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Abstract Nanobodies (nAbs) are small, minimal antibodies that have distinct attributes that

make them uniquely suited for certain biomedical research, diagnostic and therapeutic applications.

Prominent uses include as intracellular antibodies or intrabodies to bind and deliver cargo to

specific proteins and/or subcellular sites within cells, and as nanoscale immunolabels for enhanced

tissue penetration and improved spatial imaging resolution. Here, we report the generation and

validation of nAbs against a set of proteins prominently expressed at specific subcellular sites in

mammalian brain neurons. We describe a novel hierarchical validation pipeline to systematically

evaluate nAbs isolated by phage display for effective and specific use as intrabodies and

immunolabels in mammalian cells including brain neurons. These nAbs form part of a robust

toolbox for targeting proteins with distinct and highly spatially-restricted subcellular localization in

mammalian brain neurons, allowing for visualization and/or modulation of structure and function at

those sites.

DOI: https://doi.org/10.7554/eLife.48750.001

Introduction
Nanobodies (nAbs) are the recombinant minimal antigen binding fragments derived from the atypi-

cal monomeric immunoglobulins present in camelid mammals and cartilaginous fish (Hamers-

Casterman et al., 1993; Muyldermans, 2013; Desmyter et al., 2015; Beghein and Gettemans,

2017; Könning et al., 2017; De Meyer et al., 2014). They have broad utility as biomedical research

reagents, diagnostics and therapeutics. nAbs are ideally suited for use as intracellular antibodies

(intrabodies) in living cells (Lafaye et al., 2009; Beghein et al., 2016; Staus et al., 2014;

Bertier et al., 2017; Van Audenhove and Gettemans, 2016; Schumacher et al., 2018), as they

fold efficiently and remain stable under a wide range of conditions, including the reducing cyto-

plasmic environment (Gahrtz and Conrad, 2009; Böldicke et al., 2005; Goenaga et al., 2007;

Lynch et al., 2008). In addition to their potential utility as intrabodies, nAbs also have advantages as

immunolabeling reagents, as their small size ( »1/10 of conventional IgG antibodies) improves pene-

tration of the cell or tissue samples (Perruchini et al., 2009; Fang et al., 2018). Importantly, nAbs

improve imaging resolution by reducing the distance between the immunolabeling signal and the
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target protein from the 10–20 nm obtained with conventional primary and secondary antibodies

down to 2–4 nm (Beghein and Gettemans, 2017; Ries et al., 2012; Szymborska et al., 2013;

Pleiner et al., 2015). Their ability to precisely target specific proteins in living cells, and/or label

them in post vivo samples with a high degree of efficacy and spatial resolution make nAbs attractive

for numerous biomedical research applications, including in neuroscience research (Südhof, 2018).

However, their uses in neuroscience have largely been limited to samples exogenously expressing

GFP-tagged proteins [e.g., (Fang et al., 2018; Ekstrand et al., 2014; Tang et al., 2013;

Chamma et al., 2016; Joensuu et al., 2016; Modi et al., 2018)], or in studies targeting proteins

expressed in non-neuronal brain cells (Fang et al., 2018), although a set of recent studies have

employed nAbs against neuronal targets [e.g., (Schoonaert et al., 2017; Schenck et al., 2017;

Scholler et al., 2017; Maidorn et al., 2019).

Mammalian brain neurons are distinguished from other cells by extreme molecular and structural

complexity that is intimately linked to the array of intra- and inter-cellular signaling events that

underlie brain function. Integral to the functional complexity of neurons is the diversity of proteins

they express (estimated to encompass the products of two-thirds of the genome), a complexity

markedly enhanced by compartmentalization of specific proteins at highly restricted sites within the

neuron’s complex structure. This includes not only the basic polarized compartments (dendrite, cell

body, axon), but also distinct subcompartments within these domains (e.g., dendritic spines, the

axon initial segment [AIS], nodes of Ranvier, presynaptic terminals, etc.). Each of these sites is

responsible for distinct events in neuronal signaling and function, creating opportunities for specific

delivery of reporters and actuators to these sites with high subcellular resolution to report on or

influence, respectively, specific aspects of neuronal function.

Here, we describe the development and characterization of recombinant nAbs with specificity for

a set of neuronal proteins with restricted expression in subcellular compartments associated with dis-

crete signaling events crucial to mammalian brain neuron function and plasticity. These targets are

the postsynaptic scaffolding proteins Homer1 (Brandstätter et al., 2004), IRSp53 (Soltau et al.,

2002), and SAPAP2 (Takeuchi et al., 1997) that are present at partially overlapping sets of excit-

atory synapses, Gephyrin (Kneussel et al., 2001) found postsynaptically at most inhibitory synapses,

and the Kv2 channel auxiliary subunit AMIGO-1 (36) found in large clusters at endoplasmic reticu-

lum-plasma membrane (ER-PM) junctions present on the soma, proximal dendrites and AIS.

Results

Generation of nAbs against brain target proteins and their isolation by
panning phage display libraries prepared from an immunized llama
Neuronal proteins with a restricted localization in specific subcellular compartments were targeted

for nAb development (Figure 1). We isolated lymphocytes from a single llama immunized with

recombinant fragments of these five target proteins and generated nAb phage display cDNA librar-

ies that were subsequently used to isolate target-specific nAbs via phage binding to the individual

target proteins. After verifying target specificity by ELISA, we sequenced and evaluated unique

ELISA-positive nAbs for use as intrabodies in heterologously expressing mammalian cells and in cul-

tured hippocampal neurons expressing endogenous target proteins. We also evaluated unique

ELISA-positive nAbs for use as immunolabels for immunofluorescence immunocytochemistry (IF-ICC)

on heterologous cells, immunohistochemistry (IHC) on rat brain sections, and immunoblots (IB) on

crude rat brain membranes. This stepwise screening approach (Figure 1) led to the identification of

novel nAbs for use as intrabodies and as immunolabels (Table 1).

The immunogens used were recombinant fragments of intracellular domains from a strategically

chosen set of five neuronal protein targets involved in synaptic signaling and neuronal excitability

(Homer1, IRSp53, SAPAP2, Gephyrin and AMIGO-1). Recombinant protein fragments were pro-

duced and purified from E. coli and combined in a cocktail to immunize a single llama (Figure 1).

Antiserum was collected at intervals and assayed for immunoreactivity against the separate recombi-

nant protein fragments by ELISA. We also purified IgG fractions corresponding to the conventional

heavy and light chain subclass versus the heavy chain-only subclasses and assayed them for immuno-

reactivity against the individual target proteins by ELISA. Once a sufficient titer was achieved, we

obtained whole blood and isolated the leukocytes to use as source of total RNA that served as a
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template for RT-PCR to specifically amplify cDNAs corresponding to the IgG heavy-chain variable

fragments. These cDNAs were ligated into the pComb3XSS phagemid which allows for expression

of the cDNA-encoded nAbs as PIII protein fusions on the pili of phage (Andris-Widhopf et al.,

2000).

Figure 1. Schematic of nAb generation and validation pipeline. (A) Schematic of nAb generation pipeline. See text for details. (B) Schematic of pipeline

for validating ELISA-positive nAbs for utility as intrabodies and immunolabels.

DOI: https://doi.org/10.7554/eLife.48750.002

The following figure supplements are available for figure 1:

Figure supplement 1. Anti-Homer1 nAbs that function as intrabodies colocalize with exogenously expressed Homer1 when coexpressed in

heterologous COS-1 cells.

DOI: https://doi.org/10.7554/eLife.48750.003

Figure supplement 2. nAbs that function as intrabodies against excitatory synaptic target proteins colocalize with the endogenously expressed target

proteins in cultured hippocampal neurons.

DOI: https://doi.org/10.7554/eLife.48750.004

Figure supplement 3. nAbs that function as intrabodies against inhibitory synaptic and ER-PM junction target proteins colocalize with endogenously

expressed target proteins in cultured hippocampal neurons.

DOI: https://doi.org/10.7554/eLife.48750.005

Figure supplement 4. nAbs that function as intrabodies against excitatory synaptic target proteins colocalize with the excitatory synaptic marker PSD-

95 in cultured hippocampal neurons.

DOI: https://doi.org/10.7554/eLife.48750.006

Figure supplement 5. nAbs that function as intrabodies against inhibitory synaptic and ER-PM junction target proteins localize to their respective

subcellular domains in cultured hippocampal neurons.

DOI: https://doi.org/10.7554/eLife.48750.007

Figure supplement 6. Anti-Homer1 nAbs exhibit labeling of exogenously expressed Homer1 in heterologous COS-1 cells.

DOI: https://doi.org/10.7554/eLife.48750.008
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We subjected this phage display library (complexity » 8 � 107) to panning against the individual

purified recombinant target proteins immobilized in wells of a microtiter plate. Bound and eluted

phage were assayed by phage ELISA against the individual target proteins, which demonstrated sub-

stantial enrichment of immunoreactivity after one round of panning (not shown). We also used ‘sand-

wich’ panning, in which wells of a microtiter plate were coated with pooled IgG fractions purified

from the immunized llama to capture and display the individual recombinant target protein frag-

ments. The bound and eluted phage from sandwich panning were subjected to two more rounds of

sandwich panning. Table 1 contains a summary of the outcome of the phage display.

Isolated phage were used to infect fresh cultures of E. coli bacteria ER2738 which were plated

onto bacterial culture plates, from which single colonies were isolated and grown in liquid culture to

express and secrete soluble nAbs. After centrifugation to remove bacteria, we validated the resul-

tant nAb-containing bacteria culture supernatants (BC supes) by conventional ELISA against wells of

microtiter plates coated with the respective purified recombinant target protein fragments. We next

isolated phagemid DNA from the ELISA-positive bacterial colonies for sequencing. A summary of

the results from these efforts is shown in Table 1. Plasmids with unique nAb sequences were

archived as glycerol stocks and used as a source of DNA for cloning into mammalian expression plas-

mids for expression as intrabodies in mammalian cells or used as a source of bacterially-secreted

nAbs for use as immunolabels.

A subset of ELISA-positive nAbs function as intrabodies that recognize
exogenously expressed target proteins in mammalian cells
We determined which unique nAbs could function as intrabodies when expressed in the reducing

environment of the mammalian cell cytoplasm. cDNA inserts encoding each of the 113 unique

ELISA-positive nAbs listed in Table 1 were transferred from the pComb3XSS phagemid into the

pEGFP-N1 or pEYFP-N1 mammalian expression plasmids by Gibson assembly (Gibson et al., 2009).

This also involved the removal of the N-terminal bacterial leader sequence, addition of a start codon

and removal of the sequences encoding the C-terminal PIII protein. The linker region containing

6XHis and HA tags between the nAb and C-terminal GFP was retained. After sequence verification,

each of the 113 nAb mammalian expression plasmids was tested for nAb expression and intrabody

function in mammalian cells by transient transfection into COS-1 cells. This assay entailed expression

of each nAb and target protein either alone or together in separate wells of a 96 well microtiter

plate. After two days of expression, cells were fixed, permeabilized, and subjected to IF-ICC per-

formed with validated monoclonal antibodies (mAbs) against each target protein and analyses of the

expression and subcellular localization of the nAb and target protein. Of note, COS-1 cells do not

express detectable levels of any of these target proteins.

We found that the vast majority of COS-1 cells expressing EGFP- or EYFP-tagged nAb alone had

substantial fluorescence signal in the nucleus (Figure 1—figure supplement 1). Substantial nuclear

localization was also observed for these fluorescent proteins alone, as expected from prior studies

showing nuclear localization of GFP [e.g., (Seibel et al., 2007)]. In contrast, when the target proteins,

such as Homer1 (Figure 1—figure supplement 1) were exogenously expressed in COS-1 cells, they

were predominantly found in the cytoplasm, with the exception of the type I transmembrane protein

Table 1. Summary of nanobody generation and validation.

Primary selection and validation
Validation as
intrabodies Validation as immunolabels

Target
Phage clones
selected

ELISA
positives

Unique ELISA
positives

COS-1 intrabody
positives

Neuron intrabody
positives

COS-1 IF-ICC
positives

Brain IHC
positives

Brain IB
positives

Homer1 180 135 39 32 12 33 25 13

IRSp53 160 33 17 8 3 0 0 0

SAPAP2 172 32 15 7 2 0 4 0

Gephyrin 182 78 24 9 5 0 1 2

AMIGO-
1

173 38 18 13 5 0 0 0

DOI: https://doi.org/10.7554/eLife.48750.009
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AMIGO-1 (Kuja-Panula et al., 2003), which primarily accumulates in the ER membrane

(Bishop et al., 2018). We next evaluated whether target protein coexpression led to a change in

nAb subcellular localization, which we interpreted as being due to nAb binding to the cytoplasmic-

or ER-localized target protein. We visually determined whether coexpression of the predominantly

nuclear nAb with the cytoplasmic/ER target protein would alter the nuclear localization of the nAb

such that it colocalized with the target protein, as an indication that the nAb functioned as a target-

binding intrabody. Figure 1—figure supplement 1 shows a representative example of an anti-

Homer1 nAb that was scored as a positive in this assay. While there was some variability in the

extent of the target-protein-dependent impact on nAb localization between different cells in the

population, and between different nAbs, likely reflecting cell-specific differences in the relative

expression levels of nAb and target protein, the target protein-dependent altered distribution of

nAbs provided a facile assay that allowed us to test every ELISA-positive nAb for whether they func-

tioned as intrabodies in mammalian cells. A summary of the results of these intrabody screening

assays on heterologous COS-1 cells is shown in Table 1.

A subset of the nAbs that function as intrabodies in heterologous cells
recognize endogenously expressed target proteins in cultured rat
and mouse hippocampal neurons
These experiments in heterologous cells yielded a subset of nAbs that exhibited altered localization

in the presence of target proteins when expressed in mammalian cells, indicating that they func-

tioned as intrabodies. We next tested whether these nAbs could recognize endogenous target pro-

teins when expressed in cultured rat hippocampal neurons (CHNs). Each of the GFP-or YFP-tagged

nAbs that were scored as positive as intrabodies in heterologous cells was subsequently transfected

into CHNs at 7–10 DIV. At 48 hr post-transfection, the neurons were fixed and subjected to IF-ICC

with target-specific mAbs, or with markers for specific subcellular compartments. We evaluated

colocalization between the GFP- or YFP-tagged nAbs and target protein immunolabeling, relative to

CHNs expressing GFP or YFP alone. For each target, we identified nAbs that colocalized with the

endogenously expressed target protein (results summarized in Table 1). Examples of CHNs express-

ing nAbs for each target with the corresponding target-specific immunolabeling are shown in Fig-

ure 1—figure supplement 2 for the excitatory synaptic proteins Homer1, IRSp53 and SAPAP2, and

Figure 1—figure supplement 3 for Gephyrin and AMIGO-1. Analysis by Pearson’s Correlation Coef-

ficient (PCC) demonstrated that the nAb-GFP intrabodies were colocalized with the corresponding

endogenous target protein (Figure 1—figure supplements 2 and 3). Importantly, the expression

and subcellular localization of the endogenous target proteins were not altered by nAb expression,

as quantified by a lack of significant change in target protein puncta size (Figure 1—figure supple-

ments 2 and 3). For nAbs targeting the excitatory postsynaptic target proteins Homer1, IRSp53 and

SAPAP proteins (Figure 1—figure supplement 2), the punctate pattern of nAb localization in den-

drites was closely associated with immunolabeling for PSD95, a marker of the excitatory postsynap-

tic compartment (Figure 1—figure supplement 4), supporting that the nAb puncta were at

excitatory synapses. Moreover, expression of the nAbs against target proteins at excitatory synapses

did not impact the sizes of PSD-95 puncta (Figure 1—figure supplement 4). Similarly, anti-Gephyrin

nAbs had a subcellular localization that not only colocalized with endogenous Gephyrin (Figure 1—

figure supplement 3) but were also frequently found opposed to immunolabeling for the synaptic

vesicle protein Synapsin (Figure 1—figure supplement 5), supporting the observation that these

nAbs were localized at synapses. The sizes of the puncta of Gephyrin and Synapsin immunolabeling

were not impacted by expression of anti-Gephyrin nAbs (Figure 1—figure supplements 3 and 5). In

the case of AMIGO-1, we identified nAbs that colocalized with endogenous AMIGO-1 (Figure 1—

figure supplement 3), which is present in large clusters at ER-PM junctions on the soma and proxi-

mal dendrites of CHNs (Bishop et al., 2018). Moreover, the AMIGO-1 nAb colocalized with labeling

for Kv2.1, a partner subunit of AMIGO-1 in Kv2 channel complexes found at these sites (Figure 1—

figure supplement 5). The sizes of AMIGO-1 and Kv2.1 puncta were not impacted by expression of

anti-AMIGO-1 nAbs (Figure 1—figure supplements 3 and 5). These results indicate that these nAbs

act as intrabodies that recognize their endogenous target proteins in CHNs, and the expression of

the nAbs has little discernible impact on the expression and subcellular localization of their endoge-

nous targets.

Dong et al. eLife 2019;8:e48750. DOI: https://doi.org/10.7554/eLife.48750 5 of 25

Tools and resources Neuroscience

https://doi.org/10.7554/eLife.48750


A subset of the anti-Homer1 nAbs were expressed in mouse CHNs over a longer time period

from recombinant lentivirus under the control of the neuron-enriched Synapsin promoter

(Figure 2A). At 10 days post-infection CHNs were subjected to IF-ICC with an anti-Homer1 mAb

and an antibody against the dendritic marker MAP2. As shown in Figure 2B, in spite of such long-

term expression of the cytoplasmically synthesized nAbs, nAbs such as HC20 exhibited little cyto-

plasmic accumulation of the nAb-YFP fluorescence (green) within the cell body (asterisk in the

merged panel in Figure 2B). However, there was robust nAb-YFP fluorescence throughout the

MAP2-positive (blue) dendrites of the expressing neuron, where it was present in puncta that pre-

cisely overlapped with punctate anti-Homer1 immunolabeling (red) (Figure 2B). An analysis of the

localization of a number of anti-Homer1 nAb-YFP fusions after such long-term expression revealed

that a subset of the nAb-YFP fusions (green), such as HC20 and HC87, exhibited precise colocaliza-

tion with Homer1 immunolabeling (red), with little or no detectable signal in dendritic shafts, consis-

tent with their binding to and accumulation at Homer1 clustered in dendritic spines (Figure 2C,D).

However, other nAbs yielded more diffuse localization throughout the dendritic shafts, similar to

that obtained with YFP alone, although most of these nAbs also exhibited a significantly higher

degree of colocalization with Homer1 than YFP alone (Figure 2C,D). In spite of these differences in

binding, in no case did long-term expression of the anti-Homer1 nAbs lead to significant changes in

the overall sizes or density of Homer1 puncta (Figure 2D), showing that the long-term expression of

these nAbs and their binding to synaptic Homer1 did not detectably impact Homer1 expression and

localization.

Compared to similarly sized mobile transport vesicles, synaptic puncta are relatively stable struc-

tures. We next determined whether the discrete target protein-containing puncta labeled by GFP-

tagged nAbs expressed as intrabodies in CHNs label stable structures or target protein containing

transport vesicles (or other mobile structures). We performed short term time-lapse total internal

reflection fluorescence (TIRF) imaging of live nAb-expressing CHNs. Over the course of one-minute

recordings collected at 1 Hz, we observed that the nAb-GFP puncta (which we observed colocalized

with the target proteins in the experiments mentioned in the previous section) were marking stable

structures present in the TIRF field, such that overlaid time-lapse images of nAb-GFP localization

yielded tightly colocalized structures (Figure 3). Similar to what we observed in fixed neurons (Fig-

ure 2; Figure 1—figure supplements 2 and 3), in live neurons GFP expression was diffuse and did

not form punctate structures (Figure 3). These live cell imaging experiments are consistent with the

immunocytochemistry date above that nAbs expressed in neurons accumulate at subcellular sites of

stable target protein clustering (synapses, ER-PM junctions) and provide further evidence that these

nAbs act as intrabodies to stably bind to their targets in living CHNs.

A distinct subset of nAbs function as immunolabels in heterologous
cells and brain sections
Because of their relatively small size ( »15 kD, »2–4 nm in length), nAbs are potentially advanta-

geous for immunolabeling due to enhanced sample penetration and a reduced distance between

the labeling signal and target compared to conventional antibodies. However, a systematic evalua-

tion of the utility of nAbs for immunolabeling endogenous target proteins in brain neurons has not

been reported. Here, we took an unbiased approach by testing all of the ELISA-positive nAbs for

immunolabeling of conventional formaldehyde fixed transfected heterologous cells and brain sec-

tions. We first transformed E. coli with each of the ELISA-positive nAb phagemids, and after induc-

tion of nAb expression and overnight culture, collected the bacterial cell culture media as bacterial

culture supernatants (BC supes) containing secreted nAbs. We first tested these nAb-containing BC

supes in IF-ICC against fixed COS-1 cells transiently transfected to heterologously express their cog-

nate brain target protein in a subset of cells, an assay we routinely use for screening mAbs (Bekele-

Arcuri et al., 1996; Gong et al., 2016). This assay allows for a facile determination of which candi-

date antibodies detect the target protein after fixation by providing a mosaic of numerous target-

expressing and non-expressing cells in the same field. Here, we double-immunolabeled cells with

candidate nAb BC supes and previously validated mouse mAbs against the same target protein to

distinguish expressing versus non-expressing cells. We found that a substantial subset (33/39) of the

ELISA-positive anti-Homer1 nAb BC supes tested exhibited robust immunolabeling of fixed and per-

meabilized COS-1 cells expressing Homer1L. Examples of positive immunolabeling with anti-Homer1

nAb BC supes are shown in Figure 1—figure supplement 6, which shows robust nAb labeling

Dong et al. eLife 2019;8:e48750. DOI: https://doi.org/10.7554/eLife.48750 6 of 25

Tools and resources Neuroscience

https://doi.org/10.7554/eLife.48750


(green) that colocalizes with Homer1 mAb labeling (red). In contrast, none of the unique ELISA-posi-

tive nAb BC supes against the other targets yielded detectable immunoreactivity in this assay

(Table 1).

Figure 2. Anti-Homer nAbs expressed as intrabodies from recombinant lentivirus target to dendritic spines in cultured hippocampal neurons. (A)

Schematic of the lentivirus targeting construct. (B) Image shows a representative field of a CHN culture infected at 5 days in vitro (DIV) with recombinant

lentivirus encoding the anti-Homer1 HC20-YFP nAb fusion (green) and imaged at 14 DIV after immunolabeling for endogenous Homer1 (red) and the

dendritic marker MAP2 (blue). (C) Images show representative fields of dendrites of infected CHNs expressing different nAb-YFP fusions as indicated

(green) and immunolabeled for endogenous Homer1 (red). The scale bar in the top left Control panel is 5 mm and holds for all panels in C. (D) The top

graph shows Pearson’s Correlation Coefficient values between YFP or the different nAb-YFP fusions and anti-Homer1 immunolabeling. *p<0.01;

**p<0.001; ***p<0.0001 for values of different anti-Homer1 nAb-YFP fusions versus for YFP alone. ns = not significant versus YFP alone. Values were

analyzed by a one-way ANOVA followed by a Dunnett’s post hoc test. The middle graph shows a size analysis of anti-Homer1 Ab labeled synaptic

puncta in CHNs expressing YFP or the different anti-Homer1 nAb-YFP fusions. The bottom graph shows the density of anti-Homer1 Ab labeled synaptic

puncta in CHNs expressing YFP or the different anti-Homer1 nAb-YFP fusions. Values for the size and density of anti-Homer1 Ab labeled synaptic

puncta in CHNs expressing different anti-Homer1 nAb-YFP fusions are not significantly different than in CHNs expressing YFP alone. Bars on all graphs

are mean ± S.E.M.

DOI: https://doi.org/10.7554/eLife.48750.010
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We next determined whether the anti-Homer1 nAbs exhibiting positive immunolabeling of Hom-

er1L exogenously expressed in COS-1 cells would label endogenous Homer1 in brain sections. We

evaluated each of the BC supes for labeling in sections prepared from perfusion-fixed adult rat

brains. We found that a large proportion (25/33) of the BC supes tested yielded robust immunolab-

eling of brain sections, with the remainder exhibiting no detectable immunolabeling (Table 1). Each

Figure 3. nAbs that function as intrabodies localize to immobile structures in cultured rat hippocampal neurons.

TIRF images of live cultured rat hippocampal neurons transfected with GFP (shown in A), or nAb-GFP fusions

against Homer1 (clone HC12, shown in B), IRSp53 (clone IC65, shown in C), SAPAP2 (clone SS80, shown in D),

Gephyrin (clone GC52, shown in E), or AMIGO-1 (clone AC50, shown in F). For each, two images (of the same field

of view) taken one min apart are shown. To the right is an overlay of the initial image (in green) and the

subsequent image (in magenta). Overlap of green and magenta yields a white signal. Arrows point to punctate

structures. The column to the far right shows an analysis of the extent of overlap of pixels between the initial and

subsequent images. The scale bar in the top left panel is 5 mm and holds for all panels in figure.

DOI: https://doi.org/10.7554/eLife.48750.011
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of the 25 brain IHC-positive nAbs was also scored as positive in the heterologous COS-1 cell IF-ICC

assay. As shown in Figure 4A for nAb HS15, the positive anti-Homer1 nAbs exhibited substantial

immunolabeling of neuropil in caudate putamen (CPU), cerebral cortex (CTX) and hippocampus

(HC). In hippocampus, immunolabeling for the positive anti-Homer1 nAbs (note that the HS12 nAb

was scored as negative in this application) was especially prominent in subiculum and CA1 stratum

oriens and radiatum (Figure 4B). The pattern of immunolabeling obtained with the anti-Homer1

nAbs matched closely that obtained with validated anti-Homer1 mouse mAbs (Figure 4A,B). While

Homer1 labeling in the CA1 region of the hippocampus was consistently high for all nAbs that were

scored as exhibiting positive immunolabeling, different nAbs exhibited variation in signal intensity in

the CA2-CA3 regions and dentate gyrus (Figure 4). All nAbs that showed positive immunolabeling

in these areas also had strong signals in olfactory bulb, and relatively weak or undetectable labeling

in numerous other brain regions (thalamus, globus pallidus, brainstem, cerebellum), consistent with

Homer1 mRNA expression in brain (Clifton et al., 2017; Lein et al., 2007). Furthermore, the nAb

labeling pattern matched the localization of Homer1 protein from previous IHC studies

(Shiraishi et al., 2004; Shiraishi-Yamaguchi and Furuichi, 2007), and immunolabeling obtained with

anti-Homer1 mAbs recognizing both the long and short (L113/130) or only the long (L113/27) splice

variants (Figure 4C). These results support that these nAbs can specifically bind to Homer1 in brain

tissue.

Directly conjugated nAbs function as nanoscale immunolabeling
reagents for super-resolution fluorescence imaging of subcellular
structures
To fully utilize the small size of nAbs as nanoscale immunolabeling reagents requires direct conjuga-

tion to detection reagents such as fluorescent organic dyes or gold particles. We selected a subset

of nAbs that immunolabeled brain sections and made purified nAb preparations, taking advantage

of the 6XHis tag engineered into the nAb C-terminus. We first validated the purified nAbs by immu-

nolabeling brain sections (data not shown). We next directly conjugated a purified nAb (HS69) to the

fluorescent organic dye Alexa Fluor 647 (Alexa647). We performed super-resolution microscopy

employing a ground-state depletion system (Bretschneider et al., 2007; Fölling et al., 2008) to

determine whether the Alexa647-nAb provided enhanced spatial resolution. In these experiments

we compared CHNs immunolabeled with the directly conjugated HS69 nAb to that obtained with

unlabeled HS69 nAb detected with Alexa647-conjugated anti-HA mAb, and that from a conventional

anti-Homer1 mouse mAb (L113/27) detected with Alexa647-conjugated secondary antibody. As

shown in Figure 5, there was a significant difference in the size of immunolabeled puncta for each of

the labeling reagent combinations used. Directly conjugated Alexa647 nAb had the smallest overall

cluster size, followed by the unlabeled nAb detected with the Alexa647-conjugated anti-HA anti-

body, with the conventional mAb detected with an Alexa647-conjugated secondary antibody having

the largest cluster size (Figure 5). This provides an empirical demonstration that immunolabeling

with a directly labeled nAb allows for enhanced resolution of target detection in super-resolution

light microscopy.

Validation of nAbs as immunolabels for use in immunoblot analyses
To complete the validation of nAbs for standard immunolabeling applications, we evaluated the util-

ity of nAbs in our collection as immunolabels for detecting their respective target proteins in brain

samples on immunoblots. We evaluated all 113 ELISA-positive unique nAb BC supes for immunolab-

eling of ‘strip’ blots containing a crude fraction of rat brain membrane proteins (Bekele-

Arcuri et al., 1996; Gong et al., 2016; Rhodes et al., 1995). We found that a subset of the unique

ELISA-positive nAbs against Homer1 (13/39; Table 1) detected a single robust band at the charac-

teristic electrophoretic mobility of Homer1 ( » 47 kDa) (Saito et al., 2002). The band recognized by

the nAbs had characteristics corresponding to the band obtained with the validated anti-Homer1

mouse mAb L113/130 (Figure 6). A small subset of the unique ELISA-positive nAbs against Gephyrin

(2/24; Table 1) detected a single band at the characteristic electrophoretic mobility ( » 80 kDa) of

Gephyrin (Feng et al., 1998) that comigrated with the immunoreactive band for the validated anti-

Gephyrin mouse mAb L106/93 (Figure 6). No specific immunolabeling was detected with any of the
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Figure 4. nAbs against Homer1 label rat brain sections through fluorescent immunohistochemistry. (A) Representative images of a whole brain section

labeled with a nAb BC supe against Homer1 (HS15, in green), a mouse mAb against Homer1 (L113/27, in magenta) and a nuclear label (Hoechst, in

grayscale) showing brain regions with high Homer1 labeling. Merge is of antibody labeling only. CPu = caudate putamen; CTX = cerebral cortex;

HC = hippocampus. The scale bar in the HS15 panel is 1 mm and holds for all four panels. (B) Representative images of HC and CPu from brain

sections labeled with several anti-Homer1 nAb BC supes (green) and a mouse mAb against Homer1 (L113/27, in magenta). Note that nAb HS12 was

scored as negative in this application. The scale bar in the top L113/27 panel is 500 mm and holds for all panels in B and C. (C) Representative images

Figure 4 continued on next page
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Figure 4 continued

from brain sections labeled with mouse mAb L113/130 that recognizes both the long and short splice variants of Homer1 (green), and mouse mAb

L113/27 that recognizes only the long splice variants of Homer1 (magenta).

DOI: https://doi.org/10.7554/eLife.48750.012

Figure 5. Immunolabeling with nAbs enhances spatial resolution. (A) Representative TIRF images of CHNs. Neurons were immunolabeled with anti-

Homer1 nAb plus a mouse mAb against Homer1 (L113/27, in red), and an antibody against MAP2 (blue). Top row: Dendrites of a CHN immunolabeled

with nAb HS69 directly conjugated to Alexa647 (HS69-647, in green). Bottom row: Dendrites of a CHN immunolabeled with HA-tagged HS69 nAb plus

Alexa647 conjugated anti-HA mAb (HS69 + anti-HA-647, in green). Scale bar is 5 mm and holds for all panels in A. (B) Representative super-resolution

Homer1 localization maps of neurons immunolabeled for Homer1 with a mouse mAb plus Alexa647-conjugated secondary Ab (L113/27 + anti IgG2a-

647), with HS69 nAb plus Alexa647-conjugated anti-HA antibody (HS69 + anti-HA-647), or with directly Alexa647-conjugated HS69 nAb (HS69-647).

Scale bar is 200 nm and holds for all images in panel B. (C) Bar plot of the mean Homer1 cluster area ± SD for the three different labeling groups

described in B (n = 227, 403, and 593 clusters respectively from five different cells per group). p values were calculated using a one-way ANOVA and a

Bonferroni’s multiple comparisons test.

DOI: https://doi.org/10.7554/eLife.48750.013
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ELISA-positive nAb BC supes against the other targets (Table 1). These results demonstrate that a

subset of ELISA-positive nAbs can be used in IB-based applications.

Discussion
In this study, we report the development and validation of a novel toolbox of nAbs targeting a select

set of neuronal proteins with specific subcellular localizations at sites mediating crucial neuronal sig-

naling events. These include the postsynaptic scaffolding proteins Homer1 (Brandstätter et al.,

2004), IRSp53 (Soltau et al., 2002), and SAPAP2 (Takeuchi et al., 1997), present at partially over-

lapping sets of excitatory synapses, Gephyrin (Kneussel et al., 2001), found at most inhibitory syn-

apses, and the Kv2 channel auxiliary subunit AMIGO-1, found at ER-PM junctions on the soma,

proximal dendrites and AIS (Bishop et al., 2018). We validated these nAbs for use as intrabodies in

living neurons, and a subset as immunolabels in ICC, IHC, and IB applications. Since their initial dis-

covery, nAbs have been employed in diverse applications in biomedical research (Hamers-

Casterman et al., 1993; Muyldermans, 2013; Desmyter et al., 2015; Beghein and Gettemans,

2017; Könning et al., 2017; De Meyer et al., 2014) and have shown promise as human therapeu-

tics (Könning et al., 2017; Steeland et al., 2016). However, few nAbs have been developed against

neuronal proteins for use in neuroscience research applications. We report the feasibility of generat-

ing nAbs against a diverse set of neuronal target proteins with restricted subcellular distribution at

sites mediating crucial neuronal signaling events and their validation in brain neurons as intrabodies

and immunolabels, representing a valuable toolbox for neuroscience research applications that will

be made publicly available in plasmid form.

Our approach relied on isolating nAbs from a library derived from immunized llamas. Numerous

other studies demonstrated the feasibility of isolating nAbs from synthetic libraries, or libraries

derived from nonimmunized animals (de Kruif et al., 1995; Liang et al., 2007; Park et al., 2005).

Figure 6. Immunolabeling with nAbs on immunoblots against a crude rat brain membrane fraction. (A) Positive

immunoblot labeling with anti-Homer1 nAbs expressed from E. coli Top10F’ cells; (B) Positive

immunoblot labeling with anti-Gephyrin nAbs expressed from E. coli Top10F’ cells. Control lanes are the

respective positive control monoclonal antibodies, and negative controls the SB bacterial culture medium (‘media’)

and conditioned medium from culture of the non-secreting SP2/0 myeloma cell line ("SP2/0").

DOI: https://doi.org/10.7554/eLife.48750.014
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However, these approaches often yield low affinity binders that need to be matured by molecular

evolution in vitro (Gustchina et al., 2009; Gram et al., 1992; Jackson et al., 1995), which is a time

and labor-consuming process. Therefore, we elected to use immunizations to increase the represen-

tation of high affinity binders in the llama used as the source of our nAb cDNA library. One advan-

tage of using large animals, like llamas, is that each animal can be simultaneously immunized with

multiple targets (Pardon et al., 2014). This reduces the number of animals used and has the advan-

tage that obtaining leukocytes for cDNA library generation does not require that the animal is

sacrificed.

Our overall strategy generated at least one nAb that functioned as an intrabody in neurons for

each of the five targeted brain proteins. These nAbs have potential use in a variety of research appli-

cations in living neurons, including visualizing endogenous target protein localization and dynamics,

or modifying expression or function of the target protein. Moreover, they can be used to deliver

cargo to specific sites, for example genetically-encoded Ca2+ or membrane potential indicators to

report on signaling events occurring in the specific subcellular compartments in which the target

proteins are selectively localized. In addition, they could be used to target actuators to specific sites

to locally modify membrane potential, enzymatic activity, or specific cell signaling events. The nAb

intrabodies that we developed provide an array of specificities to target discrete neuronal compart-

ments (excitatory and inhibitory synapses, ER-PM junctions) that play crucial and distinct roles in neu-

ronal function, and importantly, do so without detectably altering the expression and localization of

their target proteins. That the nAbs we evaluated by live cell imaging label stable structures within

cultured rat hippocampal neurons suggests that the nAbs are primarily binding their targets at final

subcellular location, as opposed to binding to the proteins while in transit to these sites, or other-

wise targeting mobile structures. This may contribute to the lack of a detectable effect of nAb

expression on target protein expression and localization.

In addition to developing nAbs as intrabodies for use in live cells, we also validated a subset of

anti-Homer1 nAbs for use as immunolabels that recognize Homer1 in aldehyde-fixed samples of

brain neurons. These nAbs exhibit the enhanced resolution in super-resolution light microscopy pre-

dicted for such nanoscale labeling reagents (Beghein and Gettemans, 2017; Ries et al., 2012;

Szymborska et al., 2013; Pleiner et al., 2018). It is surprising to us that among the five proteins tar-

geted in the nAb development efforts described here, only the Homer1 nAb project yielded large

pools of nAbs positive for immunolabeling transfected heterologous cells and brain sections

(Table 1), given that we had previously performed mouse mAb projects against each of these tar-

gets, using the same recombinant proteins as immunogens and in screening, and for each obtained

a substantial number of mAbs positive for these applications (Supplementary file 1). We do not

know the basis of this distinction between the Homer1 nAb project relative to the other nAb proj-

ects, and the overall differences between the corresponding llama nAb and mouse mAb projects.

However, a retrospective analysis of the antiserum from the immunized llama by IF-ICC against trans-

fected COS-1 cells expressing the individual target proteins yielded substantial immunolabeling only

for cells expressing Homer1 (not shown), suggesting a fundamental lack of an immune response

against epitopes preserved in aldehyde-fixed samples, and not a failure of phage display selection

to capture immunolabeling-competent nAbs. A similar scenario held for epitopes present on SDS-

denatured target proteins detected on immunoblots blots, with the Homer1 nAb project yielding

substantial numbers of positive nAbs, the Gephyrin project two, and the other projects none

(Table 1), again in contrast to the corresponding mouse mAb projects (Supplementary file 1). It has

been suggested that nAbs preferentially bind to target proteins via a convex paratope

(Wurch et al., 2012), which could contribute to the inability of the nAbs against the targets with the

exception of Homer1 to detect aldehyde-fixed and/or denatured target proteins. While nAbs have

widespread use in binding to native protein, which enhances their utility as chaperones for crystal-

lography (Pardon et al., 2014), certain nAbs generated against GFP and other proteins have been

used as immunolabels for immunohistochemistry (Fang et al., 2018; Yamagata and Sanes, 2018)

and immunoblots (Bruce and McNaughton, 2017).

In summary, we have generated a series of validated nAbs against neuronal proteins selectively

expressed in specific subcellular compartments in brain neurons. These nAbs represent a valuable

toolbox of reagents available to the neuroscience community for diverse applications. The pipeline

we employed is an exemplar that can be used in developing nAbs against other neuronal targets to

enhance the spectrum of experimental approaches available to researchers.
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Materials and methods

Key resources table

Reagent type
(species) or resource Designation Source or reference Identifiers

Additional
information

Cell line
(Cercopithecus aethiops)

COS-1 ATCC Cat # CRL-1650,
Lot # 59102713;
PMID: 6260373

RRID:CVCL_0223

Antibody numerous See Supplementary file 4

Recombinant
DNA reagent

pComb3XSS PMID: 10986398 Addgene #63890 (Addgene
RRID:SCR_002037)

Software
algorithm

Photoshop Adobe Systems RRID:SCR_014199

Software
algorithm

Axiovision Carl Zeiss
MicroImaging

RRID:SCR_002677

Software
algorithm

Fiji PMID: 22743772 RRID:SCR_002285

Animals
All procedures involving llamas were performed at Triple J Farms of Kent Laboratories (Bellingham,

WA) in strict accordance with the Guide for the Care and Use of Laboratory Animals of the NIH. All

procedures involving rats were approved by the University of California, Davis, Institutional Animal

Care and Use Committee (IACUC) under protocols 20485 and 21265 and were performed in strict

accordance with the Guide for the Care and Use of Laboratory Animals of the NIH. All rats were

maintained under standard light-dark cycles and allowed to feed and drink ad libitum. All proce-

dures involving mice were approved by the Stanford University IACUC under protocol 18846 and

were performed in strict accordance with the Guide for the Care and Use of Laboratory Animals of

the NIH.

Llama immunization and characterization of immune responses
Recombinant fragments of neuronal target proteins (Supplementary file 2) were expressed in and

purified from E. coli. Llama immunizations were performed using cocktail of these recombinant pro-

tein fragments employing five subcutaneous injections given at biweekly intervals. For each injection

a total of 1 mg protein (200 mg of each protein in the cocktail) was mixed with Freund’s complete

adjuvant (Sigma-Aldrich Cat# F5581) for the first immunization and Freund’s incomplete adjuvant

(Sigma-Aldrich Cat# F5506) for all subsequent immunizations. The llama immune response against

the individual target proteins was evaluated by ELISA beginning with antiserum collected after the

third immunization.

A whole IgG fraction was purified from llama antiserum on rProtein A/G GraviTrap columns (GE

Healthcare Cat# GE28-9852-56). Briefly, 0.5 mL of llama antiserum was diluted with an equal volume

of phosphate-buffered saline (PBS, 5.2 mM Na2HPO4; 1.7 mM KH2PO4; 0.15 M NaCl, pH 7.4). The

mixture was loaded onto a Protein A/G GraviTrap column, the unbound fraction collected, and the

column washed with 20 mL PBS. The whole IgG fraction was eluted with 0.1 M Glycine-HCl buffer

(pH 2.7). All fractions were neutralized with 1:10 vol of 1 M Tris-HCl (pH 9.0) upon collection.

Conventional heavy and light chain IgG1 and heavy chain-only IgG2 and IgG3 subclasses were

purified from llama antiserum on rProtein A GraviTrap (GE Healthcare Cat# GE28-9852-54) and Pro-

tein G GraviTrap (GE Healthcare Cat# GE28-9852-55) columns. Briefly, 0.5 mL of llama antiserum

was diluted with an equal volume of phosphate-buffered saline (PBS, 5.2 mM Na2HPO4; 1.7 mM

KH2PO4; 0.15 M NaCl, pH 7.4). The mixture was loaded onto a Protein G GraviTrap column, the

unbound fraction collected, and the column washed with 20 mL PBS. The IgG3 fraction was first

eluted with 58% acetic acid buffer (pH 3.5) containing 0.15 M NaCl. The IgG1 fraction was subse-

quently eluted with 0.1 M Glycine-HCl buffer (pH 2.7). The unbound fraction from the Protein G col-

umn was loaded onto on an rProtein A GraviTrap column, and the column washed with 20 mL PBS.

The IgG2 fraction was eluted with 58% acetic acid buffer (pH 4.5) containing 0.15 M NaCl. All frac-

tions were neutralized with 1:10 vol of 1 M Tris-HCl (pH 9.0) upon collection.
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Phage display library construction and panning
A phage display library for nAb isolation was prepared in the pComb3XSS phagemid (AddGene

#63890). This allows for generation of 6xHis and HA-tagged nAbs as PIII protein fusions on phage

pili for phage display, and also for subsequent production of soluble protein lacking the PIII fusion

partner in non-amber suppressor E. coli strains (Andris-Widhopf et al., 2000). Llama blood was col-

lected after the fifth immunization and 10 mL used for isolation of total RNA using a LeukoLOCK

total RNA isolation system (ThermoFisher Cat# AM1923). The resulting total RNA was reverse-tran-

scribed to cDNA using the SuperScript III First Strand Synthesis System (ThermoFisher Cat# 18080–

051). The IgG heavy chain variable fragments were amplified by PCR with llama-optimized

primers (Supplementary file 3). The amplified PCR product and the phagemid vector pComb3XSS

were digested with the Sfi I restriction enzyme (NEB Cat# R0123S) and the resulting fragments

ligated. The ligation was transformed by electroporation into electrocompetent ER2738 E. coli bac-

teria (Lucigen Cat# 60522–2). The transformants were infected with M13KO7 helper phage (NEB

Cat# N0315S) for packaging into phage displaying the nAb library on pili as PIII fusions. The library

complexity was calculated as 8.0 � 107.

Target-specific nAbs were enriched by panning against the individual target proteins bound to

wells of 96 well microplates (Greiner Bio-One Cat# 655061). For conventional panning, microplate

wells were coated overnight at 4˚C with 10 mg of target protein in PBS. After blocking with BSA (5

mg/mL in PBS) for 1 hr at room temperature (RT, »22˚C), 1011 phage particles were added to each

well and incubated for 1 hr at RT. Following eight rinses with PBST buffer (0.5% Tween-20 in PBS)

and eight rinses with PBS buffer to remove unbound phage, bound phage were eluted by incubation

with 10 mg/mL trypsin (Sigma-Aldrich Cat# T4799) in TBSC (50 mM Tris–HCl pH 7.4, 100 mM NaCl,

1 mM CaCl2) containing 3% (w/v) BSA for 30 min at 37˚C.

The eluted phage were collected and used to reinfect 5 mL of log-phase ER2738 E. coli bacteria.

After 2 hr of incubation, the reinfected culture was transferred to a 250 mL flask with the addition of

35 mL 2xYT medium, 1012 M13KO7 helper phage, and antibiotics (tetracycline: 20 mg/mL; kanamy-

cin: 50 mg/mL; and ampicillin or AMP: 100 mg/mL) and the culture incubated overnight at 37˚C with

shaking at 250 rpm. Phage were collected and used for a second round of panning.

For Homer1, SAPAP2 and Gephyrin, a parallel round of panning was performed using target pro-

teins displayed using a sandwich technique. After confirmation of immunoreactivity against each of

the individual target proteins by ELISA, 10 mg of a whole IgG fraction purified from antiserum

obtained from the immunized llama was added to individual wells of a 96 well microplate and incu-

bated at 4˚C overnight. After removing unbound IgG by two rinses with PBS, 10 mg of individual tar-

get protein was added to the separate wells and incubated for 1 hr at RT. Unbound target protein

was removed by eight rinses with PBST and eight rinses with PBS. The remainder of the panning pro-

cedure was then carried out as described above.

Production of soluble nAbs
Phage display positive samples were grown in liquid culture and plated onto LB + AMP plates. To

prepare bacterially-expressed nAb culture supernatant (BC supe) for protein ELISA validation, iso-

lated colonies were picked into 2 mL capacity deep well plates containing 0.5 mL of LB + AMP

medium per well. After overnight incubation at 37˚C with shaking at 250 rpm, 50 mL of these cultures

were transferred into 1 mL of Super Broth + AMP until an A600 of 0.3–0.6 was reached. Expression

of the nAb-PIII fusion proteins was induced by addition of 1 mM isopropyl-b-D-thiogalactopyrano-

side and incubation for 16 hr at 37˚C. The media was harvested, and the BC supe collected after cen-

trifugation at 1990 x g for 15 min at RT to pellet the bacteria.

To prepare purified soluble nAbs lacking the PIII fusion protein, a subset of the nAb-pComb3XSS

plasmids were isolated and transformed into the amber suppressor E. coli strain Top10F’. The induc-

tion of soluble nAb expression was performed in 1 L of Super Broth + AMP as described above.

After pelleting the cells by centrifugation at 16,900 x g for 10 min at 4˚C, the periplasmic proteins

were released by osmotic shock (Olichon et al., 2007). The periplasmic extract was loaded onto a

column of HisPur Ni-NTA Resin (ThermoFisher Cat# 88221), and after washing with 10 mL of PBS

and 10 mL of 40 mM imidazole in PBS, the bound proteins were eluted with 5 mL of 200 mM imidaz-

ole in PBS. The eluted fraction was dialyzed against PBS to remove the imidazole. The protein
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concentration was determined by A280, and the concentration verified, and protein purity evaluated

by SDS-PAGE and Coomassie blue staining.

Phage and nAb ELISAs
The binding activity of nAbs in vitro was evaluated by ELISA. Individual wells of a 96 well microtiter

plate (Greiner Bio-One Cat# 655081) were coated overnight at 4˚C with 10 mg of the individual tar-

get proteins. After removing unbound target protein by four rinses with PBST buffer, wells were

blocked for 1 hr at RT with BLOTTO (4% nonfat dry milk powder in TBS-T buffer). Phage (for phage

ELISAs) or soluble nAb (for nAb ELISAs) samples were added, followed by incubation for 1 hr at RT.

For phage ELISAs, 1010 phage particles were added per well, while for nAb ELISAs, 50 mL of BC

supe was added per well. Following four rinses with PBST buffer, wells were incubated for 1 hr at RT

with 50 mL of anti-HA mouse IgG2b mAb 12CA5 at 1.14 mg/mL in BLOTTO. Following four rinses

with PBST, wells were incubated for 1 hr at RT with 50 mL of goat anti-mouse IgG2b-HRP conjugated

secondary antibody (Jackson Immunoresearch Laboratories Cat# 115-005-207) diluted 1:5000 in

BLOTTO. Following four rinses with PBST buffer, wells were incubated with TMB substrate (Sigma-

Aldrich Cat# T2885). Wells lacking phage or nAbs were used as negative controls. Phage or nAbs

exhibiting an OD450 signal three-fold higher than the negative ‘no primary’ control were selected for

further analysis. For target proteins that were fusions with GST (i.e., IRSp53 and AMIGO-1), parallel

ELISAs were performed on plates whose wells were coated with an equal amount of GST protein.

Phage or nAbs exhibiting a three-fold higher OD450 signal for the GST-target protein fusion versus

GST alone were selected for further analysis.

Sequencing and transfer of unique nAbs into mammalian expression
plasmids
DNA in pComb3XSS phagemid was prepared from the ER2738 strain of E. coli bacteria for all

ELISA-positive nAbs and the forward strand of the nAb insert subjected was sequenced using a

primer (5’-TTAGGCACCCCAGGCTTTACACT-3’) that binds to the leader sequence of the

pComb3XSS phagemid.

All unique ELISA-positive nAb sequences were amplified by PCR and ligated into the pEYFP-N1

or pEGFP-N1 mammalian expression plasmids as GFP fusions by Gibson Assembly, employing a

commercial Master Mix (NEB Cat# E2611S) according to the manufacturer’s protocol, and employ-

ing a SmaI (NEB Cat# R0141S) restriction site present in the pEYFP-N1 or pEGFP-N1 plasmid. The

primers used for the Gibson assembly reaction were Forward: 5’-ATTCTGCAGTCGACGG

TACCGCGGGCCCTGGTTTCGCTACCGTGGCCCAGGCGGCC-3’ or 5’-CTTCGAATTCTGCAG

TCGACGGTACCGCGGGGCCATGCAGKTGCAGCTCGTGGAGTC-3’; Reverse: 5’-CTCACCATGG

TGGCGACCGGTGGATCCCTAGCGTAGTCCGGAACGTCGTACGGGTA-3’. Two independent colo-

nies for each construct were selected for plasmid preparation, sequence determination and expres-

sion in mammalian cells. Plasmids encoding validated nAbs will be made publicly available in

plasmid form from Addgene.

Mammalian COS-1 cell culture and transfection
COS-1 cells were obtained from ATCC. These were verified by ATCC to be exclusively of Cercopi-

thecus aethiops (African green monkey) origin by cytochrome oxidase I (COI) assay, and to be myco-

plasma negative at the time of cryopreservation. COS-1 cell cultures were subsequently tested for

mycoplasma contamination on a monthly basis using the MycoAlert Mycoplasma Detection Kit

(Lonza Catalog#: LT07-318). COS-1 cells were maintained in Dulbecco’s modified Eagle’s medium

(ThermoFisher Cat# 11995065) supplemented with 10% Bovine Calf Serum (HyClone Cat#

SH30072.04), 1% penicillin/streptomycin (ThermoFisher Cat# 15140122), and 1X GlutaMAX (Thermo-

Fisher Cat# 35050061) in a humidified incubator at 37˚C with 5% CO2. For testing nAbs for intrabody

function, 2,500 COS-1 cells were plated in each well of a 96 well plate (Greiner Bio-One Cat#

655090), cultured overnight at 37 ˚C and then transfected using Lipofectamine 2000 (ThermoFisher

Cat# 11668027) following the manufacturer’s protocol. Sets of individual wells were transfected with

nAb or target expression plasmids separately, or cotransfected together, using 0.1 mg each of each

plasmid. Cells were transiently transfected in DMEM without supplements, then returned to regular

growth media 4 hr after transfection. Cells were used 40–48 hr post-transfection for IF-ICC.
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For testing nAbs for immunolabel function by IF-ICC, 3 � 104 COS-1 cells were plated on number

1.5 glass coverslips coated with poly-L lysine in 35 mm Petri dishes and incubated overnight. COS-1

cells were transiently transfected using Lipofectamine 2000 (ThermoFisher Cat# 11668027) with 1 mg

of target protein plasmid following the manufacturer’s protocol. Mammalian expression plasmids

encoding full-length mouse Homer1 (Origene Cat# MR222523), human IRSp53 (Addgene Plasmid#

31656), rat SAPAP2 (Addgene Plasmid# 40216), human Gephyrin (a gift from Dr. Stephen J. Moss,

Tufts University), and mouse AMIGO-1 (a gift from Dr. Heikki Rauvala, University of Helsinki) were

used for expression of the corresponding target proteins in COS-1cells.

Culture and transfection of rat hippocampal neurons
Hippocampi were dissected from embryonic day 18 rat embryos and dissociated enzymatically for

20 min at 37˚C in 0.25% (w/v) trypsin (ThermoFisher Cat# 15050065) in HBSS and dissociated

mechanically by triturating with glass polished Pasteur pipettes. Dissociated cells were suspended in

plating medium containing Neurobasal (ThermoFisher Cat# 21103049) supplemented with 10% FBS

(ThermoFisher Cat# 16140071), 2% B27 (ThermoFisher Cat# 17504044), 2% GlutaMAX (Thermo-

Fisher Cat# 35050061), and 0.001% gentamycin (ThermoFisher Cat# 15710064) and plated at 60,000

cells per dish in glass bottom dishes (MatTek Cat# P35G-1.5–14 C) coated with 0.5 mg/mL poly-L-

lysine (Sigma-Aldrich Cat# P2636). At 7 days in vitro (DIV), cytosine-D-arabinofuranoside (Sigma-

Aldrich Cat# 251010) was added to a final concentration of 5 mM to inhibit non-neuronal cell growth.

Neurons were transiently transfected with 1 mg of each nAb mammalian expression plasmid at 7–10

DIV using Lipofectamine 2000 (ThermoFisher Cat# 11668019) for 1.5 hr as described by the manu-

facturer. Neurons were used 40–48 hr post transfection for IF-ICC.

Examination of Homer1 nAbs delivered via lentivirus
Primary hippocampal cultures were generated by dissecting hippocampi from P0 CD1 mice, and

cells were dissociated by papain (Worthington Cat# LS003127) digestion for 20 min at 37˚C, filtered

through a 70 mm cell strainer (Falcon Cat# 352350), and plated on Matrigel (Corning Cat# 356235)-

coated 0 thickness glass coverslips (Assistant Cat# 01105209) in 24-well plates. Plating media con-

tained 5% fetal bovine serum (Atlanta Biologicals Cat# S11550), B27 (ThermoFisher Cat# 17504044),

0.4% glucose (Sigma Cat# G8270), 2 mM glutamine (ThermoFisher Cat# 25030164), in 1x MEM

(ThermoFisher Cat# 51200038). Culture media was exchanged to Growth media 24 hr later (1 DIV),

which contained 5% fetal bovine serum, B27, 2 mM glutamine in Neurobasal A (ThermoFisher Cat#

10888022). Cytosine arabinofuranoside (Santa Cruz Biotechnology Cat# 221454A) was added at a

final concentration of 4 mM on or around 3 DIV based on glial cell density in a 50% growth media

exchange. Cultures were subsequently infected at 5 DIV and analyzed at 14 DIV. For production of

lentiviruses, the lentiviral expression shuttle vector and three helper plasmids [pRSV-REV, pMDLg/

pRRE and vesicular stomatitis virus G protein (VSVG)] were co-transfected into HEK293T cells

(ATCC), using 5 mg of each plasmid per 25 cm2 culture area, respectively. Transfections were per-

formed using the calcium-phosphate method in media lacking antibiotic (DMEM + 10% FBS). Media

with viruses was collected at 48 hr after transfection, centrifuged at 5000 x g for 5 min to remove

debris, and 50 mL of viral conditioned media was added directly to each well. For IF-ICC analysis, all

solutions were made fresh and filtered with a 0.2 mm filter prior to starting experiments. Cells were

washed briefly with PBS, fixed with 4% formaldehyde/FA (freshly prepared from paraformaldehyde/

PFA)/4% sucrose/PBS for 20 min at 4˚C, washed 3 � 5 min each in PBS, and permeabilized in 0.2%

Triton X-100/PBS for 5 min at RT. Cells were subsequently placed in blocking buffer (5% BSA/PBS)

for 1 hr at RT, and incubated with primary antibodies [Supplementary file 4; chicken anti-GFP (Aves

Labs Cat# GFP1020, RRID:AB_10000240); rabbit anti-Homer1 (Synaptic Systems Cat# 160003, RRID:

AB_887730), anti-MAP2 mouse IgG1 mAb AP-20 (Sigma Cat# M1406, RRID:AB_477171)] diluted in

blocking buffer overnight at 4˚C. Cells were washed 3 � 5 min each in PBS, incubated with diluted

fluorescently-conjugated secondary antibodies (Life Technologies Cat# A11039, A11012, A21236) in

blocking buffer for 1 hr, washed 3 � 5 min each in PBS, and mounted on UltraClear microscope

slides (Denville Scientific Cat# M1021) using DAPI Fluoromount-G (Southern Biotech Cat# 010020).
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Immunofluorescence immunocytochemistry
Fixation of COS-1 cells was performed as previously described (Bishop et al., 2015). Briefly, COS-1

cells were fixed in ice-cold 4% FA (freshly prepared from PFA, Sigma-Aldrich Cat# 158127) in PBS

containing 0.1% Triton-X 100 for 15 min at 4˚C, and CHNs in ice-cold 4% FA/4% sucrose in PBS for

15 min at 4˚C. All subsequent procedures were performed at RT. Cells were washed for 3 � 5 min

each in PBS and blocked and permeabilized for 1 hr in BLOTTO + 0.1% Triton-X 100 (BLOTTO-T).

For assays determining the efficacy of nAbs as intrabodies, incubation with primary

antibodies (Supplementary file 4) was performed using mAb tissue culture supernatants (TC supes)

diluted 1:2 in BLOTTO-T for 1 h T. Following primary antibody incubation, and 3 � 5 min each

washes in BLOTTO-T, cells were incubated with mouse IgG subclass-specific Alexa Fluor-conjugated

secondary antibodies (all secondary antibodies from ThermoFisher) diluted 1:1500 in BLOTTO-T con-

taining 500 ng/mL Hoechst 33258 (ThermoFisher Cat# H1399) for 1 hr, washed 3 � 5 min each in

PBS, and mounted onto microscope slides using Prolong Gold (ThermoFisher Cat# P36930). For

assays determining the efficacy of nAbs as immunolabels, a 1 hr primary antibody incubation was

performed using undiluted nAb BC supes, followed by a 1 hr incubation with mouse mAb TC

supes (Supplementary file 4) diluted 1:5 in BLOTTO-T. Following these serial primary antibody incu-

bations, and 3 � 5 min each washes in BLOTTO-T, cells were incubated with anti-HA mouse IgG1

mAb 16B12 conjugated to Alexa Fluor 488 (ThermoFisher Cat# A-21287) diluted to 0.67 mg/mL in

blocking solution to detect bound nAb, and mouse IgG subclass-specific Alexa Fluor 555 conjugated

secondary antibodies (all secondary antibodies from ThermoFisher) diluted 1:1500 in BLOTTO-T to

detect bound mAb, with dilutions performed in BLOTTO-T containing 500 ng/mL of the chromatin

dye Hoechst 33258 (ThermoFisher Cat# H1399). After a 1 hr incubation, cells were washed 3 � 5

min each in PBS and mounted onto microscope slides using Prolong Gold (ThermoFisher Cat#

P36930).

Immunofluorescence immunocytochemistry for super-resolution
imaging
The HS69 anti-Homer1 nAb (100 mg in 1 mL of 0.1 M sodium bicarbonate buffer, pH 8.3) was directly

conjugated to Alexa647 using succinimidyl-Alexa647 (ThermoFisher Cat# A20186) for 1 hr at RT, fol-

lowed by addition of 0.1 mL of 1.5 M hydroxylamine. Conjugated nAb was separated from free dye

on a Sephadex G-25 column, followed by dialysis against PBS. Validation of immunolabeling of

CHNs at 24 DIV with directly conjugated HS69-647 nAb as shown in Figure 5A was performed

essentially as described in the previous section. For primary and secondary antibody incubations,

neurons were divided into two groups. CHNs in both groups were immunolabeled with primary anti-

bodies mouse anti-Homer1 mouse IgG2b mAb L113/27 TC supe at a 1:2 dilution, and rabbit anti-

MAP2 (Millipore-Sigma, Cat# AB5662-I) at a 1:100 dilution, and with secondary antibodies goat anti-

mouse IgG2b-subclass-specific Alexa Fluor 555-conjugated secondary antibody (ThermoFisher Cat#

A21147) at a 1:1500 dilution to detect the anti-Homer1 mouse IgG2b mAb L113/27, and goat anti-

rabbit IgG (H+L) Alexa Fluor 350-conjugated secondary antibody (ThermoFisher Cat# A-11046) at

1:1500 dilution to detect the rabbit anti-MAP2. For one set of CHNs, the primary antibody cocktail

also included anti-Homer1 nAb HS69 directly conjugated to Alexa 647 (HS69-647) diluted to 10 mg/

mL. For the other set, the primary antibody cocktail included unconjugated anti-Homer1 HS69 nAb

diluted to 10 mg/mL, and the secondary antibody cocktail anti-HA mouse IgG1 mAb 2–2.2.14 conju-

gated to Alexa 647 (ThermoFisher Cat# 26183-A647) diluted to 1 mg/mL.

For super-resolution imaging experiments (Figure 11B, C) CHNs at 24 DIV were fixed in ice-cold

3% FA (freshly prepared from PFA, Sigma-Aldrich Cat# 158127)/0.1% glutaraldehyde (Sigma-Aldrich

Cat# G7651) in PBS for 15 min at 4˚C. Unless otherwise stated, all remaining procedures were per-

formed at RT. Fixed CHNs were washed for 3 � 5 min each in PBS, and free aldehydes reduced by

incubating in 0.1% NBH4 (Sigma-Aldrich Cat# 213462) in dH2O for 5 min, followed by 3 � 5 min

each washes in PBS. Neurons were blocked and permeabilized for 60 min in 3% BSA with 0.25% Tri-

ton-X 100 in PBS (blocking solution). For primary and secondary antibody incubations, neurons were

divided into three groups. Group 1, mAb plus secondary: CHNs were incubated overnight at 4˚C

with anti-Homer1 mouse IgG2b mAb L113/27 TC supe at a 1:2 dilution in blocking solution, washed

for 3 � 5 min each in blocking solution, and incubated for 1 hr with goat anti-mouse IgG2b second-

ary antibody conjugated to Alexa 647 (ThermoFisher Cat# A-21242) diluted to 1 mg/mL in blocking
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solution, followed by 3 � 5 min each washes in PBS. Group 2, nAb plus anti-HA-647: CHNs were

incubated overnight at 4˚C with HS69 anti-Homer1 nAb diluted to 10 mg/mL in blocking solution,

washed for 3 � 5 min each in blocking solution, and incubated for 1 hr with anti-HA mouse IgG1

mAb 2–2.2.14 conjugated to Alexa 647 (ThermoFisher Cat# 26183-A647) diluted to 1 mg/mL in

blocking solution, followed by 3 � 5 min each washes in PBS. Group 3, directly-conjugated nAb:

CHNs were incubated overnight at 4˚C with anti-Homer1 nAb HS69 directly conjugated to Alexa 647

(HS69-647) diluted to 10 mg/mL in blocking solution followed by 3 � 5 min each washes in PBS. Cov-

erslips were mounted on microscope slides with a round cavity (NeoLab Migge Laborbedarf-Ver-

triebs GmbH, Germany) and sealed with Twinsil (Picodent, Germany). The imaging buffer contained

10 mM Cysteamine-HCl (Sigma-Aldrich Cat# M6500), 0.56 mg/mL glucose oxidase (Sigma-Aldrich

Cat# G2133), 3.4 mg/ml catalase (Sigma-Aldrich Cat# C100), and 10% w/v glucose in 200 mM Tris-

HCl pH 8, 10 mM NaCl.

Multiplexed fluorescence immunohistochemistry on brain sections
Rats were deeply anesthetized with 70 mg/kg Na-pentobarbital salt (Sigma-Aldrich Cat# P3761) in

0.9% NaCl solution through intraperitoneal injection, followed by boosts as needed. Once

completely anesthetized, rats were transcardially perfused with 25 mL of ice-cold PBS containing 10

U/mL heparin, followed by an ice-cold fixative solution of 4% FA (freshly prepared from PFA, Sigma-

Aldrich Cat# 158127) in 0.1 M sodium phosphate buffer (PB), pH 7.4, using a volume of 0.5 mL fixa-

tive solution per gram of rat weight. Following perfusions, brains were removed from the skull and

cryoprotected in 10% sucrose in 0.1 M PB overnight at 4˚C, then transferred to a solution of 30%

sucrose in 0.1 M PB for 24–48 hr, until they sank to the bottom of the tube. Following cryoprotec-

tion, all brains were frozen, and cut on a freezing stage sliding microtome (Richard Allen Scientific)

to obtain 30 mm-thick sagittal sections. Sections were collected in 0.1 M PB containing 10 mM

sodium azide and processed for immunohistochemistry as free-floating sections.

Multiplex immunofluorescence labeling of nAbs was performed on rat brain sections essentially

as previously described (Manning et al., 2012). All incubations and washes were at RT with slow agi-

tation, unless stated otherwise. Briefly, free-floating sections were washed 3 � 5 min each in 0.1 M

PB and 10 mM sodium azide. Sections were incubated in blocking buffer (10% goat serum in 0.1 M

PB, 0.3% Triton X-100, and 10 mM sodium azide) for 1 hr. Immediately after blocking, sections were

incubated with the primary antibody cocktail containing the candidate nAb BC supe and the mouse

anti-Homer1 mouse IgG2b mAb L113/27 TC supe, both diluted 1:5 in blocking buffer, followed by

overnight incubation at 4˚C with slow agitation. Sections were then washed 3 � 10 min each in 0.1

M PB and incubated for 1 hr with a secondary antibody cocktail of anti-HA mouse IgG1 mAb 16B12

conjugated to Alexa Fluor 488 (ThermoFisher Cat# A-21287), to detect bound nAb, and goat anti-

mouse IgG2b-subclass-specific Alexa Fluor 555-conjugated secondary antibody (ThermoFisher Cat#

A21147) to detect the L113/27 mAb, both diluted 1:2000 in blocking buffer containing 500 ng/mL

Hoechst 33258. After 3 � 10 min each washes in 0.1 M PB, sections were mounted and dried onto

gelatin-coated slides, treated with 0.05% Sudan Black (EM Sciences Cat# 21610) in 70% ethanol for

2 min, extensively washed in water, and coverslipped using Prolong Gold (ThermoFisher Cat#

P36930) mounting medium.

Conventional diffraction-limited and super-resolution light microscopy
Images of fixed samples were acquired with an AxioCam MRm digital camera installed on a Zeiss

AxioImager M2 microscope or with an AxioCam HRm digital camera installed on a Zeiss AxioOb-

server Z1 microscope with a 20X/0.8 NA plan-Apochromat objective or a 63X/1.40 NA plan-Apo-

chromat oil immersion objective using an ApoTome structured illumination system for optical

sectioning, with image acquisition controlled by Axiovision software (Zeiss, Oberkochen, Germany).

Images of the distribution of anti-Homer1 nAbs expressed in primary hippocampal cultures via

lentivirus infection were acquired using a Nikon A1 Eclipse Ti confocal microscope with a 60x objec-

tive, operated by NIS Elements AR acquisition software (Nikon Instruments Inc, Melville, NY).

Live cell imaging of transfected hippocampal neurons was performed at the UC Davis MCB Imag-

ing Facility using Total Internal Reflection Fluorescence (TIRF) microscopy as previously described

(Kirmiz et al., 2018a). Live neurons cultured on glass bottom dishes were imaged in a physiological

saline solution (4.7 mM KCl, 146 mM NaCl, 2.5 mM CaCl2, 0.6 mM MgSO4, 1.6 mM NaHCO3. 0.15

Dong et al. eLife 2019;8:e48750. DOI: https://doi.org/10.7554/eLife.48750 19 of 25

Tools and resources Neuroscience

https://doi.org/10.7554/eLife.48750


mM NaH2PO4, 20 mM HEPES, pH 7.4) containing 8 mM glucose and 0.1 mM ascorbic acid. Cells

were maintained at 37˚C during the course of imaging with a heated stage and objective heater.

Images were obtained with an Andor iXon EMCCD camera installed on a TIRF/widefield equipped

Nikon Eclipse Ti microscope using a Nikon LUA4 laser launch with 405, 488, 561, and 647 nm lasers

and a 100X PlanApo TIRF, 1.49 NA objective run with NIS Elements software (Nikon). Images were

collected within NIS Elements as ND2 images. Time lapse movies, collected at 1 Hz, were collected

for 1 min.

A super resolution ground-state depletion system (SR-GSD, Leica) based on stochastic single-mol-

ecule localization was used to generate super-resolution images. Images were obtained using a

160X HCX Plan-Apochromat (NA 1.43) oil-immersion lens and an EMCCD camera (iXon3 897; Andor

Technology). For all experiments, the camera was running in frame-transfer mode at a frame rate of

100 Hz. A total of 35,000 images were used to construct the localization maps. Homer1 cluster sizes

were determined using binary masks of the images in ImageJ software (NIH).

Image analysis and statistics
All post-acquisition image analysis was performed using Fiji (Schindelin et al., 2012) except for anal-

yses of images of anti-Homer1 nAb localization in primary hippocampal cultures via lentivirus, which

was performed using Nikon Elements Analysis software. For line scan analyses of fluorescence inten-

sity, the raw intensity values in the line scan analyses were collected within FIJI and normalized to

the maximum value collected. The linear relationship between the fluorescence intensity of the sig-

nals was performed in Excel using the normalized values. Pearson’s Correlation Coefficient (PCC)

measurements were collected from ROIs manually drawn around dendrites (for nAbs targeting post-

synaptic targets) or around the soma and proximal dendrites (for nAbs targeting AMIGO-1). Puncta

size quantification was performed essentially as previous reported (Bishop et al., 2018;

Kirmiz et al., 2018a; Kirmiz et al., 2018b). Briefly, images were identically background subtracted

with a rolling ball radius of 10 pixels and converted into a binary image using automated local

thresholding (Bernsen, 1986). Puncta sizes were then quantified using the ‘analyze particles’ func-

tion in Fiji. All data sets were imported into Prism Graphpad for statistical analysis and presentation.

Statistical tests were performed as noted in each figure legend.

Immunoblotting against brain samples
Immunoblots were performed on crude membrane fractions prepared from adult rat brain as previ-

ously described (Trimmer, 1991). Following determination of protein concentration by BCA assay

(ThermoFisher Cat# 23227), 3 mg of RBM protein was loaded onto a single well that spanned the

entire SDS-PAGE gel, electrophoresed to size-fractionate the proteins, and transferred onto a nitro-

cellulose membrane (BioRad Cat# 1620115). The nitrocellulose membrane was cut into 30 vertical

strips so that each contained 100 mg of RBM protein. All remaining procedures were performed at

RT. Strips were blocked for 1 hr in BLOTTO. Primary antibody incubation was performed using nAb

BC supes diluted 1:2 in BLOTTO for 1 hr. Positive control antibodies were anti-Homer1 mouse IgG1

mAb L113/130 and anti-Gephyrin mouse IgG2a mAb L106/93, both used as TC supes diluted 1:2 in

BLOTTO. Following primary antibody incubation, and 3 � 5 min each washes in BLOTTO, nAb strips

were incubated for 1 hr in anti-HA rat IgG1 mAb 3F10 conjugated to HRP (Sigma-Aldrich Cat#

12013819001) diluted 1:2000 in BLOTTO, or HRP-conjugated goat anti-mouse IgG H+L (SeraCare

Cat# 52200458) diluted 1:10,000 in BLOTTO. Following 3 � 5 min each washes in PBS, the chemilu-

minescent signal was generated by incubation in Western Lightning Plus ECL substrate (Fisher Scien-

tific Cat# 509049325) and subsequently visualized on HyBlot CL film (Denville Scientific Cat# E3018).
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