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Abstract
The	gastrointestinal	(GI)	hormone	motilin	helps	control	human	stomach	movements	
during	hunger	and	promotes	hunger.	Although	widely	present	among	mammals,	it	is	
generally accepted that in rodents the genes for motilin and/or its receptor have un-
dergone	pseudonymization,	so	exogenous	motilin	cannot	function.	However,	several	
publications	describe	functions	of	low	concentrations	of	motilin,	usually	within	the	GI	
tract	and	CNS	of	mice,	rats,	and	guinea	pigs.	These	animals	were	from	institute-	held	
stocks,	simply	described	with	stock	names	(e.g.,	 “Sprague–	Dawley”)	or	were	 inbred	
strains. It is speculated that variation in source/type of animal introduces genetic vari-
ations	to	promote	motilin-	sensitive	pathways.	Perhaps,	in	some	populations,	motilin	
receptors	exist,	or	a	different	functionally-	active	receptor	has	a	good	affinity	for	mo-
tilin	(indicating	evolutionary	pressures	to	retain	motilin	functions).	The	ghrelin	recep-
tor	has	the	closest	sequence	homology,	yet	in	non-	rodents	the	receptors	have	a	poor	
affinity	for	each	other's	cognate	ligand.	In	rodents,	ghrelin	may	substitute	for	certain	
GI	functions	of	motilin,	but	no	good	evidence	suggests	rodent	ghrelin	receptors	are	
highly responsive to motilin. It remains unknown if motilin has functional relationships 
with	additional	bioactive	molecules	formed	from	the	ghrelin	and	motilin	genes,	or	if	a	
5-	TM	motilin	receptor	has	influence	in	rodents	(e.g.,	to	dimerize	with	GPCRs	and	cre-
ate	different	pharmacological	profiles).	Is	the	absence/presence	of	responses	to	mo-
tilin	in	rodents’	characteristic	for	systems	undergoing	gene	pseudonymization?	What	
are the consequences of rodent supplier- dependent variations in motilin sensitivity 
(or	other	ligands	for	receptors	undergoing	pseudonymization)	on	gross	physiological	
functions?	These	are	important	questions	for	understanding	animal	variation.
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1  |  INTRODUC TION TO MOTILIN

In	humans,	 the	hormone	motilin is found mostly within endocrine 
cells	of	the	mucosa	of	the	duodenum	and	jejunum,	and	to	a	 lesser	
extent the gastric antrum.1,2	 Motilin	 is	 released	 from	 these	 cells	
during hunger to induce phase III activity of the gastric migrating 
motor	complex,	 a	wave	of	high	amplitude	and	propulsive	contrac-
tions	which	occurs	during	fasting	every	90–	120	min	and	moves	from	
the stomach and into the small intestine. Its purpose is thought to 
help	clear	the	stomach	of	any	undigested	material,	prevent	bacterial	
overgrowth,	and	stimulate	a	sensation	of	hunger.3–	5 Intravenous in-
fusions of motilin to humans have also been shown to stimulate the 
motility	of	the	gastric	antrum,6,7 increase gastric emptying of a solid 
meal,8 and induce postprandial nausea.7 Experiments with human 
isolated stomach showed that the gastric prokinetic activity of moti-
lin occurs primarily because of an ability to act prejunctionally within 
the enteric nervous system to strongly facilitate cholinergic activity 
in	 a	 concentration-	dependent	manner,	with	 the	 higher	 concentra-
tions also directly contracting the muscle; the large magnitude of 
the	excitatory	nerve-	muscle	responses	at	the	higher	concentrations,	
perhaps	 in	 conjunction	with	 vagal	 nerve	 activation,	 have	been	 ar-
gued to help promote the ability of high doses of motilin and of mo-
tilin receptor agonists to cause nausea and vomiting.9

2  |  LOSS OF A FUNC TIONAL MOTILIN 
SYSTEM AMONG RODENTS

Motilin	 is	 found	within	 the	mammalian	kingdom,	with	orthologues	
identified	in	birds,	reptiles,	amphibians,	and	fishes;	the	receptor	for	
motilin,	a	seven-	transmembrane	(TM),	G-	protein-	coupled	structure	
(first identified in human10),	has	a	matching	presence.11–	13	However,	
examinations	of	genomic	databases,	 including	 those	assembled	by	
Ensembl,	 found	 that	 among	 the	 mammals,	 the	 genes	 in	 rodents	
(mouse,	 rat,	kangaroo	 rat,	guinea	pig,	 squirrel,	 a	 strain	of	pika)	 for	
the	motilin	receptor	and	often	for	motilin	itself,	have	become	pseu-
dogenes	 (e.g.,	 80%–	90%	 identity	 to	 the	 human	 motilin	 receptor,	
but	with	an	in-	frame	stop-	codon).	This	indicates	that	in	rodents	the	
functions of motilin have been lost11,12,14,15	For	the	mouse	and	rat,	
this is thought to have occurred via mutations in the genes encod-
ing	 the	motilin	 receptor	and	motilin,	and	not	by	a	disruptive	chro-
mosomal rearrangement that potentially could have removed both 
genes.11	 Interestingly,	 among	 the	 amphibians,	 the	 reverse	may	 be	
true.	Certain	frogs	(e.g.,	the	tropical	clawed	frog	may	have	retained	
a motilin receptor but lost the presence of motilin; the authors sug-
gest the possibility of a different endogenous agonist acting at the 
motilin	receptor).13

Among	 rodents,	 the	 evolutionary	 pressures	 that	 led	 to	 the	
elimination of the presence and functions of motilin are unclear. 
However,	 it	has	been	speculated	 that	because	 rodents	have	also	
lost the ability to vomit (with marked and associated changes in 
the	presence	of	other	genetic	markers	and	in	neuronal,	hormonal,	
and	 structural	 functions	 regulating	 upper	 gastrointestinal	 (GI)	

functions)	all,	or	many	of	 these	events	may	have	been	somehow	
driven by an environmental pressure for water conservation in 
arid or semi- arid regions.12	 Early	 pseudonymization	 of	 the	moti-
lin	receptor	was	followed	by	loss	of	the	motilin	peptide,	complete	
in	 some	 rodent	 species	but	not	 in	others.	For	example,	 although	
a potentially functional form of motilin was not identified in the 
guinea	 pig	 by	He	 et	 al,11	 a	 later	 search	 of	 Ensembl	Genome	 da-
tabases	 by	 Kitazawa	 et	 al16 confirmed a proposed existence of 
guinea pig motilin (two different structures were first identified 
in	 the	 Ensembl	 Genome	 Database	 by	 Xu	 et	 al17 confirmed by 
qPCR	 and	 by	 Southern	 blot	 hybridization),	 which	 when	 synthe-
sized	were	 inactive	when	 applied	 to	 guinea	 pig	GI	muscle	 strips	
but were effective stimulants when applied in similar experiments 
using rabbit duodenum (the evoked activity was reduced by the 
motilin receptor antagonist GM-	109 and by human motilin de-
sensitization).	Interestingly	the	later	RT-	PCR	using	various	primer	
sets	 failed	 to	 amplify	 the	mRNA	 for	 one	 of	 the	 putative	motilin	
structures.16	Nevertheless,	the	differences	in	data	obtained	by	dif-
ferent investigators suggested that the gene for motilin in guinea 
pigs	 is	 undergoing	 pseudogenization	 but	 highly	 divergent	 alleles	
of	the	gene	exist	within	the	cDNA	and	genomic	sequences	of	the	
guinea pig population.18	Another	 study	 into	 the	North	American	
kangaroo mouse and rat (members of the Dipodomyinae subfamily 
of	 rodents)	 identified	 potentially	 functional	 forms	 of	motilin	 but	
since the motilin receptor pseudogene was formed well before the 
radiation	of	this	subfamily,	the	retention	of	a	potentially	functional	
motilin was suggested to represent a lineage- specific physiological 
adaptation to a new function.18

3  |  THE RODENT ANOMALIES

In contrast with the failure to identify a functional motilin gene 
within	genomic	databases	of	rats	and	mice	(see	above),	or	 identify	
the	presence	of	motilin,19,20 there are several publications in which 
motilin is reported to be present within these animals (recent exam-
ples include21–	23).	Furthermore,	although	the	application	of	motilin	
has been found to be without activity in several experiments with 
stomach	and	intestinal	preparations	from	rats,	mice,	and	guinea	pigs	
(examples include16,24–	28),	several	other	publications	report	an	ability	
of	motilin	to	exert	functional	activity	in	the	stomach,	brain	and	other	
tissues	of	rats,	mice,	and	guinea	pigs	(briefly	noted	previously11,29).	
Table	1	lists	these	studies	and	when	provided	by	the	authors,	gives	
the sources of rodents and ligands used within each investigation. 
Examination of Table 1 reveals several features: 

•	 Most	 (but	not	all)	 studies	 reporting	 functions	of	motilin	 involve	
the	GI	tract	and	the	central	nervous	system	(CNS)

•	 Some	studies	used	cultured	or	dispersed	primary	cell	populations,	
including	all	those	studying	GI	muscle	functions

• The studies date from the 1980s to 2019
• Responses to motilin have been reported when using both out-

bred and inbred animal suppliers

https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1458
https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1466
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•	 In	vitro,	 the	effective	concentrations	of	motilin	are	often	 in	 the	
nM	 range,	 similar	 to	 the	 low	 concentrations	which	 activate	 the	
human and rabbit motilin receptors

•	 In	some	studies,	the	effective	concentrations	are	in	the	μM	range	
suggesting potential activation of a non- motilin receptor

The motilin receptor may also be activated by the anti- biotic 
drugs erythromycin and azithromycin,64 and by other drugs with 
similar,	macrolide	structures.65	These	drugs	stimulate	upper	GI	mo-
tility	and	are	used	“off	label”	to	increase	gastric	emptying	for	ther-
apeutic ultility.3,63	Accordingly,	Table	1	also	 lists	a	 smaller	number	
of studies in which functions of the anti- biotic drug erythromycin 
or	related	structures	have	been	identified	within	rodents.	However,	
these drugs may possess uncertain additional pharmacology. There 
are,	for	example,	several	reports	of	an	inhibitory	activity	of	high	con-
centrations	or	doses	of	erythromycin	in	GI	and	other	smooth	muscle	
preparations,	not	mediated	by	activation	of	the	motilin	receptor.66–	70 
In	addition,	the	compound	EM574,	a	derivative	of	erythromycin,	can	
activate the ghrelin receptor (IC50	of	10	mM

71).	More	recently,	it	has	
been suggested that the anti- inflammatory actions of erythromy-
cin in chondrocytes may be mediated directly or indirectly via the 
ghrelin receptor.72 This complexity of activity among the macrolides 
makes it difficult to further consider the mechanisms by which these 
structures	exert	activity	in	rodents.	For	this	reason,	only	the	func-
tions of motilin itself are now discussed.

How can motilin have activity in some studies with rodents but 
not	 in	 others?	 In	 attempting	 to	 answer	 this	 question	 it	 is	 difficult	
to avoid the possibility that the variation is somehow related to the 
source	and/	or	type	of	animal	used,	which	introduces	important	vari-
ations	in	genetic	coding	and	potentially,	in	receptors	and	pathways	
by which motilin can exert function.

4  |  SOURCE-  AND STR AIN-  DEPENDENT 
DIFFERENCES AMONG RODENTS

In	 the	 experiments	 in	 which	 a	 function	 of	 motilin	 was	 identified,	
the	sources	of	animals	were	not	always	provided	 (Table	1).	Where	
this	 information	 was	 given,	 analysis	 showed	 that	 animals	 were	
from	 institute-	held	stocks	 (e.g.,	 Institute	of	Cancer	Research	mice,	
Qingdao	 Marine	 Drug	 Institution),	 or	 were	 described	 simply	 by	
stock	names	such	as	“Hartley”	(guinea	pig),	“Sprague–	Dawley,”	and	
“Wistar”	 (rats),	 or	 sometimes,	 the	 authors	 used	 inbred	 strains	 of	
mice	(eg	C57/BL6J).	An	advantage	of	 inbred	strains	of	mice	is	that	
they	are	thought	to	minimize	genetic	variability	between	individual	
animals	(but	see	Tuttle	et	al,73 who found evidence of high genetic 
variability),	although	these	animals	may	be	relatively	small	and	sub-
ject	to	selection	pressures	which	favor	adaptation	to	captivity	(e.g.,	
social behaviors74).	The	use	of	stock	names	does	not	signify	a	known	
genomic	 identity,	which	may	differ	between	the	same	type	of	ani-
mal	from	different	breeders.	Such	animals	(also	highly	inbred)	can	be	
subject to founder effects and genetic drift and may show substan-
tial genetic divergence from other colonies.75Sp
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Many	 genetic	 differences	 exist	 between	 different	 strains	 of	
mice.	 An	 investigation	 into	 17	 different	 mouse	 genomes	 (includ-
ing classic laboratory strains and the progenitors of strains linked 
to	 more	 than	 5000	 different	 types	 of	 knockout	 mice),	 identified	
56.7	 million	 unique	 single	 nucleotide	 polymorphisms,	 8.8	 mil-
lion	 unique	 indels	 (insertion	 or	 deletion	 of	 nucleotide	 bases),	 and	
0.28 million structural variants.76 These differences may be associ-
ated	with	differences	in	functions.	Examples	of	GI	functions	in	which	
strain- dependent differences are reported include differences in ex-
pression of L-	Tryptophan	hydroxylase	2	 (tph2)	gene	polymorphism	
within	the	intestine,	in	the	numbers	of	close	contacts	between	dif-
ferent phenotypes of enteric neurons and in the sensitivities of mus-
cle contractions to 5- hydroxytryptamine	(5-	HT).77	In	addition,	clear	
differences have been reported in the propensity of different strains 
to	defecate	or	release	colonic	5-	HT,78 in the sensitivities of different 
strains of mice to pica behavior induced by cisplatin,79 and in the 
thickness	of	the	stomach	wall,	frequency	of	duodenal	contractions	
and rate of defecation of an ingested marker.80

Might	 the	variations	 in	 genetic	 structures	of	 rodents	 from	dif-
ferent sources explain why some studies find no ability of motilin 
to	exert	function,	whereas	others	report	a	function?	Without	a	rig-
orous	examination	of	those	animals	in	which	a	response	was	found,	
this	question	is	impossible	to	answer.	Nevertheless,	certain	specula-
tions seem reasonable.

5  |  POTENTIAL MOLECUL AR 
DIFFERENCES BET WEEN ANIMAL S FROM 
DIFFERENT SOURCES

5.1  |  Motilin receptor

As	yet,	there	is	no	evidence	for	a	functional	motilin	receptor	among	
rodents. In each species examined by He et al11,18—	rat,	mouse,	guinea	
pig (confirmed by Sanger et al12	in	similar	experiments),	and	animals	
that	are	not	typical	laboratory	species	(squirrel,	pika,	kangaroo	rat,	
and	mouse)—	a	potentially	functional	motilin	receptor	was	not	identi-
fied.	In	one	other	study,	motilin	receptors	were	identified	within	the	
myenteric	plexus	of	guinea	pig	ileum	by	immunohistochemistry,	but	
the	receptor	mRNA	was	not	found	by	qPCR22; these conflicting data 
were suggested by the authors to have occurred because the recep-
tor was structurally distinct from the human receptor on which the 
primers were designed.

In no other experiment in which a response to motilin was de-
tected,	have	attempts	been	made	to	isolate	the	motilin	receptor	by	
qPCR	or	other	techniques.	Accordingly,	it	remains	a	possibility	that	
in some populations of rodents a functional motilin receptor exists. 
However,	 an	 alternate	 possibility	 is	 that	 a	 different	 receptor	 has	
appeared	with	good	affinity	for	motilin,	capable	of	eliciting	a	func-
tional response. The current absence of an identified rodent motilin 
receptor	 favors	 this	 second	 possibility	 which	 if	 correct,	 indicates	
the existence of a past or present evolutionary pressure to retain 
the functions of motilin and generate a motilin- sensitive receptor; if 

endogenous motilin is no longer present then an ability to respond to 
exogenously applied motilin would represent a vestigial sensitivity. 
Notably,	in	the	study	by	He	et	al18	into	the	North	American	kangaroo	
mouse	and	rat,	the	retention	of	a	potentially	functional	motilin	was	
suggested to represent a lineage- specific physiological adaptation 
to a new function.

Could	 a	 non-	motilin	 receptor,	 sensitive	 to	motilin,	 exist	within	
the	 cDNA	 and	 genomic	 sequences	 of	 the	 rodent	 population?	 The	
receptor with the closest sequence homology is the ghrelin receptor.

5.2  |  Ghrelin receptor

The motilin and ghrelin receptors belong to the same sub- family of 
7-	TM	GPCRs,	 sharing	 significant	 amino	 acid	 identities	 in	 different	
species	 (e.g.,	 the	human	motilin	 and	 ghrelin	 receptors	 and	 the	 re-
ceptors in the insectivore Suncus murinus	each	share,	 respectively,	
52%	and	42%	overall	amino	acid	 identity	and	86%	and	62%	in	the	
seven- transmembrane region81–	83).	 Both	 hormones	 are	 released	
from	 endocrine	 cells	 of	 the	 upper	GI	 tract	 at	 different	 times	 dur-
ing fasting and both stimulate gastric motility and have roles in the 
feeding cycle in humans and other mammalian species; unlike moti-
lin,	ghrelin	is	also	found	outside	the	GI	tract	where	it	can	exert	sig-
nificant	additional	non-	GI	functions.84,85	Might	the	ghrelin	receptor	
substitute	for	the	absence	of	a	functional	motilin	system?	This	seems	
to	be	a	possibility	 in	 terms	of	 the	control	of	gastric	 functions,	but	
good evidence to suggest that the rodent ghrelin receptor is highly 
responsive	to	exogenous	(or	endogenous)	motilin	is	lacking.

In	rodents,	it	has	been	suggested	that	the	absence	of	a	functional	
motilin system is compensated for by the actions of ghrelin.29,86 This 
may be illustrated by the species- dependent roles of motilin and 
ghrelin	in	the	mechanisms	of	the	migrating	motor	complex	(MMC).	In	
humans,	the	release	and	subsequent	actions	of	motilin	during	fast-
ing mediate the propulsive phase III contractile activity of the gas-
tric	MMC,	also	associated	with	hunger	(see	Introduction).	Although	
ghrelin	is	released	during	fasting	in	humans,	this	is	not	in	association	
with	phase	III	MMC	activity,	its	purpose	being	to	increase	appetite.4 
In the insectivore Suncus murinus	(house	musk	shrew),	also	possess-
ing	both	motilin	and	ghrelin	functional	systems,	the	ability	of	motilin	
to	 induce	phase	 III	of	 the	gastric	MMC	may	 involve	the	release	of	
ghrelin.87,88	 In	 rats	and	mice,	however,	 in	which	gastric	MMCs	are	
less	well	defined	and	more	frequent,	it	is	the	release	of	ghrelin	which	
evokes the phase- III- like contractions.89–	91	Notably,	ghrelin	can	di-
rectly	stimulate	gastric	enteric	nerve	functions	in	rat	and	mouse,	but	
not in human.27,92,93	Curiously,	in	rats	with	a	mutant,	non-	functional	
ghrelin	 receptor,	 spontaneous	 gastric	 phase	 III-	like	 contractions	
were	still	observed,	suggesting	the	development	of	a	different	com-
pensatory mechanism to maintain these contractions.94

In	 species	 possessing	 both	 motilin	 and	 ghrelin,	 the	 receptors	
have	a	poor	affinity	for	each	other's	cognate	ligand	(e.g.,	the	human	
and rabbit receptors29,95).	 In	mice,	 it	 has	 been	 suggested	 that	 the	
ghrelin receptor is responsive to motilin at high concentrations. 
Thus,	using	a	whole-	cell	patch-	clamp	configuration,	motilin	1–	5	µM	
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depolarized	the	pacemaker	potentials	of	the	interstitial	cells	of	Cajal	
within	 the	 small	 intestine,	 in	 a	 concentration-	dependent	 manner;	
this activity was inhibited by the ghrelin receptor antagonist [D-	Lys]	
GHRP-	6.38	However,	 it	 is	 important	 to	 note	 that	 in	most	 other	 in	
vitro studies in which motilin has been shown to exert activity in ro-
dents,	the	efficacy	is	reported	at	nM	concentrations	(Table	1),	similar	
to the concentrations which activate the human and rabbit motilin 
receptors.29,95

5.3  |  Other possibilities

Additional	bioactive	molecules	are	formed	from	the	ghrelin	gene	and	
possibly	the	motilin	gene,	potentially	able	to	interact	with	receptors	
and	 in	rodents,	potentially	 interacting	with	motilin.	This	possibility	
has not been investigated. The first is des- acyl ghrelin,	formed	from	
pre- pro ghrelin and by de- acylation of circulating ghrelin to activate 
a	putative	 receptor	 (not	 yet	molecularly	 identified)	which	 appears	
to be poorly responsive to ghrelin and has been called the un-
acylated	ghrelin	or	UAG	receptor;	evidence	also	exists	for	a	further	
putative receptor at which ghrelin and des- acyl ghrelin have similar 
potency.96,97

Second,	the	predicted	endoproteinase	cleavage	sites	within	the	
ghrelin and motilin genes are thought to generate additional pep-
tides.98	For	the	ghrelin	gene,	this	can	generate	obestatin,	a	peptide	
with biological activity (but with little or no ability to modulate rat 
GI	 motility99)	 and	 as	 yet,	 without	 a	 confirmed	 receptor.100 Other 
ghrelin gene splice variants include a C- terminus truncated form 
of	 ghrelin,	 present	 in	 mice	 and	 humans.101 For the prepromotilin 
gene of motilin an additional cleavage site may generate a motilin- 
associated peptide	at	the	carboxy-	terminal,	thought	to	play	a	role	in	
protein degradation and posttranslational processing of motilin.102 
Furthermore,	a	preliminary	report	suggested	that	a	17-	residue	pep-
tide	 (H-	Leu-	Thr-	Ala-	Pro-	Leu-	Glu-	Ile-	Gly-	Met-	Arg-	Met-	Asn-	SerArg-	
Gln-	Leu-	Glu-	OH),	similar	 in	 length	to	obestatin,	may	be	generated	
by	cleavage	of	the	motilin	gene,	this	peptide	weakly	mimicking	the	
ability of motilin to increase cholinergically mediated contractions in 
rabbit isolated gastric antrum.103

Finally,	 a	 5-	TM	motilin	 receptor	 has	 been	 identified,10 with no 
known	function.	Similarly,	a	5-	TM	ghrelin	receptor,	without	sensitiv-
ity	to	ghrelin,	is	able	to	dimerize	with	the	ghrelin	receptor,	changing	
its function and ability to form oligomeric complexes with the do-
pamine D1 receptor,	to	create	different	pharmacological	profiles.104

6  |  CONCLUSIONS AND QUESTIONS

The	absence	of	genes	generating	motilin	and/	or	 its	 receptor,	 and	
the absence of a functional response to motilin in laboratory rodents 
has	become	the	accepted	status	for	motilin.	Nevertheless,	confusion	
remains	over	numerous	reports,	which	demonstrate	an	ability	of	low	
concentrations of motilin to exert functional activity in some labora-
tory	rodents,	particularly	within	the	GI	tract	and	the	CNS.	There	is	

no	accepted	explanation	for	this	anomaly,	but	the	very	existence	of	
such	differences	raises	concerns,	particularly	in	terms	of	the	need	to	
understand animal research reproducibility.105

It is difficult to refute the suggestion that the variation in re-
sponse	to	motilin	is	dependent	on	the	source	of	rat,	mouse,	or	guinea	
pig used. This includes outbred animals and genetically stable in- 
bred	strains	of	mice.	The	cause	of	the	variation	remains	unknown,	
but it can be speculated that molecular differences in the receptors 
for	motilin,	ghrelin	and	perhaps	for	associated	peptides	might	be	in-
volved.	If	correct,	several	questions	need	to	be	asked.	

1. Is the variation in response to motilin characteristic for func-
tions	 that	 are	 undergoing	 gene	 pseudonymization?
In	 different	 species	 of	 rodent,	 He	 et	 al11,18 described the 
complete loss of functional genes for motilin and its recep-
tor,	 but	 in	 others,	 a	 functional	 motilin	 gene	 remained	 whilst	
the receptor was non- functional (the opposite may be true in 
certain amphibians13).	 This	 variation	 was	 argued	 to	 have	 been	
brought	about	by	early	pseudonymization	of	the	motilin	receptor	
followed	 by	 progressive	 pseudonymization	 of	 the	 motilin	 gene	
during the evolution of the Rodentia order.
 
(i)	 In	 some	 laboratory	 rodent	 strains,	 could	 differences	 in	 ge-

nomes between animals from different outbred suppliers in-
clude	 the	 retention	of	a	 functional	motilin	 receptor?	Studies	
are needed to look for the motilin receptor in animals which 
respond to motilin.

(ii)	Since	pseudonymization	of	the	motilin	receptor	gene	occurred	
before the loss of the motilin gene is it possible that a differ-
ent	receptor	has	evolved	to	respond	to	motilin?	The	effects	of	
motilin on the functions of receptors closely related to motilin 
should be investigated. This includes the rodent ghrelin recep-
tor	(e.g.,	has	the	affinity	of	the	ghrelin	receptor	for	motilin	in-
creased,	such	that	nM	concentrations	of	motilin	are	now	able	
to	activate	 the	 receptor?),	 and	when	 identified,	 the	putative	
receptors activated by other bioactive peptides generated 
from the ghrelin and possibly the motilin gene.

(iii)	 What	 are	 the	 consequences	 of	 gene	 pseudonymization	 for	
other	receptor	systems?	Wang	et	al106 identified a variety of 
human	pseudogenes,	including	those	involved	with	chemore-
ception	 and	 immunity,	 but	 the	 physiological	 and	pharmaco-
logical	consequences	of	 their	progressive	pseudonymization	
during mammalian evolution remain to be examined.

2. What are the consequences of rodent supplier- dependent vari-
ations in sensitivity to motilin (or ligands for other genes un-
dergoing	pseudonymization)	on	activities	of	non-	motilin	 ligands	
involved in the same physiological functions as motilin (in non- 
rodents	or	rodents	exhibiting	functional	sensitivity	to	motilin)?	An	
example of the actions of one endogenous ligand compensating 
for	the	loss	of	another	is	provided	by	Adkins	et	al,107 who found 
10 times the normal level of insulin in the circulation of guinea 
pigs,	 speculating	 that	 since	 insulin	possesses	growth-	promoting	
activity it may be compensating for an absence of the functions of 
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growth	hormone,	perhaps	via	the	insulin- like growth factor I re-
ceptor.	With	regard	to	motilin,	the	GI	sites	of	action	and	functions	
of ghrelin in rodents may have upregulated to compensate for 
the	absence	of	motilin	 (see	earlier	discussion).	 In	addition,	5-	HT	
plays	 a	 role	 in	MMC	activity	of	mammals,	 including	 rodents.108 
In humans 5- HT3 receptor antagonists prolong the interval be-
tween	successive	MMCs	but	have	no	effects	on	gastric	emptying	
of food.108,109 Studies in dogs show that motilin and 5- HT interact 
in a positive manner to facilitate the release of both mediators and 
their	abilities	 to	 initiate	 the	MMC	cycle	 (involving	5- HT3 recep-
tors	 for	MMCs	originating	 in	 the	 stomach	and	5- HT4 receptors 
for	MMCs	originating	 in	stomach	and	duodenum)	and	stimulate	
motilin release to sustain phase III activity.110	By	contrast,	in	ro-
dents the 5- HT3	receptor	is	not	involved	in	regulating	MMC	activ-
ity111 but 5- HT3 receptor antagonists increase gastric emptying in 
rats and guinea pigs.112	Thus,	if	different	populations	of	rodents	
have	lost	or	still	retain	an	ability	to	respond	to	motilin,	 it	seems	
reasonable to suggest that similar variability will be found among 
the actions of other endogenous ligands involved with the same 
physiological functions as motilin.

3.	 Are	motilin-	responsive	rodents	useful	“knock-	in”	 laboratory	ani-
mals	for	studying	the	functions	of	motilin?	This	would	avoid	hav-
ing to rely on other non- rodent species or rodents in which the 
human motilin receptor gene has been knocked- in [29].

In	summary,	the	existence	of	responses	to	motilin	in	rodents	for	
which there is no demonstrated motilin receptor raises important 
questions	 relating	 to	 rodent	 research	 reproducibility,	 motilin	 re-
search	and	potentially,	 in	other	areas	of	pharmacology	where	sim-
ilar	inconsistencies	occur,	perhaps	where	there	is	evidence	of	gene	
pseudonymization.

6.1  |  Nomenclature

Key	 protein	 targets	 and	 ligands	 in	 this	 article	 are	 hyper-
linked	 to	 corresponding	 entries	 in	 the	 IUPHAR/BPS	 Guide	 to	
PHARMACOLOGY	 http://www.guide topha rmaco logy.org and 
permanently	archived	in	the	Concise	Guide	to	PHARMACOLOGY	
2021/22.113
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