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A B S T R A C T   

Background: Central monitoring (CM), in which data across all clinical sites are monitored, has an important role 
in risk-based monitoring. Several statistical methods have been proposed to compare patient outcomes among 
the sites for detecting atypical sites that have different trends in observed data. These methods assume that the 
number of clinical sites is not small, e.g., 100 or more. In addition, the proportion of atypical sites is assumed to 
be relatively small. However, in actuality, the central statistical monitoring (CSM) has to be implemented in 
small or moderate sized clinical trials such as small phase II clinical trials. The number of sites is no longer large 
in such situations. Therefore, it is of concern that existing methods may not work efficiently in CM of small or 
moderate sized clinical trials. In the light of this problem, we propose a Bayesian CSM method to detect atypical 
sites as the robust method against the existence of atypical sites. 
Methods: We use Bayesian finite mixture models (FMM) to model patient outcome values of both atypical and 
typical sites. In the method, the distributions of outcome values in normal sites are determined by choosing the 
body distribution, which has the largest mixture parameter value of finite mixture models based on the 
assumption that normal sites are in the majority. Atypical sites are detected by the criterion based on the pos
terior predictive distribution of normal site’s outcome values derived from only the chosen body distribution. 
Results: Proposed method is evaluated by cumulative detection probability and type I error averaged over sites 
every round of CSM under the various scenarios, being compared with the conventional type analysis. If the total 
number of patients enrolled is 48, the proposed method is superior at least 10% for any shift sizes at the 2nd and 
the 3rd rounds. If the total number of patients is 96, both methods show similar detection probability for only one 
atypical site and large shift size. However, the proposed method is superior for the other scenarios. It is observed 
that all the type I errors averaged over sites are little difference between the methods at all the scenarios. 
Conclusion: We propose a Bayesian CSM method which works efficiently in a practical use of CM. It is shown that 
our method detects atypical sites with high probability regardless of the proportion of the atypical sites under the 
small clinical trial settings which is the target of our proposed method.   

1. Introduction 

The role of monitoring activity in clinical trials is to protect patients 
participating in clinical trials, to confirm that the operation of the trials 
is complying with protocols and regulatory requirements, and to ensure 
the accuracy and completeness of reported data [1]. In recent years, 
however, the cost of monitoring activities has been increasing with 
complicating clinical trials, and their operating cost has become a large 
proportion of whole cost. It is, hence, necessary to improve the effi
ciency of monitoring activities [2]. So far, monitoring with frequent 

visits to clinical sites and 100% source data verification (SDV) has been 
conducted. This approach, however, has crucial limitations on quality 
control of clinical trials, which is that data from the relevant site cannot 
be compared with data from other sites. Thus, it does not contribute the 
improvement of data quality. Currently, the 100% SDV is not considered 
cost-effective [2–5]. Nowadays, by advanced electronic systems such as 
electric data capture systems, it is possible to review data without 
visiting sites. Consequently, data from multiple sites has been reviewed 
centrally, which is known as central monitoring (CM). Thus, abnor
malities on operational processes can be detected by CM, and the sites to 
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perform on-site monitoring are efficiently identified [6,7]. The imple
mentation of the CM is recommended by Food and Drug Administration 
(FDA) [6]. 

It is useful to apply statistical methods to CM in order to detect ab
normalities on operational processes effectively, and a statistical method 
for central statistical monitoring (CSM) has been proposed [7–12]. Most 
of the researches on CSM are aimed at detecting fraud. In recent years, 
however, several methods have been proposed to compare outcomes 
among the sites in order to detect atypical sites with potential abnor
malities on operational processes, thereby the sites to be visited are 
clarified [7,13]. As shown in Venet et al. [7] as a principle of CSM, re
ported data are collected based on a common protocol and a case report 
form for clinical trials. Thus, even if the clinical trial is for the case of 
multicenter clinical trials, outcomes from one site should has basically 
similar trend to other sites. Therefore, the sites which have the different 
outcome tendencies should be detected as atypical sites, and it is able to 
be recognize that abnormality on the operational process may have 
occurred in the sites. Thus, it is reasonable to identify the atypical sites 
to implement efficient on-site monitoring and inspection. 

In a decade, several methods for CSM have been proposed, which are 
classified into two types that are so-called supervised analysis and un
supervised analysis [9]. The supervised analysis is grading of sites by a 
key risk indicator (KRI). The unsupervised analysis is identification of 
outlier sites. The unsupervised analysis is useful to achieve efficient 
on-site monitoring and inspection. Thus, our study focuses on the un
supervised analysis, i.e. finding atypical sites identified as outliers. 

Most of procedures based on the unsupervised analysis are descrip
tive statistics (histogram, volcano plot, etc.) and techniques based on the 
basic theory of statistical inference (the chi-square test for the Mahala
nobis distance), which are summarized in Oba et al. [9]. Spiegelhalter 
[14] has proposed the analysis of the incidence of events, e.g. binomial 
variates, Poisson counts, using a Funnel plot in order to compare clinical 
sites, which is developed by modifying the concept of control charts 
which was introduced in statistical quality control for manufacturing. 
Desmet et al. [15] has proposed an analysis method for continuous data 
(normal variates) using linear mixed effects models to detect atypical 
sites. Desmet et al. [16] proposed the method analyzing the incidence of 
events using Beta-Binomial Models to detect atypical sites. For detection 
using multiple outcomes, currently the atypical sites are detected as 
multivariate outliers by the chi-square test based on the Mahalanobis 
distance [9]. After detection, though why these sites are atypical are 
investigated, it is necessary to specify how the individual variables 
contribute to each multivariate outlier. Mason et al. [17] and Zink et al. 
[18] tackle this problem. For this problem, Zink et al. [18] illustrated the 
application of the contribution plot [19] to RBM for real multicenter 
clinical trials. Mason et al. [17] proposed to calculate the magnitude of 
the contribution using decomposition of Hotelling’s T2 statistic into one 
dimensional variate. 

These methods have been developed in the main aspect to good 
quality management of global clinical trials. In unsupervised proced
ures, hence, it is assumed that the number of clinical sites is not small, e. 
g., 100 or more. In addition, the proportion of atypical sites is assumed 
to be relatively small, e.g., 1% or 5% because the target of such pro
cedures is outlier detection. However, in actuality, the CSM has to be 
implemented in smaller sized clinical trials such as small phase II clinical 
trials. The number of sites is no longer large in such situations. In 
addition, because CSM is conducted during the mid-period of clinical 
trials, for the early term that all of the clinical sites have not been opened 
yet, and the analysis is conducted in a small number of clinical sites. 
Hence, in these clinical trials, the proportion of the atypical sites is not 
relatively small. In the situations where the total number of clinical sites 
is small in the early period, e.g., 10, the existence of one abnormal site 
makes relatively large impact to the proportion of abnormal sites. In 
those cases, it is difficult to detect atypical sites with high probability by 
conventional methods. It is, therefore, necessary to develop a CSM 
method for smaller clinical trials or the beginning of clinical trials in 

such cases. 
In order to decide the clinical sites that have to be visited in CSM, it is 

important to easily discriminate relevant sites from non-relevant sites by 
analyzing data tendency. Unfortunately, it is difficult to powerfully 
detect abnormal sites in clinical trials that we target. However, since the 
unsupervised CSM is outlier detection, it is natural that abnormal sites 
are assumed to be minority. Thus, it is useful to apply Bayesian statistics 
to CSM which is able to combine, because posterior probabilities are 
able to express the possibility of abnormality of an operational process, 
which shows the magnitude how an outlier is crucial in terms of unde
sired impact to the goodness of a clinical trial. 

In actual clinical trials, CSM is conducted multiple times, e.g. typi
cally monthly [20], during the trials in order to detect abnormal oper
ational processes. Multiple CSM is PDCA (Plan-Do-Check-Action) cycle, 
which originally is process control for quality control in manufacturing. 
It contributes to promptly finding potential data quality risks and 
maintaining stable operational processes by finding root causes using 
problem solving methods and corrective actions. Therefore, iterative 
feature should be incorporated with the statistical methods for CSM, and 
such methods should be tested in the situation under which the multiple 
statistical analyses are conducted. In fact, the control charts, which are 
definitive tools for statistical process control, are evaluated by the 
average run length which is the mean time to the first occurrence of 
out-of-control signal [21]. Furthermore, Exponentially Weighted Mov
ing Average (EWMA) control charts and CUmulative Sum (CUSUM) 
control charts are representative control charts in which whether the 
current state of a process is in-control or out-of-control is judged using 
accumulated information of the past process states [21]. However, 
existing CSM methods have not been sufficiently developed and evalu
ated under such situations. 

EWMA and CUSUM control charts have more powerful performance 
to detect abnormality. Thus, the concept of the accumulation is useful in 
our targeting clinical trials because the number of data is small. How
ever, the data accumulation generates a contaminated distribution if 
there are abnormal sites in a clinical trial, and the simple accumulation 
procedures suffer from declined power. Therefore, in this study, we 
propose a Bayesian central statistical monitoring method using Bayesian 
finite mixture models [22–24] to detect atypical sites with avoiding 
contamination in smaller clinical trials or the early phases of clinical 
trials of which size is assumed in conventional CSM. Our method is 
evaluated in the cases where multiple CSM is conducted during the 
trials. 

In the next section, we outline CSM in clinical trials and indicate 
impact of data from abnormal clinical sites on CSM performance. In 
Section 3 we propose a CSM method using Bayesian finite mixture 
models. We present simulation studies to examine the operation char
acteristics of a new method in Section 4, and we explain our proposed 
method in detail that what data are used in each analysis and how to 
make decision using artificial example in Section 5, followed by 
discussion. 

2. CSM and statistical problem on detecting atypical sites 

2.1. Implementation of CSM 

In this section, we briefly introduce CSM and describe how outcomes 
from atypical sites affect the lower performance of CSM. In this study, 
we make a simple assumption to clarify our proposal that outcomes are 
continuous variables observed once in a trial. All the outcomes are 
assumed to follow independent and identical normal distributions. 
However, the means of outcomes from atypical sites are shifted. Hence, 
the purpose of our study is to develop the statistical detection technique 
for the atypical sites, which have their mean shifted normal 
distributions. 

Here, we assume clinical trials in which CSM is conducted multiple 
times. Let yij be the outcome of the j-th patient in the i-th site, and M 
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(M � 2) sites take part in a clinical trial. YiðtÞ ¼ ðyi1 yi2;…; yiNiðtÞÞ
’ is the 

data vector of which the elements are all the outcomes that have been 
observed in the i-th site by the t-th (t ¼ 1; …; T) CSM, where NiðtÞis the 
total number of patients enrolled to the i-th sites by t-th CSM. The 
atypical sites are detected by comparing outcomes of the site with those 
of other sites. However, it should be note that only process abnormality 
is not necessarily detected by comparing outcomes between sites. The 
differences in patient population characteristics such as ages, races and 
severity among sites, or differences in the selection of concomitant 
therapy are possibly detected. In general, these differences occur by 
systematic causes and should be adjusted as covariates if these are 
identified in advance. Fig. 1 shows the relationship between the detec
tion of atypical sites by CSM and the change of distributions of outcomes 
as a conceptual diagram. The sites are opened as a staggered manner in 
practical clinical trials. In the early round of CSM, small proportion of 
sites may be analyzed in the CSM because the analysis is performed 
using available data at the timing of the CSM. In the early round of the 
CSM, it is particularly difficult to conduct CSM effectively due to small 
amount of the data, and in the case, the harmful effect of the data ob
tained from atypical sites to the statistical inference is to be relatively 
large. If atypical sites are detected by CSM, the atypical sites are 
investigated by on-site monitoring. Then, the root causes in the pro
cesses of those sites are explored and the corrective actions for the causes 
are implemented. After the corrective action, the processes of the 
atypical sites recover normal status, and normal outcomes are observed 
in those sites. Thus, the overall mean of all the observed data is not 
useful to detect atypical sites in monitoring of means of sites. The t-th 
round of CSM analysis that whether the i-th site is normal or not should 
be implemented based on the latest outcome that have been observed for 
the period after the ðt � 1Þ-th CSM. Hence, the data analyzed at the t-th 
round of CSM analysis for the i-th site is denoted as 
yiðtÞ ðyiðtÞ ¼ YiðtÞnYiðt � 1Þ ; t > 1; yið1Þ ¼ Yið1Þ t ¼ 1 Þ, where 
YiðtÞnYiðt � 1Þ is the relative complement of Yiðt � 1Þ in YiðtÞ. To conduct 
CSM effectively, the initiation timing of the CSM should depend on how 
much sites are opened and how first data is accumulated. 

2.2. Statistical problem of CSM based on single distribution 

The conventional CSM procedures focus on relatively large clinical 
trials. The detection techniques to find atypical sites using the simple 
statistical model based on a single distribution is useful, because it is 

reasonable to implicitly assume the relatively small ratio of atypical sites 
for normal sites [14–16]. In actual, however, the smaller sized clinical 
trials have been conducted as well. In smaller sized clinical trials, the 
early phase such as the small Phase II clinical trials or the beginning of a 
clinical trial, the ratio of atypical sites for normal sites are relatively 
bigger if atypical sites exist. Hence, these conventional procedures work 
less effectively in our situation. Desmet et al. [15] analytically described 
the influence that the ratio of atypical sites affects the detection per
formance in detecting location shifts under the normal distribution 
assumption. Desmet et al. [15] showed that the detection performance is 
deteriorated if more than 10% of all the sites are atypical and that the 
hypothesis testing to detect atypical sites is not an unbiased test if more 
than 30% of all sites are atypical. In the next paragraph, we qualitatively 
describe the impact that data from atypical sites affecting the detection 
procedure in which the single distribution is assumed as the statistical 
model of all data. In this study, outcomes are normal distributed variable 
including laboratory values of HbA1c and blood pressure value as 
example for simpler discussion. It is considered that the causes of vari
ation of these variables are to misunderstand the interpretation of the 
study protocol in the sites and to be inconsistencies in the medication 
guidance, the measurement method or settings of measurement equip
ment. The causes generate systematic differences on these values in 
naturals. Though various types of variables are analyzed in CSM [8,9], 
we focus on a CSM technique for normal variates as a basic approach. 
Furthermore, the treatment for other kinds of variables is mentioned in 
the discussion section. 

The outcomes yij for patients enrolled in normal sites have the 
normal distribution Nðμ; σ2Þ . The outcomes yij for patients enrolled in 
atypical sites have the normal distribution NðμþΔ; σ2Þ: If outcomes 
from atypical sites are included in all the analytical data, the outcomes 
from normal sites are contaminated. If we denote data distributions as a 
single distribution constructed by matching both the first and the second 
moments with those of data distribution, the statistical model is 

yij � N
�
μþ rΔ; σ2þ rð1 � rÞΔ2σ2�; (1)  

where rð0< r� 1Þ is the ratio of patients observed from atypical sites for 
patients of all the sites. If outcomes of NiðtÞ patients in the i-th site are 
obtained by the t-th CSM, the statistical model of the average yiðtÞ of 
outcomes on the i-th site is 

Fig. 1. Atypical sites detection and process correction.  
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yiðtÞ � N
�

μþ rΔ; ​ σ
2 þ rð1 � rÞΔ2σ2

NiðtÞ

�

​ ; (2)  

where yiðtÞ ¼
PNiðtÞ

j¼1 yij. From this formula, we are able to directly un
derstand as follows: if we adopt a single distribution to a statistical 
model, the mean of the distribution for site average yiðtÞ is affected by 
data obtained from atypical sites, as a result, the distribution of the site 
average yiðtÞ shifts to the distribution for atypical sites. In addition, the 
variance of the site average yiðtÞ increases by factors r and Δ2. 

For instance, we consider the case in which atypical sites are 20% of 
all the sites. The site averages independently follow identical Nð0; 12Þ in 
normal sites, and the site averages for atypical sites independently 
follow identical Nð1;12Þ. Five patients are assumed to be enrolled in each 
site. Then, the site averages for normal sites have Nð0; 0:2Þ and the site 
averages for atypical sites have Nð1; 0:2Þ. The formula (2) is 
Nð0:2; 0:232Þ in this case. In Fig. 2, the distributions of site averages 
from normal sites and atypical sites are shown by the blue and red solid 
lines, respectively. The detection procedures based on the single distri
bution use the contaminated distribution expressed by the black solid 
line in Fig. 2. The distribution of an overall average (black solid line) 
largely overlaps with the distribution of the site average for atypical 
sites. Conventional procedures proposed the CSM to detect atypical sites 
with criterion if the site average is out of thresholds determined on the 
simple distribution model (2), e.g., the 5th percentile and/or the 95th 
percentile, then the site is found to be atypical. It is clear that those 
procedures are less effective unless the r is extremely small. 

Consequently, it is necessary to develop the statistical procedure 
which does not depend on the ratio r of atypical sites and is applicable in 
small sample size situations. 

3. Bayesian CSM 

We propose a finite mixture model (FMM) approach to detect atyp
ical sites in CSM. The whole data generates from the mixture distribution 
whose components are the distributions for normal and atypical sites. 
This approach mitigates the effect of the ratio r of atypical sites. Thus, 
the power of detection of this approach is expected to be higher. If 
considering that the sites participating in clinical trials are regularized, 
it is natural to assume that the normal sites are a majority. We focus on 
the unsupervised approach of CSM which attempts to identify prob
lematic sites as outliers. This approach is based on the concept of the 
pareto principle and is the one of the most important principles to 

perform efficient process control in quality management [25]. Hence, 
we should find a few sites with strange tendency from many of sites at 
the first priority. In other words, the component distribution with the 
highest mixture weight corresponds to be normal sites. After estimating 
all the parameters of FMM by Bayesian inference, only the estimated 
majority distribution is used to detect atypical sites. The atypical sites 
are detected by comparing the site average of outcomes with the esti
mated majority distribution. 

In section 3.1, we introduce the Bayesian detection method based on 
single distribution as the conventional procedures. This method is called 
the central statistical monitoring method based on single distribution 
and it is shortened as single CSM. In Section 3.2, we develop the 
Bayesian CSM method based on Finite Mixture Model (FMM), and we 
call it the central statistical monitoring method using Bayesian finite 
mixture models, it is abbreviated as FMM-CSM. 

3.1. CSM method based on single distribution 

We introduce a single CSM method based on a conventional concept. 
In the method, the statistical model of observed outcomes YðtÞ until the 
t-th round of CSM is 

hðYðtÞj θ Þ ¼
YM

i¼1

YNiðtÞ

j¼1
f
�
yij
�
�θ
�
; (3)  

where fðyij

�
�
�θÞ is the density function of the normal distribution with 

parameters θ ¼ ðμ; σÞ in which μ is the expectation and σ is standard 
deviation, prior distributions of μ and σ2 are Nðμ0; σ2

0Þ and 
InvGammaða; bÞ respectively. InvGammaða; bÞ denotes the inverse- 
Gamma distribution with the positive valued parameters a;b. 

The posterior predictive distributions pðyiðtÞ
�
�YðtÞ ​ Þ of site averages 

yiðtÞ, i.e., the average of elements of the vector yiðtÞ is calculated as 
follows: 

pðyiðtÞjYðtÞÞ ¼
Z

f ðyiðtÞjθÞpðθjYðtÞÞdθ; (4) 

Based on Eq. (4), we identify that the i-th site is an atypical site if the 
site average for the i-th site at the t-th round of CSM satisfies the 
following condition; 

yiðtÞ < λα
i ðtÞ or yiðtÞ > λ1� α

i ðtÞ ; (5)  

where λα
i ðtÞ is the 100α-th percentile of the pðyiðtÞ

�
�YðtÞÞ. 

In this method, as explained in section 2.1, after the detection, 
corrective action to the sites are implemented. The normal outcomes are 
observed in those sites after these actions, all the available data are 
taken over into calculate the likelihood function and sample size has 
increased every round of CSM. Thus, the formula (4) is the posterior 
predictive distribution of a site average for each site. The actual site 
average yiðtÞ is calculated from only the current data at t-th round of 
CSM. If the criterion (5) held, a site is found to be atypical. 

3.2. CSM method based on FMM 

We propose a FMM-CSM method to detect atypical sites which mit
igates the effect of the ratio of atypical sites in participating sites. At first, 
as considering that data obtained from atypical sites are contaminated 
by data obtained from normal sites, the statistical model of observed 
outcomes YðtÞ until the t-th CSM is Fig. 2. The patient outcome distributions for the case of contaminating data 

with 20% atypical site data. 
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gðYðtÞjθÞ ¼
YM

i¼1

YNiðtÞ

j¼1

 
XK

k¼1
πkf
�
yij
�
�θk
�
!

;

ðπ1; :::; πkÞ � Dirichletðα1; :::;αkÞ

(6)  

where πk ðk¼ 1;…;KÞ are mixture parameters, and fðyij

�
�
�θkÞ is the 

density function of the normal distribution with parameters θk ¼ ðμk; σkÞ

in which μk’s are the expectations and σk’s are standard deviations, prior 
distributions of μk’s and σk’s are Nðμ0; σ2

0Þ and InvGammaða; bÞ respec
tively. Dirichletðα1;…; αKÞ denotes the Dirichlet distribution with the 
positive valued parameters α1;…; αK. In term of the determination of 
number of components K, for example, we reasonably choose the min
imum component number such as three by which is able to take into 
account the possibility that location shift of data from atypical sites are 
occurred in both lower and upper sides in small clinical trials or the 
beginning of the trials. In addition, the parameters α1;…; αK should be 
determined by the proportions of atypical sites and normal sites ac
cording to the experience of the trials in the similar therapeutic area if 
we have the information. Even if there is no information about that, as 
the guideline for setting these parameters we are able to set these values 
based on the assumption that normal sites are a majority. In either case, 
it is recommended to examine the operation characteristics of the 
methods by simulation studies under various scenarios. 

Next, we assume that the normal sites are a majority. We define that 
the component of the mixture distribution with the largest estimated 
mixture parameter in the posterior means of the mixture parameters πk 
is the distribution of outcomes for the normal sites. In other words, the 
distribution of outcomes for the normal sites is estimated as the 
component 

kb¼ arg max
k2ð1;…;KÞ

EðπkjYðtÞÞ:

We call the estimated distribution for normal sites “body distribu
tion”. The posterior predictive distributions pkb ðyiðtÞjYðtÞÞ of site aver
ages yiðtÞ for normal sites is calculated using the body distribution as 
follows: 

pkb ðyiðtÞjYðtÞÞ¼
Z

f ðyiðtÞ
�
�θkb Þpðθkb

�
�YðtÞÞdθkb ; (7)  

where pðθkb

�
�YðtÞÞ is the posterior density function with the parameter θkb 

of the body distribution. Based on Eq. (7), we identify that the i-th site is 
an atypical site if the site average for the i-th site at the t-th round of CSM 
satisfies the following condition; 

yiðtÞ < γα
i ðtÞ or yiðtÞ > γ1� α

i ðtÞ ; (8)  

where γα
i ðtÞ is the 100α-th percentile of the pkb ðyiðtÞ

�
�YðtÞÞ. 

In this method, same as single CSM method, all the available data are 
taken over into calculate the likelihood function and sample size has 
increased every round of CSM. Thus, the formula (7) is considered that 
the posterior predictive distribution of a site average for the i-th site if 
the site was normal, because the distribution is derived based on only 
the body distribution. The actual site average yiðtÞ is calculated from 
only the current data at t-th round of CSM. If the criterion (8) held, a site 
is found to be atypical. In the method of FMM-CSM and Single CSM, the 
value of α is determined to have appropriately performance of detecting 
atypical sites and controlling family wise type I error which prevents 
ineffective on-site monitoring. In this article, we use 0.05 as the value of 
α for simple discussion in the comparison of the performance between 
methods. The determining α and controlling family wise type I error are 
discussed in the discussion section. 

FMM is similar to another single distribution approach which spec
ifies the distribution for normal sites by robust estimation for the mean 
and variance (or standard deviation) [15]. The famous robust estimators 
for the mean are the median, the trimmed mean, and the winsorized 

mean. The famous robust estimators for the standard deviation are the 
inter-quartile range and the median absolute deviation. However, it is 
required to predetermine the percentage of scraping extreme data if 
using the trimmed mean and inter-quartile range, and it is difficult to 
predetermine the adequate percentage so that the precision of estima
tion is better. If the ratio of atypical sites for all sites is small, the bias of 
the inter-quartile range is larger and the variance of the unbiased 
inter-quartile range is larger. On the other hand, it is possible for FMM 
with three components to estimate this percentage. In addition, if 
appropriately, Bayesian statistics takes a prior knowledge into the 
analysis of CSM regarding the percentage of outliers (atypical sites). 

4. Simulation studies 

To examine the performance of our proposed method as the CSM 
method for small clinical trials, we conduct extensive simulation studies 
with varying atypical sites proportion and the size of location shift in 
outcomes in the settings of the small clinical trials. We evaluate detec
tion probability for atypical sites in various scenarios. In addition, CSM 
is multiply conducted in actual clinical trials. Therefore, we examine 
how much the frequency of multiple analysis influences the detection 
performance. 

4.1. Simulation study design 

Because of target of our proposed method, we use a hypothetical 
clinical trial with ten clinical sites in the simulation studies. In our 
simulation studies, CSM is conducted three times. We assume that the 
number of patient enrollments into each site follows the multinomial 
distribution with p1 ¼… ¼ p10 ¼ 1=10. We set two study sizes, N ¼ 48 
and N ¼ 96, as the evaluated the number of patients at the final analysis 
of a small sized trial and a moderate sized trial, respectively. CSM is 
conducted each time of one third of patients is completed. 

As described in Section 2.1, in the t-th analysis of CSM, the statistical 
model is estimated based on the outcome YðtÞ
which is observed by the t-th analysis of CSM, and the posterior pre
dictive distribution is updated whereas yiðtÞ is calculated using the 
outcomes yiðtÞ which is newly observed after the (t �1)-th analysis 
ðyiðtÞ ¼ YiðtÞ＼Yiðt � 1Þ t > 1; yið1Þ ¼ Yið1Þ t ¼ 1 Þ. In addition, the 
sites detected as atypical are investigated by on-site monitoring and it is 
assumed that the operational processes of the sites are changed to the 
state of normal by corrective action. Therefore, even in the sites detected 
as atypical, data after detection follows the same distribution as in the 
normal sites. Without loss of generality, we assume that patient out
comes in normal or atypical sites independently follow the identical 
Nð0; 12Þ or NðΔ;12Þ, respectively. We evaluated detection performance 
in the various combinations of location shift parameter Δ and the 
number of the atypical sites. The results are shown in Figs. 3–6. 

In both single CSM and FMM-CSM, we assume non-informative prior 
distributions Nð0; 1000Þ and InvGammað0:1;0:1Þ for mean and variance, 
respectively. In FMM-CSM, taking into account the possibility that 
location shift of data from atypical sites are occurred in both lower and 
upper sides, we set the number of components of the FMM model to K ¼
3. For a prior distribution of mixture parameters, which is informative, 
we assume πk � Dirichletð1;8; 1Þ based on the assumption that normal 
sites are a majority. As the threshold for atypical sites detection, α ¼
0:05 is used for both Eqs. (5) and (9). 

In all scenarios, the simulation is repeated 1000 times by SAS for 
Windows release 9.4 (SAS Institute Inc., Cary, NC, USA). The posterior 
distribution is calculated by Markov Chain Monte Carlo method of SAS 
FMM procedure. The main analysis code can be found in Appendix A. 
The simulation run time for 1000 repetitions was about 18 h in our 
computational environment (OS: Windows 10 64bit, CPU: 1.7 GHz, 
RAM: 8.0 GB). 
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4.2. Results 

FMM-CSM method is evaluated by the measures of the cumulative 
detection probability of atypical sites and the cumulative type I error 
averaged over normal sites for some scenarios varying the number of 
abnormal sites and the values of location shift parameter Δ. It is defined 
that the cumulative detection probability is the ratio that true atypical 
site is detected as atypical until the t-th round of CSM. It is defined that 
the cumulative type I error averaged over normal sites is the average of 
cumulative type I error ratios which are calculated by truly normal sites, 
where the cumulative type I error is the occurrence of type I error until t- 
th round of CSM. Since both evaluation measures are the estimated 
probabilities, the results from Monte Carlo simulation follows the 
binominal distribution with the number of simulation repetitions and 
either the cumulative detection probability or the cumulative type I 
error. Let Nsim, bπ be simulation repetitions and either the calculated 
cumulative detection probability or the calculated cumulative type I 
error, respectively. Hence, a simulation error for the cumulative detec
tion probability of atypical sites is approximately 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bπð1 � bπÞ=Nsim

p
as the 

standard deviation. For the cumulative type I error averaged over 
normal sites, a simulation error is 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bπð1 � bπÞ=NsimNnormal

p
where Nnormal is 

the number of normal sites. 
Fig. 3 shows the result of N ¼ 48 case. In these scenarios, the values 

of location shift parameter Δ among the atypical sites are the same 
values. The results show that the detection probabilities of single CSM 
and FMM-CSM are almost the same at the first analysis of CSM, however, 
the difference in detection probabilities between the methods becomes 
larger as CSM is sequentially performed. The results confirm the fact 
explained in Section 2.2 that single CSM is considerably affected by data 
from atypical sites, which considerably decreases its detection perfor
mance, in particular, in the case where the proportion of atypical sites is 
large. On the other hand, our method is able to detect atypical sites 
regardless of the proportion of atypical sites. In addition, the type I error 
averaged over the normal sites does not show a considerable difference 
between the methods. Moreover, FMM-CSM outperforms single CSM 
substantially in detection probability as the proportion of atypical sites 
increases. In practical clinical trials, the distributions of outcomes are 
not necessarily the same among the atypical sites. The location shift in 
the distribution of outcomes may appear on both upper and lower sides 
in some cases, or it may appear on the same side in other cases, and 
moreover, it may occur with different shift sizes. In the cases where the 
sizes of location shifts are different among atypical sites, it is of concern 

Fig. 3. Cumulative detection probability stratified by location shifts and the number of atypical sites: the same location shift parameter value case (N ¼ 48). The 
planned number of patients at the final CSM analysis of 48 is used. The values of location shift parameters are shown on the top of the panel and The ID’s of atypical 
sites are shown on the left side of the panel. The lines in each graph show the cumulative detection probability of atypical sites by CSM analysis and type I error 
averaged over the normal sites. The upper graphs show the case where only one atypical site exists. The middle graphs show the case in which two atypical sites exist 
and the lower graphs show that three atypical sites exist. 
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that the detection performance for the atypical sites in which the size of 
location shifts in the outcome distribution is moderate are considerably 
decreased for a single distribution-based method. The statistical models 
used in the single distribution-based methods are affected considerably 
by the data from the atypical sites in which the differentiation of loca
tion shift sizes is large among sites, and it leads to overlooking smaller 
location shifts. However, the severity of the process abnormality may 
not be directly reflected in the size of the location shift, and the decline 
in detection performance for the atypical sites with moderate location 
shifts should not be neglected. 

To evaluate detection performance in the above cases, we conduct 
simulations in case where the values of location shift parameter Δ are 
heterogeneous. The results are shown in Fig. 4. Fig. 4(a)–(c) show the 
results of the case where the location shifts in atypical sites occur on 
both sides. The results show that FMM-CSM is able to detect atypical 
sites with higher probabilities in any cases with keeping at the same 
level as type I error as of single CSM. Fig. 4(d)–(f) show the results of the 
cases where the location shifts occur in the same direction. It is shown 

that the detection probabilities for the atypical sites with moderate 
location shift are lowered especially in single CSM. On the other hand, it 
is shown that proposed FMM-CSM is able to detect not only the atypical 
sites with large location shifts but also the atypical sites with moderate 
location shifts with higher probabilities than those of single CSM. Fig. 4 
(g)–(i) show the results of the cases that location shifts with various sizes 
appear in both sides and the number of atypical sites is not balanced on 
each side. In those cases, it is shown that FMM-CSM detects atypical sites 
with higher probabilities than those of single CSM with keeping at the 
same level as type I error as of single CSM. 

To evaluate how much the number of patients affects the detection 
performance in CSM methods, the simulation results of the cases where 
N ¼ 96 are shown in Figs. 5 and 6. Comparing the detection probabili
ties between the results of N ¼ 48 and N ¼ 96 within the same scenario, 
it is shown that the magnitude of improvement of detecting performance 
by FMM-CSM is relatively larger in the results of N ¼ 48 (the small sized 
trial cases) than in the results of N ¼ 96. For instance, Figs. 4(d) and 6(d) 
are the results of N ¼ 48 and N ¼ 96 in the same scenario, 

Fig. 4. Cumulative detection probability stratified by location shifts and the number of atypical sites: different location shift parameter value case (N ¼ 48). The 
planned number of patients at the final CSM analysis of 48 is used. The values of location shift parameters and the site ID’s of atypical sites are shown on the top of 
each graph. The other display formats are the same as those in Fig. 3. 
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respectively. In Fig. 4(d), the cumulative detection probabilities of site 9 
at the final analysis are 0.257 in single CSM and 0.728 in FMM-CSM, and 
the ratio is 2.83. The results show that FMM-CSM is able to detect 
atypical sites with higher probabilities in any cases with keeping at the 
same level as type I error as of single CSM as with N ¼ 48 cases. 

Even though the number of CSM analyses may be determined by 
taking account of operational feasibility, it is important to know how 
much frequency of the CSM analysis affects the performance of CSM to 
choose the number of CSM analyses. Therefore, we examined the 
detection performance of CSM in the situations where the CSM analysis 
was conducted one or two times. The simulation results are shown in 
Appendix B of Figs. S1–S8. As expected it is confirmed that the detection 
probability by the final analysis becomes higher as the number of CSM 
analyses increase. In practical CSM, if an abnormality is detected at a 
certain time, site inspection including on-site monitoring is performed 
and the operational process is corrected. After that, normal outcomes are 
observed from the relevant sites. Therefore, if an abnormality is detected 
at an early stage of a clinical trial, then the normal data which can be 
used for model estimation increases in the subsequent CSM. Accord
ingly, the detection probabilities by the final analysis become high as the 
number of CSM analyses increase. 

In this article, we assume that the normal sites are majority. 

However, it is important to examine the performance of proposed 
method in the extreme cases of which the sites to be detected are the 
same proportion as the normal sites, and the case of which only normal 
sites exist to evaluate the robustness of the method against extreme 
situations. We conduct simulation studies of both cases. The results are 
shown in Appendix B of Figs. S9 and S10. These results show that FMM- 
CSM is able to detect the sites to be detected with slightly higher 
probability than those of single CSM while maintaining Type I error as 
much as singe CSM even in the cases of the proportions of the normal 
sites and the sites to be detected is the same. In addition, it is shown that 
the type I error averaged over the normal sites of the FMM-CSM is as 
much as those of single in the cases of all sites are normal. 

In this study, we use Dirichletð1;8; 1Þ as a prior of mixture parame
ters. In addition, to examine the effect of a prior distribution of mixture 
parameters, we conduct sensitivity analysis via simulation in cases 
where Dirichletð0:5;9; 0:5Þ is used. The simulation results are shown in 
Appendix B of Figs. S11–S14. There is less difference between the results 
of Dirichletð0:5;9; 0:5Þ prior and Dirichletð1;8; 1Þ prior cases, and FMM- 
CSM is robust against the selection of a prior distribution as long as using 
the prior distribution based on the assumption that the normal sites are a 
majority. Moreover, we conducted simulation in the case of 
Dirichletð1;1; 1Þ used for a sensitivity analysis (results not shown), but as 

Fig. 5. Detection probability stratified by location shifts and the number of atypical sites: the same location shift parameter value case (N ¼ 96). The planned number 
of patients at the final CSM analysis of 96 is used. The other display formats are the same as those in Fig. 3. 
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expected, the FMM-CSM does not work effectively. However, the 
application of such a prior distribution cannot be considered in real CM, 
because CSM is premised on being implemented in well-processed 
controlled clinical trials. It should be assumed the sites to be detected 
are a minority. If it is considered that such a prior distribution should be 
used, the process control of the clinical trial itself should be reviewed. 

5. Example of the realistic CSM 

We illustrate the artificial central statistical monitoring using a 
Bayesian FMM-CSM. Five sites participate in a multicenter clinical trial 
and the analysis of CSM performs twice. The 38 patients in total are 
enrolled and outcomes are continuous variables which independently 
follow identical normal distribution. There is an atypical site (site 5) at 
the first round of the CSM, and remaining sites (sites 1–4) are typical. We 
assume that all the sites have been already opened and the timing of 
patient enrollments is random. Thus, the number of patients for each site 
is unbalanced over sites. 

Table 1 shows all the outcomes from this clinical trial. In the first 

round of CSM, we use data as follows: 

Y1ð1Þ ¼ y1ð1Þ ¼ ð5:2;4:8Þ, Y2ð1Þ ¼ y2ð1Þ ¼ ð5:5;5:2;5:0Þ
Y3ð1Þ ¼ y3ð1Þ ¼ ð4:7;5:5;5:5;5:0;5:8Þ, Y4ð1Þ ¼ y4ð1Þ ¼ ð5:1;5:0;6:0;
4:8;5:6Þ
Y5ð1Þ ¼ y5ð1Þ ¼ ð6:3;5:3;6:5;6:2Þ. 

The body distribution is estimated for the above data through 
Bayesian FMM with the same settings of prior distributions as section 
4.2. As a result, the component with the largest expectation in the 
posterior distributions of the mixture parameters ðπ1; π2; π3Þ is the sec
ond component, i.e., E½ðπ1; π2; π3Þ� ¼ ð ​ 0:036; ​ 0:926; ​ 0:037Þ. Then, 
from the posterior predictive distribution for each site average, critical 
limits, γ0:05

i ð1Þ; ​ γ0:95
i ð1Þ for each site can be calculated and they are 

shown in the bottom line in Table 1. On the other hand, actual site 
average for each site is shown in the second line from the bottom in 
Table 1. By comparing actual site average with critical limits, we can 
predict that the site 5 is atypical because of out of critical limits. We 

Fig. 6. Detection probability stratified by location shifts and the number of atypical sites: different location shift parameter value case (N ¼ 96). The planned number 
of patients at the final CSM analysis of 96 is used. The other display formats are the same as those in Fig. 3. 
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assume that the site 5 turns into being normal by succeeding to 
corrective actions for root causes generating atypical operation pro
cesses in the site 5. 

Table 2 shows all the outcomes at the 2nd round of CSM. In the 
second round of CSM, data for specifying a body distribution are as 
follows: 

Y1ð2Þ¼ ðy1ð1Þ; y1ð2ÞÞ ¼ ð5:2; ​ 4:8; ​ 5:1; ​ 5:0; ​ 5:3; ​ 5:3; ​ 5:1; ​ 4:6Þ

Y2ð2Þ¼ ðy2ð1Þ; y2ð2ÞÞ ¼ ð5:5; ​ 5:2; ​ 5:0; ​ 5:4; ​ 5:4; ​ 4:9; ​ 5:5Þ

Y3ð2Þ¼ ðy3ð1Þ; y3ð2ÞÞ ¼ ð4:7; ​ 5:5; ​ 5:5; ​ 5:0; ​ 5:8; ​ 5:4; ​ 5:3; ​ 5:5Þ

Y4ð2Þ¼ ðy4ð1Þ; y4ð2ÞÞ ¼ ð5:1; ​ 5:0; ​ 6:0; ​ 4:8; ​ 5:6; ​ 6:0; ​ 5:8Þ

Y5ð2Þ¼ ðy5ð1Þ; y5ð2ÞÞ ¼ ð6:3; 5:3; 6:5; 6:2; 5:3; 5:4; 5:5; 5:6Þ

The body component is specified as the second one, i.e., E½ðπ1;π2;π3Þ� ¼

ð ​ 0:024; ​ 0:951; ​ 0:025Þ. As the same manner as the first round of CSM, 
critical limits, γ0:05

i ð2Þ; ​ γ0:95
i ð2Þ for each site and site averages are shown at 

the first and the second lines of Table 2, respectively. Note that the site 
average of the i-th site is calculated from only data yið2Þ. We can recognize 
that none of site is atypical. 

6. Discussion 

In this study, we propose the FMM-CSM method using Bayesian 
Finite Mixture Models as the method which detects the atypical site with 
high probability regardless of the proportion of the atypical sites 
intended to use in small clinical trials and the beginning of the trials. The 
existing CSM methods are based on the assumption that the number of 
clinical sites is not small and the proportion of atypical sites is small. 

In these existing methods, it is justified to use a statistical model 
based on single distribution without accounting for contamination of the 
data from atypical sites based on the assumption. However, as our tar
geted situations, the implementation of CSM is necessary in small sized 
trials and the beginning of the trials with no large number of clinical 
sites. Moreover, the abnormalities in operational processes in the sites 
occur for a wide variety of cases, such as a misunderstanding of study 
protocols and a mistuning of measurement equipment, and it is not al
ways reasonable to assume that the proportion of sites to be detected is 
small. Thus, if the single distribution-based method is used in practical 
clinical trials, it may lead to a decline of detection performance due to 
contamination of the data from atypical sites. As a result, overlooking of 
serious process abnormalities increases. Actually, in our simulation 
study, it is shown that the detection performance considerably decreases 
as the proportion of atypical sites increases if single distribution-based 
methods are used. However, it is shown that our method detects atyp
ical sites with high probability regardless of the proportion of the 

atypical sites under the small clinical trial settings which is the target of 
our proposed method. 

In actual clinical trials, CSM is performed sequentially and inspection 
through use of on-site monitoring is conducted if the signals of abnor
malities are detected, and operational processes of the relevant sites are 
corrected. Therefore, the number of atypical sites and the proportion of 
the data from atypical sites are expected to decrease. The detection 
performance of CSM methods depend not only on the amount of data but 
also on the frequency of analysis. However, the performance of CSM 
with multiple analyses have not been investigated sufficiently so far. In 
this study, we evaluate the performance of our method when the anal
ysis is multiply conducted with the progress of the trials. 

Failure to detect the signals of process abnormalities by CSM is 
serious problem related to data quality. Especially in small clinical trials, 
the data from one abnormal site will affect analysis. In this study, the 
statistical multiplicity of comparisons was not considered because au
thors think that it is feasible to take priority to detect process abnor
malities over maintaining false positive rate in the CSM of such small 
clinical trials. However, even in the small clinical trials, the overly large 
false positive rate invoked the ineffective inspection by on-site moni
toring should be avoided. It is possible to control familywise type I error 
rate by adjusting the threshold value of detection, αthrough simulation 
studies. It is also possible to control familywise type I error rate formally 
by using the multiple comparison procedure such as closed procedure 
for comparison of multiple sites, and control the familywise type I error 
rate attributed to CSM’s multiple round by using group sequential 
methods such as alpha spending functions [26]. However, we should 
consider carefully doing that because it may lead to a decline of the 
detection performance of an individual atypical site. 

In this study, we consider the case where the number of sites is not so 
large, and we adapted not complicated model whose component number 
is three. The component number is minimum number to take account 
the location shift in outcome distributions may occurs in both lower and 
upper sides. When the number of sites is large, it is also useful to select 
the optimal number of components K automatically using information 
criteria such as AIC and BIC [22,23], or the methods to model the 
number of components is available [22–24,27]. Moreover, model 
averaging technique [28] may be useful for improving fitness of the 
model to the data. However, improving the fitness of the model to the 
data may not necessarily lead to a better detection performance. In 
practice, we recommend setting up a model used in analysis via simu
lation studies that takes into account of what outcomes are analyzed, 
how much sites are, how frequently abnormalities occur, or how 
different of the outcomes from atypical sites are, etc. 

In this study, we assume that outcomes are normally distributed 
continuous value such as HbA1c value and blood pressure, and consider 
the detection of the sites whose outcome distributions have location 

Table 2 
Artificial outcomes, site averages, and critical limits in the second round of CSM.  

The 2nd round 

site 1 1 1 1 1 1 2 2 2 2 3 3 3 4 4 5 5 5 5 
outcomes 5.1 5.0 5.3 5.3 5.1 4.6 5.4 5.4 4.9 5.5 5.4 5.3 5.5 6.0 5.8 5.3 5.4 5.5 5.6 
average 5.1 5.3 5.4 5.9 5.5 
critical limits [5.1, 5.7] [5.0, 5.8] [4.9, 5.8] [4.8, 5.9] [5.0, 5.7]  

Table 1 
Artificial outcomes, site averages, and critical limits in the first round of CSM.  

The first round 

Site 1 1 2 2 2 3 3 3 3 3 4 4 4 4 4 5 5 5 5 
outcomes 5.2 4.8 5.5 5.2 5.0 4.7 5.5 5.5 5.0 5.8 5.1 5.0 6.0 4.8 5.6 6.3 5.3 6.5 6.2 
Average 5.0 5.2 5.3 5.3 6.1 
critical limits [4.7, 6.1] [4.9, 6.0] [5.0, 5.8] [5.0, 5.8] [4.9, 5.9]  
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shifts for simple discussion. In practical clinical trials, the scale param
eter of the outcome distributions in atypical sites may have a different 
tendency from other sites. In addition, not only continuous values but 
also discrete values including adverse events counts and time to event 
including time to withdrawal may be analyzed in actual CSM. For 
analyzing these various types of data, the statistical model of the pro
posed method is needed to be changed to according to the data type such 
Poisson regression model for count data, Weibull distribution model for 
time to event data and beta-binomial model for proportion which used 
in Desmet et al. [16]. To adopt these models for our proposed method 
based on FMM, it is also necessary to use MCMC for estimation. The 
expansion of our method for different type of variable is our future work. 

We proposed a tractable single variable based method assuming 
normal distribution within each compartment because our focus point is 
the proposal for the CSM method which is the robust against the exis
tence of atypical sites in small clinical trials or the beginning of clinical 
trials. However, in large clinical trials, it might be more useful to use 
multiple variables simultaneously for detecting atypical sites. Currently, 
the Hotelling’s T2 statistic (the Mahalanobis distance) is used to detect 
multivariate outliers in CSM [9]. Desmet et al. [15] discussed the 
detection procedure with combining the p-values obtained for many 
variables to detect atypical sites (ensemble learning). However, it is 
difficult to investigate the causes that the site is out of normal. Mason 
et al. [17] and Zink et al. [18] tackle the problem of investigating the 
contribution of the individual variables to each multivariate outlier after 
detection of abnormalities. Zink et al. [18] illustrated the application of 
the contribution plot [19] to RBM for real multicenter clinical trials. 
Mason et al. [17] proposed to calculate the magnitude of the contribu
tion using decomposition of Hotelling’s T2 statistic into one dimensional 
variate. Though the decomposition or the contribution plots help us 
recognizing which variables shifted, it does not directly tell us what the 
root causes are because variables monitored are outcomes. In general, 
variables have correlations each other due to causality. Hence, multi
variate monitoring is more complicated than univariate monitoring. In 
actual, in order to efficiently success finding and eliminate root causes, 
we would need to identify the cause and effect relationship beforehand 
or each round of CSM. In addition, the analysis methods would require 
the countermeasure of resistance against outliers to estimate an 
adequate variance-covariance matrix, which is to apply robust estima
tors for statistical process control based on minimum volume ellipsoid, 
minimum covariate determinant [29]. However, using complicated 
methods might be computationally intractable and might need more 
powerful computational environment such as cloud computational ser
vice. Thus, in practice, atypical site detection by multivariate moni
toring would be controversial in CSM. 

To use our method in those various cases, it may be necessary to 
adopt a model to analyze outcomes appropriately. Though further 
research is required to construct the optimal method for each type of 
outcome, it is the only a problem of model selection, and proposed 
methods can be extended to these various situations of clinical trials. In 
this study, we proposed FMM-CSM method as a Bayesian method which 
allows adaptation of informative prior distribution. By using Bayesian 
approach, the possibility of process abnormality is displayed as proba
bilities of the sites are different from normal site, it is intuitively un
derstandable and easy to explain to non-statistician such as clinical 
research associates and investigators. In the simulation of this study, we 
used informative prior for mixture parameter based on the assumption 
of normal sites are majority. Non-informative priors are used for loca
tion and scale parameters, however it is possible to use informative 
priors from the historical data of the studies in the same therapeutic 
areas. If appropriate informative prior is used, the method may be more 
effective especially in the small clinical trials and the beginning of the 
trials, which are targets. 

In this study, it is assumed that the detected atypical sites turn into 
normal sites immediately. This assumption may be not truly strictly 
realistic. However, this assumption is the ideal situation that we have to 

achieve in RBM. From the viewpoint of process control, the principal 
concept of central statistical monitoring is the attempt that atypical sites 
are surely corrected by focusing on only a few sites detected and 
intensively assigning resource instead of monitoring all the sites equally 
at once. The performance of our method for the case of violating this 
assumption will evaluated through extensive simulation in the future 
work. 
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