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Abstract
The gastrointestinal (GI) hormone motilin helps control human stomach movements 
during hunger and promotes hunger. Although widely present among mammals, it is 
generally accepted that in rodents the genes for motilin and/or its receptor have un-
dergone pseudonymization, so exogenous motilin cannot function. However, several 
publications describe functions of low concentrations of motilin, usually within the GI 
tract and CNS of mice, rats, and guinea pigs. These animals were from institute-held 
stocks, simply described with stock names (e.g., “Sprague–Dawley”) or were inbred 
strains. It is speculated that variation in source/type of animal introduces genetic vari-
ations to promote motilin-sensitive pathways. Perhaps, in some populations, motilin 
receptors exist, or a different functionally-active receptor has a good affinity for mo-
tilin (indicating evolutionary pressures to retain motilin functions). The ghrelin recep-
tor has the closest sequence homology, yet in non-rodents the receptors have a poor 
affinity for each other's cognate ligand. In rodents, ghrelin may substitute for certain 
GI functions of motilin, but no good evidence suggests rodent ghrelin receptors are 
highly responsive to motilin. It remains unknown if motilin has functional relationships 
with additional bioactive molecules formed from the ghrelin and motilin genes, or if a 
5-TM motilin receptor has influence in rodents (e.g., to dimerize with GPCRs and cre-
ate different pharmacological profiles). Is the absence/presence of responses to mo-
tilin in rodents’ characteristic for systems undergoing gene pseudonymization? What 
are the consequences of rodent supplier-dependent variations in motilin sensitivity 
(or other ligands for receptors undergoing pseudonymization) on gross physiological 
functions? These are important questions for understanding animal variation.
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1  |  INTRODUC TION TO MOTILIN

In humans, the hormone motilin is found mostly within endocrine 
cells of the mucosa of the duodenum and jejunum, and to a lesser 
extent the gastric antrum.1,2 Motilin is released from these cells 
during hunger to induce phase III activity of the gastric migrating 
motor complex, a wave of high amplitude and propulsive contrac-
tions which occurs during fasting every 90–120 min and moves from 
the stomach and into the small intestine. Its purpose is thought to 
help clear the stomach of any undigested material, prevent bacterial 
overgrowth, and stimulate a sensation of hunger.3–5 Intravenous in-
fusions of motilin to humans have also been shown to stimulate the 
motility of the gastric antrum,6,7 increase gastric emptying of a solid 
meal,8 and induce postprandial nausea.7 Experiments with human 
isolated stomach showed that the gastric prokinetic activity of moti-
lin occurs primarily because of an ability to act prejunctionally within 
the enteric nervous system to strongly facilitate cholinergic activity 
in a concentration-dependent manner, with the higher concentra-
tions also directly contracting the muscle; the large magnitude of 
the excitatory nerve-muscle responses at the higher concentrations, 
perhaps in conjunction with vagal nerve activation, have been ar-
gued to help promote the ability of high doses of motilin and of mo-
tilin receptor agonists to cause nausea and vomiting.9

2  |  LOSS OF A FUNC TIONAL MOTILIN 
SYSTEM AMONG RODENTS

Motilin is found within the mammalian kingdom, with orthologues 
identified in birds, reptiles, amphibians, and fishes; the receptor for 
motilin, a seven-transmembrane (TM), G-protein-coupled structure 
(first identified in human10), has a matching presence.11–13 However, 
examinations of genomic databases, including those assembled by 
Ensembl, found that among the mammals, the genes in rodents 
(mouse, rat, kangaroo rat, guinea pig, squirrel, a strain of pika) for 
the motilin receptor and often for motilin itself, have become pseu-
dogenes (e.g., 80%–90% identity to the human motilin receptor, 
but with an in-frame stop-codon). This indicates that in rodents the 
functions of motilin have been lost11,12,14,15 For the mouse and rat, 
this is thought to have occurred via mutations in the genes encod-
ing the motilin receptor and motilin, and not by a disruptive chro-
mosomal rearrangement that potentially could have removed both 
genes.11 Interestingly, among the amphibians, the reverse may be 
true. Certain frogs (e.g., the tropical clawed frog may have retained 
a motilin receptor but lost the presence of motilin; the authors sug-
gest the possibility of a different endogenous agonist acting at the 
motilin receptor).13

Among rodents, the evolutionary pressures that led to the 
elimination of the presence and functions of motilin are unclear. 
However, it has been speculated that because rodents have also 
lost the ability to vomit (with marked and associated changes in 
the presence of other genetic markers and in neuronal, hormonal, 
and structural functions regulating upper gastrointestinal (GI) 

functions) all, or many of these events may have been somehow 
driven by an environmental pressure for water conservation in 
arid or semi-arid regions.12 Early pseudonymization of the moti-
lin receptor was followed by loss of the motilin peptide, complete 
in some rodent species but not in others. For example, although 
a potentially functional form of motilin was not identified in the 
guinea pig by He et al,11 a later search of Ensembl Genome da-
tabases by Kitazawa et al16 confirmed a proposed existence of 
guinea pig motilin (two different structures were first identified 
in the Ensembl Genome Database by Xu et al17 confirmed by 
qPCR and by Southern blot hybridization), which when synthe-
sized were inactive when applied to guinea pig GI muscle strips 
but were effective stimulants when applied in similar experiments 
using rabbit duodenum (the evoked activity was reduced by the 
motilin receptor antagonist GM-109 and by human motilin de-
sensitization). Interestingly the later RT-PCR using various primer 
sets failed to amplify the mRNA for one of the putative motilin 
structures.16 Nevertheless, the differences in data obtained by dif-
ferent investigators suggested that the gene for motilin in guinea 
pigs is undergoing pseudogenization but highly divergent alleles 
of the gene exist within the cDNA and genomic sequences of the 
guinea pig population.18 Another study into the North American 
kangaroo mouse and rat (members of the Dipodomyinae subfamily 
of rodents) identified potentially functional forms of motilin but 
since the motilin receptor pseudogene was formed well before the 
radiation of this subfamily, the retention of a potentially functional 
motilin was suggested to represent a lineage-specific physiological 
adaptation to a new function.18

3  |  THE RODENT ANOMALIES

In contrast with the failure to identify a functional motilin gene 
within genomic databases of rats and mice (see above), or identify 
the presence of motilin,19,20 there are several publications in which 
motilin is reported to be present within these animals (recent exam-
ples include21–23). Furthermore, although the application of motilin 
has been found to be without activity in several experiments with 
stomach and intestinal preparations from rats, mice, and guinea pigs 
(examples include16,24–28), several other publications report an ability 
of motilin to exert functional activity in the stomach, brain and other 
tissues of rats, mice, and guinea pigs (briefly noted previously11,29). 
Table 1 lists these studies and when provided by the authors, gives 
the sources of rodents and ligands used within each investigation. 
Examination of Table 1 reveals several features: 

•	 Most (but not all) studies reporting functions of motilin involve 
the GI tract and the central nervous system (CNS)

•	 Some studies used cultured or dispersed primary cell populations, 
including all those studying GI muscle functions

•	 The studies date from the 1980s to 2019
•	 Responses to motilin have been reported when using both out-

bred and inbred animal suppliers

https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1458
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•	 In vitro, the effective concentrations of motilin are often in the 
nM range, similar to the low concentrations which activate the 
human and rabbit motilin receptors

•	 In some studies, the effective concentrations are in the μM range 
suggesting potential activation of a non-motilin receptor

The motilin receptor may also be activated by the anti-biotic 
drugs erythromycin and azithromycin,64 and by other drugs with 
similar, macrolide structures.65 These drugs stimulate upper GI mo-
tility and are used “off label” to increase gastric emptying for ther-
apeutic ultility.3,63 Accordingly, Table 1 also lists a smaller number 
of studies in which functions of the anti-biotic drug erythromycin 
or related structures have been identified within rodents. However, 
these drugs may possess uncertain additional pharmacology. There 
are, for example, several reports of an inhibitory activity of high con-
centrations or doses of erythromycin in GI and other smooth muscle 
preparations, not mediated by activation of the motilin receptor.66–70 
In addition, the compound EM574, a derivative of erythromycin, can 
activate the ghrelin receptor (IC50 of 10 mM

71). More recently, it has 
been suggested that the anti-inflammatory actions of erythromy-
cin in chondrocytes may be mediated directly or indirectly via the 
ghrelin receptor.72 This complexity of activity among the macrolides 
makes it difficult to further consider the mechanisms by which these 
structures exert activity in rodents. For this reason, only the func-
tions of motilin itself are now discussed.

How can motilin have activity in some studies with rodents but 
not in others? In attempting to answer this question it is difficult 
to avoid the possibility that the variation is somehow related to the 
source and/ or type of animal used, which introduces important vari-
ations in genetic coding and potentially, in receptors and pathways 
by which motilin can exert function.

4  |  SOURCE- AND STR AIN- DEPENDENT 
DIFFERENCES AMONG RODENTS

In the experiments in which a function of motilin was identified, 
the sources of animals were not always provided (Table 1). Where 
this information was given, analysis showed that animals were 
from institute-held stocks (e.g., Institute of Cancer Research mice, 
Qingdao Marine Drug Institution), or were described simply by 
stock names such as “Hartley” (guinea pig), “Sprague–Dawley,” and 
“Wistar” (rats), or sometimes, the authors used inbred strains of 
mice (eg C57/BL6J). An advantage of inbred strains of mice is that 
they are thought to minimize genetic variability between individual 
animals (but see Tuttle et al,73 who found evidence of high genetic 
variability), although these animals may be relatively small and sub-
ject to selection pressures which favor adaptation to captivity (e.g., 
social behaviors74). The use of stock names does not signify a known 
genomic identity, which may differ between the same type of ani-
mal from different breeders. Such animals (also highly inbred) can be 
subject to founder effects and genetic drift and may show substan-
tial genetic divergence from other colonies.75Sp
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Many genetic differences exist between different strains of 
mice. An investigation into 17 different mouse genomes (includ-
ing classic laboratory strains and the progenitors of strains linked 
to more than 5000 different types of knockout mice), identified 
56.7  million unique single nucleotide polymorphisms, 8.8  mil-
lion unique indels (insertion or deletion of nucleotide bases), and 
0.28 million structural variants.76 These differences may be associ-
ated with differences in functions. Examples of GI functions in which 
strain-dependent differences are reported include differences in ex-
pression of L-Tryptophan hydroxylase 2 (tph2) gene polymorphism 
within the intestine, in the numbers of close contacts between dif-
ferent phenotypes of enteric neurons and in the sensitivities of mus-
cle contractions to 5-hydroxytryptamine (5-HT).77 In addition, clear 
differences have been reported in the propensity of different strains 
to defecate or release colonic 5-HT,78 in the sensitivities of different 
strains of mice to pica behavior induced by cisplatin,79 and in the 
thickness of the stomach wall, frequency of duodenal contractions 
and rate of defecation of an ingested marker.80

Might the variations in genetic structures of rodents from dif-
ferent sources explain why some studies find no ability of motilin 
to exert function, whereas others report a function? Without a rig-
orous examination of those animals in which a response was found, 
this question is impossible to answer. Nevertheless, certain specula-
tions seem reasonable.

5  |  POTENTIAL MOLECUL AR 
DIFFERENCES BET WEEN ANIMAL S FROM 
DIFFERENT SOURCES

5.1  |  Motilin receptor

As yet, there is no evidence for a functional motilin receptor among 
rodents. In each species examined by He et al11,18—rat, mouse, guinea 
pig (confirmed by Sanger et al12 in similar experiments), and animals 
that are not typical laboratory species (squirrel, pika, kangaroo rat, 
and mouse)—a potentially functional motilin receptor was not identi-
fied. In one other study, motilin receptors were identified within the 
myenteric plexus of guinea pig ileum by immunohistochemistry, but 
the receptor mRNA was not found by qPCR22; these conflicting data 
were suggested by the authors to have occurred because the recep-
tor was structurally distinct from the human receptor on which the 
primers were designed.

In no other experiment in which a response to motilin was de-
tected, have attempts been made to isolate the motilin receptor by 
qPCR or other techniques. Accordingly, it remains a possibility that 
in some populations of rodents a functional motilin receptor exists. 
However, an alternate possibility is that a different receptor has 
appeared with good affinity for motilin, capable of eliciting a func-
tional response. The current absence of an identified rodent motilin 
receptor favors this second possibility which if correct, indicates 
the existence of a past or present evolutionary pressure to retain 
the functions of motilin and generate a motilin-sensitive receptor; if 

endogenous motilin is no longer present then an ability to respond to 
exogenously applied motilin would represent a vestigial sensitivity. 
Notably, in the study by He et al18 into the North American kangaroo 
mouse and rat, the retention of a potentially functional motilin was 
suggested to represent a lineage-specific physiological adaptation 
to a new function.

Could a non-motilin receptor, sensitive to motilin, exist within 
the cDNA and genomic sequences of the rodent population? The 
receptor with the closest sequence homology is the ghrelin receptor.

5.2  |  Ghrelin receptor

The motilin and ghrelin receptors belong to the same sub-family of 
7-TM GPCRs, sharing significant amino acid identities in different 
species (e.g., the human motilin and ghrelin receptors and the re-
ceptors in the insectivore Suncus murinus each share, respectively, 
52% and 42% overall amino acid identity and 86% and 62% in the 
seven-transmembrane region81–83). Both hormones are released 
from endocrine cells of the upper GI tract at different times dur-
ing fasting and both stimulate gastric motility and have roles in the 
feeding cycle in humans and other mammalian species; unlike moti-
lin, ghrelin is also found outside the GI tract where it can exert sig-
nificant additional non-GI functions.84,85 Might the ghrelin receptor 
substitute for the absence of a functional motilin system? This seems 
to be a possibility in terms of the control of gastric functions, but 
good evidence to suggest that the rodent ghrelin receptor is highly 
responsive to exogenous (or endogenous) motilin is lacking.

In rodents, it has been suggested that the absence of a functional 
motilin system is compensated for by the actions of ghrelin.29,86 This 
may be illustrated by the species-dependent roles of motilin and 
ghrelin in the mechanisms of the migrating motor complex (MMC). In 
humans, the release and subsequent actions of motilin during fast-
ing mediate the propulsive phase III contractile activity of the gas-
tric MMC, also associated with hunger (see Introduction). Although 
ghrelin is released during fasting in humans, this is not in association 
with phase III MMC activity, its purpose being to increase appetite.4 
In the insectivore Suncus murinus (house musk shrew), also possess-
ing both motilin and ghrelin functional systems, the ability of motilin 
to induce phase III of the gastric MMC may involve the release of 
ghrelin.87,88 In rats and mice, however, in which gastric MMCs are 
less well defined and more frequent, it is the release of ghrelin which 
evokes the phase-III-like contractions.89–91 Notably, ghrelin can di-
rectly stimulate gastric enteric nerve functions in rat and mouse, but 
not in human.27,92,93 Curiously, in rats with a mutant, non-functional 
ghrelin receptor, spontaneous gastric phase III-like contractions 
were still observed, suggesting the development of a different com-
pensatory mechanism to maintain these contractions.94

In species possessing both motilin and ghrelin, the receptors 
have a poor affinity for each other's cognate ligand (e.g., the human 
and rabbit receptors29,95). In mice, it has been suggested that the 
ghrelin receptor is responsive to motilin at high concentrations. 
Thus, using a whole-cell patch-clamp configuration, motilin 1–5 µM 

https://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=249&objId=1242#1242
https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5
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depolarized the pacemaker potentials of the interstitial cells of Cajal 
within the small intestine, in a concentration-dependent manner; 
this activity was inhibited by the ghrelin receptor antagonist [D-Lys] 
GHRP-6.38 However, it is important to note that in most other in 
vitro studies in which motilin has been shown to exert activity in ro-
dents, the efficacy is reported at nM concentrations (Table 1), similar 
to the concentrations which activate the human and rabbit motilin 
receptors.29,95

5.3  |  Other possibilities

Additional bioactive molecules are formed from the ghrelin gene and 
possibly the motilin gene, potentially able to interact with receptors 
and in rodents, potentially interacting with motilin. This possibility 
has not been investigated. The first is des-acyl ghrelin, formed from 
pre-pro ghrelin and by de-acylation of circulating ghrelin to activate 
a putative receptor (not yet molecularly identified) which appears 
to be poorly responsive to ghrelin and has been called the un-
acylated ghrelin or UAG receptor; evidence also exists for a further 
putative receptor at which ghrelin and des-acyl ghrelin have similar 
potency.96,97

Second, the predicted endoproteinase cleavage sites within the 
ghrelin and motilin genes are thought to generate additional pep-
tides.98 For the ghrelin gene, this can generate obestatin, a peptide 
with biological activity (but with little or no ability to modulate rat 
GI motility99) and as yet, without a confirmed receptor.100 Other 
ghrelin gene splice variants include a C-terminus truncated form 
of ghrelin, present in mice and humans.101 For the prepromotilin 
gene of motilin an additional cleavage site may generate a motilin-
associated peptide at the carboxy-terminal, thought to play a role in 
protein degradation and posttranslational processing of motilin.102 
Furthermore, a preliminary report suggested that a 17-residue pep-
tide (H-Leu-Thr-Ala-Pro-Leu-Glu-Ile-Gly-Met-Arg-Met-Asn-SerArg-
Gln-Leu-Glu-OH), similar in length to obestatin, may be generated 
by cleavage of the motilin gene, this peptide weakly mimicking the 
ability of motilin to increase cholinergically mediated contractions in 
rabbit isolated gastric antrum.103

Finally, a 5-TM motilin receptor has been identified,10 with no 
known function. Similarly, a 5-TM ghrelin receptor, without sensitiv-
ity to ghrelin, is able to dimerize with the ghrelin receptor, changing 
its function and ability to form oligomeric complexes with the do-
pamine D1 receptor, to create different pharmacological profiles.104

6  |  CONCLUSIONS AND QUESTIONS

The absence of genes generating motilin and/ or its receptor, and 
the absence of a functional response to motilin in laboratory rodents 
has become the accepted status for motilin. Nevertheless, confusion 
remains over numerous reports, which demonstrate an ability of low 
concentrations of motilin to exert functional activity in some labora-
tory rodents, particularly within the GI tract and the CNS. There is 

no accepted explanation for this anomaly, but the very existence of 
such differences raises concerns, particularly in terms of the need to 
understand animal research reproducibility.105

It is difficult to refute the suggestion that the variation in re-
sponse to motilin is dependent on the source of rat, mouse, or guinea 
pig used. This includes outbred animals and genetically stable in-
bred strains of mice. The cause of the variation remains unknown, 
but it can be speculated that molecular differences in the receptors 
for motilin, ghrelin and perhaps for associated peptides might be in-
volved. If correct, several questions need to be asked. 

1.	 Is the variation in response to motilin characteristic for func-
tions that are undergoing gene pseudonymization?
In different species of rodent, He et al11,18 described the 
complete loss of functional genes for motilin and its recep-
tor, but in others, a functional motilin gene remained whilst 
the receptor was non-functional (the opposite may be true in 
certain amphibians13). This variation was argued to have been 
brought about by early pseudonymization of the motilin receptor 
followed by progressive pseudonymization of the motilin gene 
during the evolution of the Rodentia order.
 
(i)	 In some laboratory rodent strains, could differences in ge-

nomes between animals from different outbred suppliers in-
clude the retention of a functional motilin receptor? Studies 
are needed to look for the motilin receptor in animals which 
respond to motilin.

(ii)	Since pseudonymization of the motilin receptor gene occurred 
before the loss of the motilin gene is it possible that a differ-
ent receptor has evolved to respond to motilin? The effects of 
motilin on the functions of receptors closely related to motilin 
should be investigated. This includes the rodent ghrelin recep-
tor (e.g., has the affinity of the ghrelin receptor for motilin in-
creased, such that nM concentrations of motilin are now able 
to activate the receptor?), and when identified, the putative 
receptors activated by other bioactive peptides generated 
from the ghrelin and possibly the motilin gene.

(iii)	�What are the consequences of gene pseudonymization for 
other receptor systems? Wang et al106 identified a variety of 
human pseudogenes, including those involved with chemore-
ception and immunity, but the physiological and pharmaco-
logical consequences of their progressive pseudonymization 
during mammalian evolution remain to be examined.

2.	 What are the consequences of rodent supplier-dependent vari-
ations in sensitivity to motilin (or ligands for other genes un-
dergoing pseudonymization) on activities of non-motilin ligands 
involved in the same physiological functions as motilin (in non-
rodents or rodents exhibiting functional sensitivity to motilin)? An 
example of the actions of one endogenous ligand compensating 
for the loss of another is provided by Adkins et al,107 who found 
10 times the normal level of insulin in the circulation of guinea 
pigs, speculating that since insulin possesses growth-promoting 
activity it may be compensating for an absence of the functions of 
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growth hormone, perhaps via the insulin-like growth factor I re-
ceptor. With regard to motilin, the GI sites of action and functions 
of ghrelin in rodents may have upregulated to compensate for 
the absence of motilin (see earlier discussion). In addition, 5-HT 
plays a role in MMC activity of mammals, including rodents.108 
In humans 5-HT3 receptor antagonists prolong the interval be-
tween successive MMCs but have no effects on gastric emptying 
of food.108,109 Studies in dogs show that motilin and 5-HT interact 
in a positive manner to facilitate the release of both mediators and 
their abilities to initiate the MMC cycle (involving 5-HT3 recep-
tors for MMCs originating in the stomach and 5-HT4 receptors 
for MMCs originating in stomach and duodenum) and stimulate 
motilin release to sustain phase III activity.110 By contrast, in ro-
dents the 5-HT3 receptor is not involved in regulating MMC activ-
ity111 but 5-HT3 receptor antagonists increase gastric emptying in 
rats and guinea pigs.112 Thus, if different populations of rodents 
have lost or still retain an ability to respond to motilin, it seems 
reasonable to suggest that similar variability will be found among 
the actions of other endogenous ligands involved with the same 
physiological functions as motilin.

3.	 Are motilin-responsive rodents useful “knock-in” laboratory ani-
mals for studying the functions of motilin? This would avoid hav-
ing to rely on other non-rodent species or rodents in which the 
human motilin receptor gene has been knocked-in [29].

In summary, the existence of responses to motilin in rodents for 
which there is no demonstrated motilin receptor raises important 
questions relating to rodent research reproducibility, motilin re-
search and potentially, in other areas of pharmacology where sim-
ilar inconsistencies occur, perhaps where there is evidence of gene 
pseudonymization.

6.1  |  Nomenclature

Key protein targets and ligands in this article are hyper-
linked to corresponding entries in the IUPHAR/BPS Guide to 
PHARMACOLOGY http://www.guide​topha​rmaco​logy.org and 
permanently archived in the Concise Guide to PHARMACOLOGY 
2021/22.113
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