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Semiconductor photocatalysis to engineering
deuterated N-alkyl pharmaceuticals enabled by
synergistic activation of water and alkanols
Zhaofei Zhang1,5, Chuntian Qiu1,5, Yangsen Xu 1, Qing Han2,3, Junwang Tang2, Kian Ping Loh 4 &

Chenliang Su 1✉

Precisely controlled deuterium labeling at specific sites of N-alkyl drugs is crucial in drug-

development as over 50% of the top-selling drugs contain N-alkyl groups, in which it is very

challenging to selectively replace protons with deuterium atoms. With the goal of achieving

controllable isotope-labeling in N-alkylated amines, we herein rationally design photocatalytic

water-splitting to furnish [H] or [D] and isotope alkanol-oxidation by photoexcited electron-

hole pairs on a polymeric semiconductor. The controlled installation of N-CH3, -CDH2, -CD2H,

-CD3, and -13CH3 groups into pharmaceutical amines thus has been demonstrated by tuning

isotopic water and methanol. More than 50 examples with a wide range of functionalities are

presented, demonstrating the universal applicability and mildness of this strategy. Gram-

scale production has been realized, paving the way for the practical photosynthesis of

pharmaceuticals.
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Isotope labeling plays vital roles in various fields in synthetic
chemistry, quantitative LC–MS/MS analysis, and the life sci-
ences1–6. The higher stability of C–D bonds than C–H bonds

because of the deuterium kinetic isotope effect (DKIE) motivates
the need for a “deuterium switch” in drug synthesis to improve
biological properties, such as pharmacokinetics, pharmacody-
namics (PK/PD), and metabolic stability7–11. In 2017, the first
deuterium-labeled drug, deutetrabenazine, was approved by the
FDA and initiated a new era of deuterated clinical drug devel-
opment12. Among the myriad of commercial drugs, over 50% of
the top sellers contain N-alkyl amine units13, and the N-deal-
kylation metabolized cytochrome P450 (CYP450) are commonly
found in such N-alkyl drugs and other bioactive molecules14–19.
Thus, deuterium substitution of N-alkyl groups in N-alkyl drug
molecules could contribute to slow down the N–C bond cleavage,
and impacts their pharmacodynamic properties and improve
pesticide effects20–24. In this regard, the precision synthesis of

drug analogs with deuterated N-alkyl amine units holds great
promise and has been attracting increasing interest (Fig. 1a and
Supplementary Fig. 1).

Traditional approaches to N-alkyl drugs usually require the use
of deuterated alkylation reagents such as CD3I (Supplementary
Fig. 2a). The substitution is of interest as these alkylation reagents
are highly toxic, carcinogenic, and volatile25–28, which generally
cause high costs and waste production. In addition, these reac-
tions often suffered from excess methylation leading to ammo-
nium salts29,30. Reduction of N-CO2R moieties with LiAlD4 is
another effective approach that has good potential for the
introduction of N-CD3 group without formation of ammonium
salts20. However, introduction of extra functional group, use of
hazard and strong reducing reagent, and poor functionality tol-
erance limit its practical application (Supplementary Fig. 2a).
Recently, catalytic hydrogen isotope exchange (HIE) of α- or β-
amines31–37 has been emerged as a promising way to incorporate
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multi-deuterium or tritium atoms into N-alkyl amine-based drugs
(Supplementary Fig. 2b). For example, MacMillan group38

reported a powerful photo-redox mediated HIE reaction which
could efficiently and selectively install deuterium or tritium at α-
amino sp3 C–H bonds of the N-alkyl amine-based drug mole-
cules. In this protocol, the α-position of amines is oxidized by a
molecular photocatalyst to yield α-amino radical, which was then
trapped by the hydrogen atom transfer (HAT) catalysis mediated
the abstraction of deuterium from D2O or T2O to furnish α-
deuterated or tritiated amine product. Multi-deuterium atoms
incorporation at all α-position of pharmaceutical amines (more
than 4.0 deuteriums per molecule) with a wide range of D-
incorporation ratio (from 1 to 91%) is generally occurred. Still,
the development of a general and mild method for the substitu-
tion of the traditional deuterated alkylation from toxic deuterated
reagents like CD3I is in high demand to effectively and selectively
functionalize pharmaceutical amines39–43. Further, the precise
control of deuterium atoms number at the α-position of N-alkyl
drugs with high deuterium incorporation currently remain
unexplored, while it is particularly attractive for their potential
use in mechanistic and metabolic studies44,45.

Semiconductor photocatalysts, which provide redox center on
the surface upon light irradiation can be designed to decompose
H2O/D2O to furnish reductive [H]/[D] and simultaneously oxi-
dize organics by the photoexited electron–hole pairs46–49.
Synergistic utilization of those reductive [H]/[D] and reactive
organic species holds great potential for production of deuterated
chemicals and pharmaceuticals, e.g. D-labeling N-alkyl pharma-
ceuticals, from isotopic water and organics. Polymeric carbon
nitride (PCN) is a nontoxic, highly stable, low-cost, and scalable
polymer semiconductor with a suitable redox window [from
approximately +1.2 V to −1.5 V vs. saturated calomel electrode
(SCE)]50,51. These characteristics define PCN as an ideal semi-
conductor photoredox catalyst for effective water splitting cou-
pled with controlled oxidation by photoexcited electron–hole
pairs. Herein, we utilize highly crystalline PCN as a semi-
conductor photocatalyst for the sustainable synthesis of N-alkyl
chemicals and drugs with well-controlled isotope labeling52.
Upon visible-light irradiation, electron–hole pairs are generated
on crystalline PCN. Photogenerated electrons are transferred to
the anchored Pd nanoparticles and utilized to reduce water to
furnish absorbed [H]/[D] species. Meanwhile, photogenerated
holes with appropriate oxidative ability are designed to selectively
oxidize isotopic alkanols, furnishing isotopic aldehydes for
aldehyde-amine condensation to produce imine intermediates.
These imines are subsequently reduced by [H]/[D] from water
splitting, producing corresponding N-alkyl chemicals and drugs
(Fig. 1b). Compared to traditional approaches from deuterated

alkylation reagents, this photocatalytic strategy exhibits several
advantages: (a) the low-cost and sustainable isotopic water and
alkanol is proposed as a combined deuterated alkylation reagent,
(b) benefiting from this unique design, precise controlling the
number of deuterium atoms (i.e., N-CD3, CD2H and CDH2) at
the metabolic position of N-Me drugs is enabled by simply tuning
the isotopic water and methanol (Fig. 1c); (c) excess deuterated
methylation leading to ammonium salts could be effectively
avoided; (d) finally, this heterogeneous process exhibits high
yields, broad reaction scope, excellent one-step D-incorporation,
and scalable production, thus paving the way towards deuterated
drug studies and developments.

Results
Controllable installation of N-CD3 groups of p-toluidines and
diphenylamines. We started our investigation by screening
conditions for the water-splitting-based N-methylation of amines
using highly crystalline PCN (CPCN) as the semiconductor
photocatalyst53, water and methanol as the green methylating
reagents, and p-toluidine as the amine. The optimized conditions
are summarized in Supplementary Table 1, where the N-methy-
lation product of p-toluidine, N,N-(CH3)2 p-toluidine, was
obtained in 94% yield. Using the optimized conditions, isotopic
water and methanol were used to investigate the synthesis of
deuterated compounds and the reaction pathway. Generally,
multiple reaction processes are required to achieve high deu-
teration content in the production of deuterated chemicals and
pharmaceuticals. Here, the use of D2O and CD3OD afforded N,N-
(CD3)2 p-toluidine in 89% yield with high D incorporation (97%).
To trace the deuterium source, H2O/CD3OD was used, which
afforded N,N-(CD2H)2-p-toluidine in 91% yield, with nearly
quantitative D-incorporation (>99%). The obtained partially
deuterium-labeled product suggests that CD3OH/CD3OD are
probably oxidized to [D2C=O] by photogenerated holes, which is
consistent with the mechanism of photocatalytic water splitting
using methanol as the sacrificial agent49,50. Aldehyde-amine
condensation of [D2C=O] and p-toluidine occurs to furnish
imine intermediates for sequential hydrogenation by reductive
[H] from water splitting (Fig. 1c). The secondary amine inter-
mediate then undergoes another aldehyde-amine condensation
followed by hydrogenation with [H], producing the correspond-
ing N,N-(CD2H)2-p-toluidine product. Consistent with the
aforementioned reaction pathway, using the D2O/CH3OD system
could introduce N-CDH2 groups (91%) with high D content
(>99%). The controllable D-labeled N-alkylation of secondary
amines was also examined, affording N-CH3, -CD3, -CD2H, and
-CDH2 diphenylamines in high yields (74–94% yields) with
excellent D incorporation (>97%) (Fig. 2). Our results show
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convincingly that the number of deuterium atoms installed at the
N-methyl groups can be precisely controlled, thus showing great
promise for the precise introduction of deuterium atoms in the
specific position of N-Me-based drugs.

Photocatalytic water-splitting-based N-methylation of amines.
Next, the generality of the water-splitting-based N-trideuter-
omethylation of amines was tested by synthesizing valuable N-
CD3-based deuterated chemicals and pharmaceutical derivatives
(Fig. 3). Primary amines underwent two N-trideuteromethylation
reactions, providing products with N,N-(CD3)2 units with excel-
lent D incorporation (97-99%) (Fig. 3, 3aa-3af). The use of ani-
line substrates bearing both electron-donating groups (p-Me, p-
OMe) and electron-withdrawing groups (p-CN, p-Cl) produced
the corresponding N,N-(CD3)2-anilines in 69–89% yields (3aa-
3ad). Sensitive substrates with alkyl chiral centers (3ae and 3af)
were compatible and unperturbed. Since most N-alkyl drugs are

fabricated from secondary amines via N-alkylation reactions, the
N-trideuteromethylation of secondary amines was investigated
with great interest. To our delight, this protocol with secondary
amines exhibits a broad reaction scope, good functional group
tolerance and excellent D incorporation. N-alkyl anilines,
including substituted N-Me anilines and N-Bn anilines, furnished
the corresponding products with high D incorporation (91–98%)
and in excellent yields (84–94%). N-trideuteromethylation of
ethyl phenylglycinate (3bg), a representative amino acid deriva-
tive, as well as estrone derivate (3bi) was achieved, attesting to the
ability to deuterate bioactive molecules. For the diamine substrate
3bh, di-CD3 was simultaneously introduced in 71% yield. This
protocol was also applicable to a wide range of diary amines
bearing substituted phenyl (3ca-3ce), naphthyl (3cf), and phar-
maceutical units such as chlorambucil (3ci), oxaprozin (3cj), and
(R)-naproxen (3ck). A steric effect-controlled highly chemose-
lective N-trideuteromethylation of diary amines is observed (3cl).
The N-CD3 incorporation of heterocyclic amines such as indoline
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and iminodibenzyl was achieved successfully. These heterocyclic
skeletons are widespread in natural products, pharmaceuticals
and key intermediates. Aliphatic amines were also found to be
competent substrates, providing the desired products (3da–3db)
in good yields. Finally, the strategy could be extended to the N-
deuterated alkylation of amines by replacing d4-methanol with
other deuterated alkanols, such as d5-ethanol for N-CD2CD3

incorporation (3e). This protocol exhibits highly efficient in
production of deuterated N-alkyl chemicals with excellent D-
incorporation, thus holding great potential application towards
the synthesis of stable isotope-labeled compounds for synthetic
mechanism study as well as LC/MS quantification6,34,38.

Sustainable synthesis of deuterated pharmaceuticals. N-Me
amine units are present in many of the 200 top-selling drugs
produced in 2018 and are often required for their intended
pharmacological functionality53–58. Deuterium substitution of the
N-Me groups of these drugs is highly desired. We tested the
protocol developed above for the synthesis of N-CD3-based
pharmaceuticals and bioactive molecules (Fig. 4). Here, the use of
heterogeneous catalyst provides an ideal solution to avoiding
poising these drugs from the molecular catalyst due to its easy
removal. First, late-stage functionalization of drug molecules with
primary and secondary amines was evaluated59. Di-N

trideuteromethylation of flutamide and nimesulide was accom-
plished, providing the deuterated drug derivatives in good yields
(71–80% yields) without affecting the amide and sulfamine
functionalities. A variety of commercially available pharmaceu-
ticals with secondary amine units, namely, fluoxetine, tetracaine,
atomoxetine, sertraline, paroxetine and vortioxetine, smoothly
underwent N-trideuteromethylation (4c-4h, 60–94% yields),
reconfirming the universality of our strategy. More importantly,
this mild and general process enables access to site-specifically
labeled drugs in a single step. Deuterium-labeled analogs of
butenafine could be obtained in 67% yield (4k). Trideuter-
omethylation of monomethylated desipramine and amoxapine
gave imipramine-d3 (4i, 92%) and loxapine-d3 (4j, 94%),
respectively. The use of C2D5OD/D2O as an alkylation reagent
successfully afforded alverine-d5 (4l) in high yield (84%). In
addition, synthesis of dofetilide-d3 was achieved in four steps with
32% overall yields from low-cost and commercially available
starting materials. Gram-scale syntheses of both loxapine-d3 and
dofetilide-d3 with high yields were demonstrated, highlighting the
practical utility of this protocol. Again, all D-labeled pharma-
ceuticals and their analogs gave excellent deuterium
incorporation.

Isotope-labeled bioactive compounds are extensively used to
study interactions with lipid membranes, proteins, nucleic acids,
etc60,61. In particular, the controllable incorporation of partially
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deuterium-labeled N-methyl groups (CDH2, CD2H, or CD3)
slows drug metabolism to improve the pesticide effect62.
However, their synthesis remains a great challenge. Our
controllable deuterium-labeling strategy was successfully applied
for the facile synthesis of N-CD3, N-CD2H and N-CDH2

nimesulide derivatives (4b, 4o and 4p), butenafines-d3, d2 and
d1 (4k, 4r and 4s), loxapines-d3, d2 and d1 (4j, 4u and 4 v) and
imipramines-d3, d2 and d1 (4i, 4x and 4y) with high yields and
uniformly high D incorporation (>95%) (Fig. 5). In all these
drugs, only the target N-alkyl units were specifically labeled with
deuterium. 13C-labeled drugs are of significant importance in
medical biology for tracking metabolites and quantitative analysis
by mass spectrometry and 13C NMR spectroscopy63. This
protocol can also be applied for the sustainable synthesis of
13C-labeled drugs by replacing methanol with 13CH3OH. As
expected, 13C-labeled nimesulide derivative (4q), butenafine (4t),
loxapine (4w) and imipramine (4z) were readily obtained with
comparable yields64.

In summary, a powerful semiconductor photocatalytic system
for the sustainable and scalable construction of deuterated
pharmaceuticals and chemicals has been discovered. This strategy
is characterized by high yields, excellent D incorporation in a
single step, the use of low-cost and sustainable deuterated
methylating reagents (isotopic water and methanol), excellent
functional group tolerance including a range of pharmaceutically
relevant functionalities, and mild conditions. Significantly, the
unique controllable D-labeling protocol provides the ability to
precisely control the number of deuterium atoms (i.e., N-CD3,
CD2H and CDH2) at the metabolic position of pharmaceuticals,
which is critically important for deuterated drug discovery.

Finally, the present results reveal a new horizon of photosynthesis
for direct pharmaceutical production.

Methods
Synthesis of CPCN and Pd/CPCN photocatalyst. In a typical synthesis, mela-
mine (3.0 g, Alfa Aesar) was ground with KBr (2.0 g, Alfa Aesar). Then, the
resultant mixture was heated to 550 °C for 3 h in a tube furnace. After cooling to
room temperature, the bright yellow-green product was washed with boiling
deionized water several times and collected by filtration, followed by drying at
60 °C under vacuum. As-prepared sample is denoted as CPCN. Pd/CPCN pho-
tocatalyst was prepared by photodeposition process. In brief, as-synthesized CPCN
(0.3 g) was dispersed in a mix solution with 80 mL deionized water and 20 mL
glycol. After untrasonication treatment for 2 h, 84 μL of 1.0 M H2PdCl4 was added
into the mixture, and then the mixture was treated under 300W Xe lamp illu-
mination for 1 h to reduce Pd2+. The brownish slurry was centrifuged and washed
with deionized water for three times. After dried in an oven at 70 °C overnight
under vacuum condition, as-prepared sample denoted as Pd/CPCN were obtained.

Photocatalytic deuterated N-methylation reaction. Typically, 25 mg of Pd/
CPCN and 0.4 mmol of substrate and AlCl3 (0.3 mmol) were dispersed in a mix-
ture solution with Acetonitrile/D2O/CD3OD= 2 ml/1.5 ml/1.0 ml, and then soni-
cated for 1 min. The reaction mixture was then irradiated with a LED lamp (20W,
λ= 420 nm, Suncat instruments Co., Ltd., Beijing, China) for 4-24 h under Argon
at 25oC by using a flow of cooling water during the reaction. After reaction, the
mixture was centrifuged to remove photocatalyst. The supernatant was extracted
by adding 5 mL of CH2Cl2. The reaction mixture was concentrated under reduced
pressure and the residue was purified by column chromatography on silica gel to
furnish the corresponding product. The isolated yield was calculated by dividing
the amount of the obtained desired product. Deuterium incorporation were
checked and calculated by NMR.

Characterization equipment. The crystal structure of catalyst was characterized
by X-ray diffraction (XRD) (Ultima IV, Rigaku) at 40 kV and 40 mA (Cu Kα X-ray
radiation source) with a scanning speed and step interval of 4o min−1 and 0.01o,
respectively. Transmission electron microscope (TEM) images were obtained using
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a HT7700 TEM (Hitach). The solid diffuse reflectance spectra (DRS) were collected
on a UV–Vis–NIR spectrophotometer (Cary 5000, Varian). NMR tests were
conducted on Bruker AVANCE III NMR spectrometer (500 and 600MHz). The
high-performance mass spectrometry was conducted by a Q Exactive GC Orbitrap
GC-MS/MS (Thermo Scientific).

Data availability
All data are available from the authors upon reasonable request.
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