyapunov exponent (LLE) is often
considered as one quantitative measure of this sensitivity. The largest Lyapunov exponent
characterizes the degree of exponential divergence of close trajectories [20]. The presence
of a positive Lyapunov exponent in the system indicates that any two close trajectories
quickly diverge over time, that is, there is sensitivity to the values of the initial conditions.
Therefore, determination of the Lyapunov exponent recognizes the existence of chaotic
behavior [19,20].

It is understood that many biomedical signals have a complex chaotic structure, which
is the result of the interaction of various chaotic systems involved in the regulation of vital
processes in the body. This complex structure is a combination of simpler chaotic structures.
To calculate the characteristic values of these chaotic structures, the non-Euclidean norms
can be used. The family of Minkowski norms [29,30] are parameterized by their exponents
p = 1,2, . . . :

Dx,y =

(
∑

i
|(xi − yi)|p

)1/p

. (5)

Generalizations of Minkowski norms are presented in [29] for the event where p is
a positive real number. For p ≥ 1, those extensions are actually norms, but for 0 < p < 1,
the triangle inequality does not remain and they cannot be regarded as norms. Therefore,
p-norms with p < 1 were named fractional norms. Below, we denote the Minkowski norm
and a fractional norm as p-norm ‖‖p.

In this paper, to characterize the chaotic structure, we propose only considering the
largest Lyapunov exponent. Therefore, we will not consider the entire spectrum of values
of the Lyapunov exponent for a given chaotic structure, calculated for the corresponding
p-norm ‖‖p, which will greatly simplify the calculations. Each p value of p-norm ‖‖p will
correspond to its largest Lyapunov exponent LLE(p). Therefore, a complex chaotic structure
will be characterized by the spectrum of LLE(p) for p∈(0;+∞). If the entire spectrum of
LLE(p) values is characterized by a single value, then this structure will have mono-chaotic
behavior. If some variability of the LLE(p) values is observed, then the considered structure
is said to possess multi-chaotic behavior.

We believe that the R-R interval time series is a combination of various chaotic struc-
tures that results in the interaction with the regulation of cardiac activity. To evaluate the
chaotic structure, we propose estimating the largest Lyapunov exponent using the p-norm
‖‖p, based on the well-known method proposed by Rosenstein et al. in [20].This approach
can allow us to identify the multi-chaotic behavior of R-R intervals. Consequently, we
anticipate improvement in the differentiation of the chaotic properties of R-R intervals
for healthy and non-healthy subjects compared to the standard approach, proposed by
Rosenstein et al. in [20]. To demonstrate the effectiveness of the new approach, we will
construct logistic models for differentiating R-R intervals for healthy and non-healthy
subjects. In summary, the goal of this study is to design a new approach for identifying the
multi-chaotic behavior of time series and demonstrate its effectiveness for evaluating the
multi-chaotic properties of R-R intervals.

2. Materials and Methods
2.1. Clinical Datasets

In 2008, the editors of Chaos proposed the following research question: “Is the Normal
Heart Rate Chaotic?” [31]. For this study, PhysioNet [32] provided the records of R-R
intervals in the case of healthy subjects (hs) and patients with congestive heart failure (chf)
and atrial fibrillation (af). Since our research deals with this issue, we used the proposed
groups for exploring the multi-chaotic properties of R-R intervals. Therefore, we explored
the cardiac time series, producing 5000 points (≈1 h) for the 24h R-R interval time series
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of 54 hs (Normal Sinus Rhythm R-R Interval Database), 44 chf (Congestive Heart Failure
Database), and 25 af (MIT-BIN Atrial Fibrillation Database).

2.2. Statistical Methods

The Rosenstein method is a very popular approach for evaluating the largest Lyapunov
exponent of biomedical signals [20]. The algorithm outline is as follows. Let us consider

a stochastic time series {X(t)}. The reconstructed trajectory,
→
Xr, is presented as a matrix

where each row is a phase-space vector:

→
Xr =

(→
Xr1
→
Xr2 . . .

→
XrM

)T
, (6)

where
→
Xri is the state of the system at discrete time i. For an N-point time series of

{x1, x2, . . . , xN}, each
→
Xri is defined by

→
Xri =

(
xi, xi+J . . . xi+(m−1)J

)
, (7)

where J is the time delay (lag), and m is the embedding dimension. Thereby,
→
Xr is an M×m

matrix, and the constants m, M, J, and N are related as M = N − (m− 1)× J [20].
Rosenstein et al. [20] assumed that the jth pair of nearest neighbors approximately

diverge at a rate presented by the largest Lyapunov exponent LLE:

dj(i) = CjeLLE(i×∆t), (8)

where dj(i) is the distance between the jth pair of nearest neighbors after i discrete-time
steps, ∆t is the sampling period of the time series, and Cj is the initial separation. The
largest Lyapunov exponent LLE is evaluated by a linear approximation of the average line
determined by

y(i) =
1

∆t
〈
ln dj(i)

〉
, (9)

where 〈. . .〉 designates the average overall values of j. In Rosenstein et al. [20], dj(i) is
defined as follows:

dj(i)= min
→
X jmin

‖
→
X j+i −

→
X jmin‖= min

→
X jmin

((
xj+i − xjmin )2+

(
xj+i+J − xjmin+J )

2 + . . .

+
(

xj+i+(m−1)J − xjmin+(m−1)J )
2)1/2,

(10)

where ‖‖ denotes the Euclidean norm.
Many biological time series have a complex structure in which the interweaving of

several chaotic structures can be observed. These time series cannot be characterized by a
single LLE value; and characterization requires a spectrum of LLE values measuring each
chaotic structure. Obviously, this spectrum will be characterized by a certain spectrum
width W, which will reflect the degree of multi-chaos of the studied process. Therefore,
the width W of the spectrum will be zero for a mono-chaotic series. Larger values of
the width W indicate a higher degree of multi-chaos in the time series. To estimate this
spectrum, we propose a new approach, which is based on a generalization of the Rosenstein
method, used for estimating the largest Lyapunov exponent. We call this approach a multi-
chaotic analysis. Therefore, if the time series is characterized by a certain spectrum of
LLE (accordingly, there is some variation of LLE), then it has a multi-chaotic behavior.
Conversely, if the time series is characterized by a single LLE value, then it has mono-
chaotic behavior.

The application of p-norms ‖‖p allows the spectrum of LLE values that define the rate
of divergence of the jth pair of nearest neighbors to be determined for each p-norm. The
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distance between the two vectors
→
X j+i and

→
X j in an m-dimensional space for p-norm ‖‖p

is calculated as(
∣∣xj+i − xj

∣∣p+
∣∣xj+i+J − xj+J

∣∣p+ . . . +
∣∣∣xj+i+(m−1)J − xj+(m−1)J

∣∣∣p)1/p, where
p > 0. Then, the distance between the jth pair of nearest neighbors in the m-dimensional
space for p-norm after i discrete-time steps is defined as follows:

dp
j (i)= min

→
X jmin

‖
→
X j+i −

→
X jmin‖p= min

→
X jmin

(∣∣xj+i − xjmin

∣∣p +∣∣xj+i+J − xjmin+J
∣∣p + . . .

+
∣∣∣xj+i+(m−1)J − xjmin+(m−1)J

∣∣∣p)1/p.
(11)

We denote these largest Lyapunov exponents as the generalized largest Lyapunov
exponents (GLLE). Therefore, the jth pair of nearest neighbors for p-norm ‖‖p will approxi-
mately diverge at a rate presented by the GLLE:

dp
j (i) = CjeGLLE(i×∆t). (12)

The generalized largest Lyapunov exponent is evaluated by a linear approximation of
the average line determined by

yp(i) =
1

∆t

〈
ln dp

j (i)
〉

. (13)

From Equation (11), it is clear that using values p < 1 makes it possible to enhance the

influence of small fluctuations (SF) between the coordinates of the vectors
→
X j+i and

→
X j on

the estimate of the distance dp
j (i) compared to the Euclidean norm distance dj(i). On the

contrary, using values p >> 1 makes it possible to enhance the influence of large fluctuations

(LF) between the coordinates of the vectors
→
X j+i and

→
X j on the estimate of the distance

dp
j (i) compared to the Euclidean norm distance dj(i).In this way, we can obtain a filter

that enhances the contribution of the SF or LF component to the evaluation of the distance
dp

j (i), according to an evaluation of the generalized largest Lyapunov exponent. Therefore,
multi-chaotic behavior is characterized by the difference between SF and LF components

of the distance dp
j (i) between the two vectors

→
X j+i and

→
X j in them-dimensional space. The

difference between SF and LF components determines the spectrum width W.
Now consider the results of applying this approach to well-known chaotic dynamical

systems. Table 1 demonstrates the chaotic dynamical systems that were used to evaluate
the GLLE(p) of the proposed approach. The fifth column presents the theoretical values of
the largest Lyapunov exponent. By applying fourth-order Runge–Kutta integration, the
differential equations were solved numerically for using the x-coordinate time series to
reconstruct the dynamics.

Table 1. The chaotic dynamical systems that were used to evaluate the generalized largest Lyapunov
exponents (GLLE).

System Equations Parameters ∆t(s) Theoretical
LLE [20]

Logistic xi+1 = µxi(1− xi) µ = 4.0 1 0.69

Henon
xi+1 = 1− ax2

i + yi
yi+1 = bxi

a = 1.4
b = 0.3 1 0.42

Lorenz

x′ = σ(y− x)
y′ = x(R− z)− y

z′ = xy− bz

σ = 10.0
R = 28
b = 8/3

0.01 1.50

Rossler
x′ = −y− z
y′ = x + ay

z′ = b + z(x− c)

a = 0.15
b = 0.20
c = 10.0

0.1 0.09
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Figure 2 demonstrates the relationship between
〈

ln dp
j (i)

〉
and i× ∆t for the logistic

map for p-norm = 0.1, 2, and 6, where “<ln(divergence)>” denotes
〈

ln dp
j (i)

〉
and “Time(s)”

corresponds to i× ∆t.
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Table 2 shows the calculation results of GLLE(p) for the Logistic, Henon, Lorenz,
and Rossler chaotic dynamical systems using the p-norm ‖‖p. To estimate the spectrum
width W, we used the difference between the maximum and minimum values of GLLE:
∆W = GLLE max − GLLEmin.

Table 2. Calculation results of GLLE(p) for chaotic dynamical systems.

p-Norm Logistic,
GLLE(p)

Henon,
GLLE(p)

Lorenz,
GLLE(p)

Rossler,
GLLE(p)

0.1 0.69 0.42 1.44 0.07
0.5 0.69 0.43 1.50 0.09
1 0.69 0.43 1.51 0.09
2 0.69 0.42 1.52 0.09
3 0.67 0.42 1.51 0.09
4 0.62 0.39 1.53 0.09
5 0.49 0.34 1.52 0.09
6 0.38 0.30 1.30 0.06
7 0.29 0.25 1.25 0.06
8 0.25 0.22 1.32 0.06
9 0.22 0.18 1.26 0.06
10 0.22 0.16 1.27 0.06

∆W 0.47 0.27 0.28 0.02

Table 2 demonstrates that for p-norm < 1, decreasing the p-norm leads to a decrease
of GLLE(p). Apparently, this is due to the fact that increasing the SF component leads to
deterioration in the chaotic properties of the considered attractors. At the same time, for
p-norm > 1, we can see that increasing the p-norm leads to a decrease in GLLE(p) for the
Logistic and Henon maps. The reason for this is the deterioration of the chaotic properties
of attractors with an increasing LF component. A similar effect is observed for the Lorenz
attractor; however, some oscillations of GLLE(p) are present, which we associate with the
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structure of the attractor. Therefore, the different influence of SF and LF components leads
to estimation of the spectrum width ∆W > 0. This indicates the multi-chaotic behavior of
the Logistic map, the Henon map, and the Lorenz attractor.

We can see that GLLE(p) of the Rossler attractor reaches a plateau for p-norm > 6 and
the estimation of the spectrum width ∆W ≈ 0. This indicates the mono-chaotic behavior
of the Rossler attractor. It is obvious that the application of the presented method is not
advisable for mono-chaotic behavior. Therefore, it can be seen that the GLLE(p) of attractors
can exhibit different behaviors; therefore, we recommend preliminarily estimating the
interval of p-norm values. It should be noted that at close to zero p-norm values, the
GLLE(p) values become extremely unstable. At the same time, when the p-norm has a large
value, GLLE (p) becomes close to zero and loses its information content.

Since the presence of a random component is characteristic of biological signals (i.e.,
most biological signals are not perfectly deterministic), we consider the influence of a
random component on the spectrum width W. Table 3 shows the results of the estimation
of the spectrum width ∆W for chaotic dynamical systems, obtained by adding a random
component to the x-coordinate time series of the aforementioned chaotic dynamical systems.
The random components have a normal distribution with a zero mean and standard
deviations presented in Table 3.

Table 3. Calculation results of the estimation of the spectrum width ∆W for chaotic dynamical
systems with the addition of a random component, having a normal distribution with a zero mean
and different standard deviations, to the x-coordinate time series.

Standard
Deviation Logistic, ∆W Henon, ∆W Lorenz, ∆W Rossler, ∆W

0.001 0.50 0.31 0.26 0.01
0.01 0.28 0.23 0.21 0.01
0.05 0.20 0.17 0.21 0.01

Table 3 shows that increasing the standard deviation of the random component will
lead to a decrease of the estimation of the spectrum width ∆W. Therefore, when increasing
a random component of the signal, the spectrum width W decreases. An exception is the
Rossler attractor, which is characterized by mono-chaotic behavior. Obviously, in this case,
the values of the spectrum width ∆W remain constant.

3. Results

We will now investigate the feasibility of applying multi-chaotic analysis to reveal
any possible difference among R-R interval time series of healthy subjects (hs), subjects
diagnosed with congestive heart failure (chf), and subjects diagnosed with atrial fibrillation
(af). To estimate the delay time J along with the widely used methods of the acf and the MI
function, we used the correlation integral function Cm(J), derived from [20]. The embedded
dimension m was evaluated by applying the method in [24]. Appendix A contains graphs
demonstrating the results of applying this method for one of the R-R intervals recorded.
Preliminary estimation of the interval of p-norm values showed us that p∈[0.1; 5] is the
most appropriate interval for assessing the GLLE (p) of R-R interval time series.

Figure 3 shows the results of calculating GLLE(p) for healthy (hs), congestive heart
failure (chf), and atrial fibrillation (af) groups.

From Figure 3a, it is clear that there is variation of GLLE(p) with p for healthy (hs),
congestive heart failure (chf), and atrial fibrillation (af) groups, where the values of GLLE(p)
decrease with increasing p. This indicates the multi-chaotic behavior of the R-R interval
time series considered. Figure 3b demonstrates that there is no statistically significant
difference (p-value > 0.05) among groups for GLLE (5). Therefore, for multi-chaotic analysis
of the considered signals, it is sufficient to use p-norm ≤5.
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To characterize multi-chaotic behavior, let us consider estimation of the spectrum
width ∆W = GLLEmax−GLLEmin. Since standard approaches analyze chaotic behavior
using the Euclidean norm, given the importance of this issue for the chaotic analysis of R-R
interval time series, we separately consider the values of the largest Lyapunov exponent
GLLE(2). Table 4 shows the results achieved for the largest Lyapunov exponent GLLE(2)
and estimation of the spectrum width ∆W. Since the empirical distribution of the estimated
values differs from a normal distribution (p-value < 0.05, Kolmogorov–Smirnov test), we
proceeded to use the median (Me) in order to evaluate the central values of GLLE(2) and
∆W, and applied the first quartile Q1 and third quartile Q3 to evaluate the variation or
spread of the distribution of the considered values.

Table 4. Median of the largest Lyapunov exponent GLLE(2) and the estimation of the spectrum width
∆W (Me—median, Q1—first quartile, and Q3—third quartile).

Group Number GLLE(2),
Me(Q1–Q3)

∆W
Me(Q1–Q3)

hs 54 0.11(0.10–0.13) a 1.28(0.78–1.95) c

chf 44 0.15(0.12–0.20) a ,b 2.61(1.70–4.23) c ,d

af 25 0.08(0.07–0.10) a ,b 0.42(0.26–0.79) c ,d

a Significant difference between the GLLE(2) of healthy (hs) and pathological groups, p-value < 0.01 using the
Kruskal–Wallis test; b significant difference between the GLLE(2) of congestive heart failure (chf) and atrial
fibrillation (af) groups, p-value < 0.01, where a Kruskal–Wallis test was conducted; c significant difference between
the ∆W of healthy (hs) and pathological groups, p-value < 0.01, using the Kruskal–Wallis test; d significant
difference between the ∆W of congestive heart failure (chf) and atrial fibrillation (af) groups, p-value < 0.01, using
the Kruskal–Wallis test.

From Table 4, note that the chf group GLLE(2) = 0.15(0.12–0.20) is characterized by
higher values (p-value < 0.05, ANOVA F-test) than hs GLLE(2) = 0.11(0.10–0.13). The af
group GLLE(2) = 0.08(0.07–0.10) has lower values (p-value < 0.05, ANOVA F-test) compared
to the hs group GLLE(2). These results clearly demonstrate that for the Euclidean norm, the
chf heart rate control system is more sensitive to the initial conditions, whereas the af heart
rate control system is less sensitive to the initial conditions compared to the hs heart rate
control system. Nevertheless, Figure 3b demonstrates that when increasing the p-norm,
these differences degrade, which indicates the important role of the SF component in the
differentiation of the R-R interval time series.



Entropy 2021, 23, 112 10 of 16

Table 4 shows that pathology can be characterized by different spectral widths. Us-
ing the ANOVA method, we conclude that the spectrum width of the congestive heart
failure group ∆Wch f = 2.61(1.70–4.23) is significantly greater (p-value < 0.05, ANOVA F-
test) than each ofthe healthy group ∆Whs = 1.28(0.78–1.95) and atrial fibrillation group
∆Wa f = 0.42(0.26–0.79). The spectrum width ∆Wa f for the atrial fibrillation group has
significantly lower values (p-value < 0.05, ANOVA) than the healthy group ∆Whs.Therefore,
the R-R interval time series of the chf group is characterized by the largest difference
between the SF and LF components, and the af group is characterized by the smallest
difference. This result leads us to make an assumption about the different level of the
random component in the groups of the studied signals. Therefore, we can infer from
these findings that the random component dominates in the af R-R interval time series
compared to the hs R-R interval time series. On the contrary, the contribution of the random
component in the congestive heart failure R-R interval time series is smaller compared to
in the hs R-R interval time series intervals.

It is widely accepted that a good indicator of the level of the random component of a
chaotic signal is the correlation dimension D2. Argyris et al. [33] demonstrated that the
correlation dimension increases when increasing the level of the random component of the
chaotic signal. We now use this property of the correlation dimension to test our assumption
about the level of the random component in healthy, congestive heart failure, and atrial
fibrillation groups. Table 5 shows the results achieved for the correlation dimension D2.

Table 5. Median of the correlation dimension D2 (Me—median, Q1—first quartile, and Q3—
third quartile).

Group Number D2,
Me (Q1–Q3)

hs 54 0.57(0.50–0.66) a

chf 44 0.55(0.17–0.85) b

af 25 0.93(0.69–1.00) a ,b

a Significant difference betweenthe D2 of healthy (hs) and atrial fibrillation (af) groups, p-value < 0.01, using
the Kruskal–Wallis test, and b significant difference betweenthe D2 of congestive heart failure (chf) and atrial
fibrillation (af) groups, p-value < 0.01, using the Kruskal–Wallis test.

Table 5 demonstrates that the correlation dimension of the af group D2= 0.93(0.69–1.00) is
significantly greater (p-value < 0.05, ANOVA F-test) than each of the hs group
D2 = 0.57(0.50−0.66) and chf group D2 = 0.55(0.17−0.85). This confirms our assump-
tion that the variance contribution of the random component is larger in the af group
R-R interval time series compared to the hs group R-R interval time series. However, no
statistically significant difference (p-value < 0.05, ANOVA F-test) was found between the
correlation dimension of the hs and chf groups.

By setting up a logistic regression model [34], we explored the capacity of multi-
chaos analysis to discriminate between healthy group R-R interval time series and the
pathological group R-R interval time series. Predictors of the logistic regression model
were the attributes (GLLE_p) GLLE_0.1, GLLE_0.5, GLLE_1, GLLE_2, GLLE_3, GLLE_4,
and GLLE_5. Considering that the input parameters of the model have a small range of
changes, we multiplied them by a hundred. Therefore, the odds ratio can be estimated
more efficiently. The data were separated into the training set (85 cases) and the testing
set (38 cases). The output variable is denoted as Y = 0 if the subject belongs to the healthy
group and, accordingly, Y = 1 if the subject belongs to the pathology group. To choose
the minimum set of factor attributes, a stepwise-variable selection (SVS) method was
applied [12,34]. Therefore, five attributes, introduced in Table 6, were selected. The
estimated parameters of the logistic regression model (model-1) for the log odds that a
signal belongs to the pathology group is given by

ln
(

P
1−P

)
= −0.45 + 1.02 × GLLE_0.1 − 5.18 × GLLE_0.5 − 7.09× GLLE_1 + 105.39 × GLLE_4 − 95.23 × GLLE_5, (14)
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where P is the probability of belonging to the pathology group.

Table 6. The coefficients of the logistic regression five-factor model-1.

Value Regression Coefficients
b ±m p-Value Odds Ratio

(95% CI)

GLLE_0.1 1.02 ± 0.28 <0.01 2.78 (1.59–4.84)
GLLE_0.5 −5.18 ± 2.11 <0.01 5.62 × 10−3(8.88 × 10−5 − 3.55 × 10−1)
GLLE_1 −7.09 ± 3.53 <0.01 8.29 × 10−4(8.11 × 10−7 − 8.47 × 10−1)
GLLE_4 105.39 ± 29.21 <0.01 5.92 × 1045(7.96 × 1020 − 4.41 × 1070)
GLLE_5 −95.23 ± 26.57 <0.01 4.37 × 10−42(1.0 × 10−64 − 1.84 × 10−19)
Constant −0.45 ± 1.89 <0.01

Table 6 indicates that an increase of one unit in the GLLE_0.1 (from baseline) indicates
that the odds of being in the pathology group is 2.78 times the odds at the baseline, keeping
the other factors constant. Similarly, increasing GLLE_4 by 1.0 unit leads to an increased
odds of belonging to the pathology group. On the contrary, keeping all attributes constant,
increasing GLLE_0.5, GLLE_1, or GLLE_5 by 1.0 unit leads to an increased odds of being
in the healthy group.

Since we had unbalanced samples, we used the Precision-Recall Curve (PRC) to
evaluate the performance of the classifier [35]. Figure 4 demonstrates the PRC curve of
model-1 built on the training set. The area under the PRC curve (AUC) equals 0.93 (95%
CI 0.88–0.97), suggesting a good performance. Analyzing the PRC curve allowed us to
determine the associated criterion, defining the threshold of model-1, which is greater
than 0.46.
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Taking into account the values of the associated criterion and Equation (14), classifica-
tion results of model-1 for the training and testing sets were determined. The classification
results of model-1 are given in Table 7.

Table 7. Classification results of model-1.

Classification Results

Set
Training Testing

Classification
Healthy Group Pathological Group Healthy Group Pathological Group

Correct 31 39 11 20
Incorrect 8 7 4 3

Total cases 39 36 15 23
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To assess the performance of the classifier, the Matthews correlation coefficient
(MCC) [35] was calculated, based on the training set, to be MCC= 0.65 and based on
the testing set, to be MCC = 0.57. These results indicate the good quality of the model in
terms of both the training set and testing set. Furthermore, evaluating the quality of the
model, its PRC curve was constructed based on the testing set. This PRC curve is shown in
Figure 4, where AUC equals 0.95 (95% CI 0.88–0.98), demonstrating a good performance.
Since that there is no statistically significant difference (p-value > 0.05) between the AUC
of the PRC curve built on the testing set and the AUC of PRC curve built on the training
set, it can be assumed that this model has the potential to be used for diagnostic purposes.
Nevertheless, for use in diagnostics, this model requires additional research based on a
larger sample.

Given the difference in multi-chaotic behavior in the RR intervals time series of the
chf and af, the next step is to identify the values that differentiate between the congestive
heart failure and the atrial fibrillation groups. Unfortunately, due to the small sample size,
we did not split the sample into a training and testing set. Therefore, the results of this
model are preliminary and require further additional research with a larger sample size.

By constructing a logistic regression model as a classifier based on the attributes
(GLLE_p) GLLE_0.1, GLLE_0.5, GLLE_1, GLLE_2, GLLE_3, GLLE_4, and GLLE_5, we
defined statistically significant values and assessed their impact. To avoid uncertainty in
the form of infinity, we multiplied the attributes by a hundred. The output variable is
denoted by Y = 0 for the congestive heart failure group and, accordingly, Y = 1 for the atrial
fibrillation group. To choose the minimum set of factor attributes, the SVS method was
applied [12,34]. Consequently, three factor values were identified, which are introduced
in Table 8.The estimated parameters of the logistic regression model (model-2) for the log
odds that a signal belongs to the atrial fibrillation group are given by

ln
(

P
1− P

)
= 3.34 − 4.851 × GLLE_1 + 75.71 × GLLE_4 − 70.84 × GLLE_5. (15)

Table 8. The coefficients of the logistic regression three-factor model-2.

Value Regression Coefficients
b ±m p-Value Odds Ratio

(95% CI)

GLLE_1 −4.851 ± 1.95 <0.01 7.82 × 10−3(1.73 × 10−4 − 3.55 × 10−1)
GLLE_4 75.71 ± 31.29 <0.01 7.62 × 1032(1.77 × 106 − 3.28 × 1059)
GLLE_5 −70.84 ± 29.37 <0.01 1.71 × 10−31(1.72 × 10−56 − 1.69 × 10−6)
Constant 3.34 ± 3.01 <0.01

Table 8 indicates that an increase of one unit in the GLLE_4 (from the baseline)
indicates that the odds of being in the atrial fibrillation group is 7.62 × 1032 times the
odds at the baseline, keeping the other factors constant. On the contrary, when keeping all
attributes constant, increasing GLLE_1 or GLLE_5 by 1.0 unit leads to the odds of being in
the congestive heart failure group being increased.

Figure 5 shows the PRC curve of model-2. The area under the PRC curve equals 0.87
(95% CI 0.74–0.95), demonstrating good performance.

The associated criterion, defining the threshold of model-2, is greater than 0.48. In
view of the values of the associated criterion and Equation (15), the classification results of
model-2 were defined. The classification results of model-2 are given in Table 9.

Table 9. Classification results of model-2.

Classification Results
Set

Congestive Heart Failure Group Atrial Fibrillation Group

Correct 40 19
Incorrect 4 6

Total cases 44 25
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The Matthews correlation coefficient equals 0.68. These results indicate the good
performance of model-2. Therefore, the preliminary model demonstrated the good potential
of the proposed approach to discriminate between the congestive heart failure and atrial
fibrillation patients. However, this study should be continued with a larger sample.

4. Discussion

We developed a new method for analyzing and evaluating the behavior of nonlinear
time series. This method is based on the assumption that some biological time series have a
complex chaotic structure, which is formed of a combination of simpler chaotic structures.
These types of time series cannot be adequately characterized by a single LLE value, but
have to be characterized by a spectrum of LLE values. To determine this spectrum of LLE
values, p-norms ‖‖p were used. The application of p-norms ‖‖p allows the contribution of
the SF component or LF component to the estimate of the distance dp

j (i) between the jth pair
of nearest neighbors in the m-dimensional space to be strengthened. Obviously, a larger
difference between SF and LF components indicates a more complex chaotic structure of
the studied signal. The difference between SF and LF components defines the spectrum
width W.

As a result of using this approach for analyzing the Logistic map, Henon map, and
Lorenz attractor, we note that these attractors produce the estimation of the spectrum width
of ∆W > 0 and, accordingly, are characterized by multi-chaotic behavior. However, the
Rossler attractor, having ∆W ≈ 0, is characterized by mono-chaotic behavior. Therefore,
the time series can be characterized by mono-chaotic or multi-chaotic behavior.

Since the biomedical signal is a product of an interaction of a large number of different
biological systems, this leads to the presence of a random component in the biomedical
signal. Therefore, we conducted studies on the influence of the random component on
the multi-chaotic behavior of the investigated chaotic systems. As a result, we found that
as the variance contribution of the random component increases, the spectrum width W
decreases.

This approach has been applied to discover possible differences among R-R interval
time series of healthy subjects (hs), subjects diagnosed with congestive heart failure (chf),
and subjects diagnosed with atrial fibrillation (af).As a result of the study, it was found that
for the Euclidean norm, the heart rate control system in chf subjects is more sensitive to
the initial conditions than in hs subjects. Moreover, for the Euclidean norm, the heart rate
control system in af subjects is less sensitive to the initial conditions than in hs subjects. We
believe that these distinctions are related to the difference in the chaos control strategy [7].

Studies have demonstrated that estimation of the spectrum width ∆W can be used
as one of the parameters to evaluate the level of the random component of the chaotic
biomedical signal. As a result of evaluating the spectrum width ∆W and the correlation
dimension D2, it was found that the contribution of the random component in the atrial
fibrillation group R-R interval time series is larger compared to in the hs R-R interval time
series and chf R-R interval time series.
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By applying multi-chaos theory, we built a five-factor logistic model that is able to
distinguish the hs signal from the pathological groups, i.e., the chf and af groups. This
model has been demonstrated to have a good diagnostic performance. However, in order
to use this model for diagnostic purposes, it should be tested at the appropriate medical
center. This approach will allow the sample size to be significantly increased and improve
the quality of the model. Since multi-chaotic analysis revealed the difference in multi-
chaotic behavior within the pathological group, this allowed us to build a preliminary
three-factor logistic model that is able to distinguish the chf from the af signal. This model
has demonstrated a good performance, which makes this approach promising for building
an expert system to discriminate between congestive heart failure and atrial fibrillation
signals. However, to study the diagnostic characteristics of this approach, additional
research with a larger sample is required.

In our study, multi-chaotic analysis exhibited a good performance, allowing the
underlying dynamics of the system that generates the heart beat to be examined. This
approach has a good potential for being used in the construction of expert systems for the
diagnosis of cardiac pathologies.
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Appendix A

For estimating embedding dimension m, we applied the method in [24].This method
is based on the idea that increasing the dimension of the phase space reconstruction leads
to a decreasing number of trajectory self-crossings and false neighbor decreases. In this
method, a certain estimated E1 value is calculated, which reaches a plateau if the required
embedding dimension is achieved (for more details, see [24]). Figure A1 shows the plots of
E1 (m) for different p-norm ‖‖p for the R-R interval time series (Normal Sinus Rhythm RR
Interval Database—nsr002).
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