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Abstract

The expression of the IL-2R α-chain (IL-2Rα) is regulated at the transcriptional level via

TCR- and IL-2R-signaling. The question is how to precede in time the activation signals to

induce the IL-2Rα expression in native primary T cells. By comparing the effects of selective

drugs on the dynamics of CD25 expression during the mitogen stimulation of human periph-

eral blood lymphocytes, we identified distinct Src- and JAK-dependent stages of IL-2Rα
upregulation. PP2, a selective inhibitor of TCR-associated Src kinase, prevents CD25

expression at initial stages of T cell activation, prior to the cell growth. This early IL-2Rα
upregulation underlies the T cell competence and the IL-2 responsiveness. We found that

the activated with “weak” mitogen, the population of blood lymphocytes has some pool of

competent CD25+ cells bearing a high affinity IL-2R. A distinct pattern of IL-2R signaling in

resting and competent T lymphocytes has been shown. Based on the inhibitory effect of

WHI-P131, a selective drug of JAK3 kinase activity, we concluded that in quiescent primary

T lymphocytes, the constitutive STAT3 and the IL-2-induced prolonged STAT5 activity

(assayed by tyrosine phosphorylation) is mostly JAK3-independent. In competent T cells, in

the presence of IL-2 JAK3/STAT5 pathway is switched to maintain the higher and sustained

IL-2Rα expression as well as cell growth and proliferation. We believe that understanding

the temporal coordination of antigen- and cytokine-evoked signals in primary T cells may be

useful for improving immunotherapeutic strategies.

Introduction

T cell activation involves two major steps of signal transduction events. T cell receptor (TCR)

complex upon specific antigen recognition initiates the first signal that regulates the expression

of specific genes, including cytokines and cytokine receptors [1–3]. TCR-induced expression

of interleukin-2 (IL-2) and IL-2 receptor α-chain (IL-2Rα) starts the second wave of signaling

events that, ultimately, result in T cell proliferation through activation of diverse target genes

[4, 5]. Among other activation events, the expression of the IL-2Rα regulates the magnitude of
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T cell proliferative response. The expression of the IL-2Rα gene assists the formation of high

affinity receptor for IL-2 through the association of the α-chain with two polypeptide chains,

IL-2Rβ and IL-2Rγ, which are constitutively expressed at the surface membrane of quiescent

T cells [6–8]. IL-2Rα expression increases the affinity of IL-2 binding ~100 times, facilitating

IL-2 responses at low physiological concentrations of IL-2 [9–11]. Compromised expression

of IL-2 or IL-2Rα leads to the development of autoimmune diseases and immunodeficiency

[12–14].

Expression of the IL-2Rα is tightly regulated at the transcriptional level. Several positive reg-

ulatory regions control activation-dependent IL-2Rα induction in response to antigen and IL-

2 [9, 15]. The current concept of IL-2Rα gene induction in T cell requires a coordinated effort

between signaling pathways downstream of the TCR and the IL-2R. Although much is known

about the molecular mechanisms that results in the IL-2Rα upregulation, some questions

remain. To test cooperation between TCR and IL-2R downstream signaling the transgenic

mouse models and IL-2R-deficient T cells have been widely used with the assumption that

intracellular signaling in these cells would be identical to that in normal T cells. Nevertheless,

there is evidence that in knockout models other signaling may be engaged in cell activation

that compensates the signaling switch off in cells in vivo [16, 17]. Little studies are available on

intact primary T cells, and how antigen- and cytokine-evoked signals are timely coordinated

under physiological conditions to induce the IL-2Rα expression is poorly investigated. Mean-

while, the induction of the functional system composed of IL-2 and high affinity IL-2R is criti-

cal for T cell proliferation and the effective immune response.

In the present study, we addressed this question. The IL-2Rα expression was assessed by

flow cytometry analysis of CD25 which is a cell surface marker of IL-2Rα. At first, using selec-

tive kinase inhibitors we identified Src- and JAK-dependent stages of CD25 expression in

mitogen-stimulated human blood T lymphocytes. Further, we established the crucial role of

initial TCR-signaling for IL-2Rα expression and emphasized that it is in competent PBL hav-

ing high-affinity IL-2R that the sustained JAK3/STAT5 signaling is switched on to provide the

higher and long-term IL-2Rα upregulation.

Materials and Methods

Lymphocyte isolation and stimulation

Human peripheral blood lymphocytes (PBL) were isolated from fresh venous blood of healthy

adult donors (collected with written consent with approval from The Institute of Cytology

RAS and The State Institution “Mariinsky Hospital”, Saint-Petersburg, permission number

2025/14). PBL were obtained by density gradient centrifugation over Histopaque (Histopaque-

1077, Sigma), followed by monocyte/macrophage depletion via plastic adherence [18].

Prior to experiments, purified cells were suspended at a concentration of 2x106 cells/ml,

and allowed to rest overnight in RPMI medium supplemented with 5% heat-inactivated

human serum (AB IV Rh+). At the next day the cell suspension (>85% CD3+ cells) were dis-

tributed into plates (10-20x106 cells/plate) and stimulated either with the polyclonal mitogen

for T lymphocytes phytohemagglutinin (PHA-M, Sigma, USA) or with human recombined

IL-2 (Biotex, Russia) in the absence or presence of pharmacological inhibitors WHI-P131,

4-(4´-Hydroxyphenyl)amino-6,7-dimethoxyquinozoline or PP2, 4-Amino-5-(4-chlorohyenyl)-

7-(t-butyl)pyrazolo[3,4-d]pirimidine (Calbiochem, USA), or left unstimulated.

Flow cytometry

The relative levels of CD4 and CD25 expression as well as the proliferation of cultivated PBL

were assessed by flow cytometry. PBL were pelleted by centrifugation, rinsed once and
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suspended in PBS (106 cells/ml). Cells were stained with fluorescein isothiocyanate (FITC)-

labeled CD25 Abs and with phycoerythrin (PE)-labeled CD4 Abs (Invitrogen, USA). Mouse

IgG-FITC and IgG-PE isotype control were used for assessing the background staining of cells.

The percentage of CD25+ or CD4+ cells was determined after gating on lymphocytes. Cells

were analyzed on a Coulter Epics XL Flow Cytometer (Beckman Coulter, Brea, CA, USA).

Two parameter histograms were used (CD4LOG versus FSLOG, CD25LOG versus FSLOG as

well as CD4LOG versus CD25LOG). Cell enlargement of induced PBL or drug inhibitory

effect on growth of PBL was also seen on the two parameter histograms. The dot plots were

obtained with WinMDI Version 2.8. Statistical analysis of results was performed according to

the standard protocol of the data treatment EpicsXL.

To assess the proliferative response of stimulated PBL, at definite time after mitogenic stim-

ulation, PBL (106 cells/ml) were suspended in PBS containing 200 μg/ml of saponin (Sigma)

for 30 min, then washed and treated with 250 μg/ml ribonuclease (Serva, Germany) and 50 μg/

ml propidium iodide (Sigma, USA) in PBS for 30 min at 37˚C. Cell cycle distribution was ana-

lyzed by Coulter Epics XL Flow Cytometer (Beckman Coulter, Brea, CA, USA). Cells were

classified as G0/G1/ S and G2/M. List mode files were analyzed with ModFit LT software (Ver-

ity Software House, Topsham, ME, USA).

Western blotting

Total cell lysates were prepared as described previously [19]. PBL were pelleted by centrifuga-

tion, washed twice in PBS, suspended in lysis buffer TBS (50 mM Tris-HCl, 1% Ttriton X-100,

0.5% nonidete P-40, 150 mM NaCl, 1mM EDTA, protease and phosphatase inhibitors),

homogenized and centrifuged at 15,000 g (10 min). All manipulations and solutions were at

4˚C. Total protein was quantified using the Bradford assay. SDS-PAGE electrophoresis, trans-

fer to nitrocellulose membrane and immunoblotting with ECL (Thermo Scientific, USA)

detection was performed according to standard manufacturer’s protocols (Bio-Rad Laborato-

ries, USA). Phospho-STAT3 (P-STAT3) and phospho-STAT5 (P-STAT5) levels were assessed

by Western blotting overnight at 4˚C with P-STAT3 and P-STAT5 antibodies. Membranes

were washed with TTBS (20 mM Tris-HCl, pH 7.5, 150 mM NaCl, 0.1% Tween-20), incubated

with 5% skim milk in TTBS for 1h, then with primary antibodies in 5% BSA (bovine serum

albumin) in TTBS for 10−12 h, washed with TTBS, incubated with secondary antibodies in 5%

skim milk in TTBS for 1 h and washed with TTBS. Bands were detected with HRP-conjugated

anti-rabbit or anti-mouse Abs and bound Abs were detected by ECL (Amersham). When

reblotting, membranes were cleaned in stripping buffer, blocked in TBS with 1% BSA and

reprobed for STAT3 or STAT5 with appropriate Abs. Blots were scanned by Epson perfection

(4490PHOTO) and quantified with Scion image software. For quantitating western blots, we

take lower exposure images where the bands or signals are not saturating. And always quanti-

tate two or three different exposures and compare among them whether they are giving values

close. At each time point P-STAT3 and P-STAT5 levels relative to STAT3 and STAT5 levels

were calculated and these values were normalized to those from samples at 24 h on the same

protein gel blot to determine fold change.

The following antibodies were used: phospho-STAT3 (Tyr705), phospho-STAT5 (Tyr694),

phospho-JAK3 (Tyr980/981), STAT3, STAT5, JAK3. All antibodies were purchased from Cell

Signalling, USA. Antibodies (1:1000) were diluted with 5% BSA in 0.1% TTBS. Secondary anti-

bodies to these primary antibodies: anti-rabbit goat antibodies conjugated with horseradish

peroxidase (Cell Signalling, United States), dilution 1:6000. β-Actin was assessed as a loading

control: monoclonal antibodies to β-actin were diluted 1:2000 with 1% BSA. Secondary

antibodies to these monoclonals: anti-mouse goat antibodies conjugated with horseradish
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peroxidase. β-Actin mouse mAbs (8H10D10) as well as HRP-linked anti-rabbit IgG were from

Sigma-Aldrich, USA.

RT-PCR assay

Total RNA from PBL was extracted by guanidine thiocyanate method [20]. 2–3μg RNA was

reverse-transcribed (MMLV Gibco BRL) using 1μg of random hexamers in a volume 20 μl.

Primers for IL-2Rα (forward 5‘-CCACTCGTCCTGGGACAACC-3‘, reverse 5‘-CATATGAG

CTGGGGCTGGGTC-3‘, 336 bp) were synthesized according to the sequences published pre-

viously [21]. Housekeeping gene β-glucuronidase (GUS) was used as an internal control. Prim-

ers for GUS were as follows: forward 5‘-GAAAATACGTGGTTGGAGAGCTCATT-3‘, reverse

5‘-CCGAGTGAAGATCCCCTTTTTA-3‘, 101 bp. All the primers were synthesized by Sintol

(Russia). To avoid false positive results due to genomic contamination of the samples, the

primers spanned an intron at the genomic level. PCR was carried out in a volume 10 μl using

2 μl diluted cDNA, 0.5 μM of each primer, 0.2 mM each of dNTP, 1.4 mM MgCl2, 1 × Hot-Taq
polymerase buffer (Sileks, Russia) and 1 U Hot-Taq polymerase. Amplification conditions

were 95˚C 10 min, then 25 cycles (for GUS) or 26 cycles (for IL-2Rα) at 94˚C 40s, 58˚C 40s,

72˚C 40s. All reactions were performed in triplicate at a minimum. The resulting DNA prod-

ucts were electrophoresed on a 6% polyacrylamide gel, stained in ethidium bromide, visualized

by UV fluorescence and quantitated using NIH Image J software. All the results of PCR-RT

analysis were obtained on PBL from five donors.

Assessment of cell viability

Propidium iodide (PI) staining was used to determine cell viability after drug treatment. PI is

excluded by viable cells but can penetrate cell membranes of dead cells and intercalates into

double-stranded nucleic acids. PI (0.05 mg/ml) was added to the samples just before analysis,

mixed gently and analyzed by flow cytometry (Beckman Coulter). Each sample was analyzed

for 50 s and at least 20,000 cells were acquired for analysis. Triplicate counts were obtained for

each procedure.

The cell viability was also assessed by measuring intracellular monovalent cation content.

In experiments, in parallel probes (5x105 cells), untreated or treated with drugs, the cell potas-

sium (Ki) and sodium (Nai) contents were determined by flame emission photometry (Perkin-

Elmer AA306 spectrophotometer) as described previously [18]. The high and constant Ki / Nai

ratios were considered as the physiological marker for functional viability of cultivated PBL

[22].

Statistical analysis

Graphs shown throughout the paper show the mean and standard error of the mean from sev-

eral independent experiments performed. When appropriate, statistical differences were calcu-

lated using the Student’s t-test and considering significant at P<0.05.

Results

The long-term CD25 expression is regulated by two independent signals

via TCR and high-affinity IL-2R in human PBL

In previous studies, using selective pharmacological inhibitors we discriminated Src- and JAK-

dependent stages in the course of CD25 expression in activated human peripheral blood T

lymphocytes (PBL) [23, 24]. In this work, we studied time- and dose-dependent relations

between drug-inhibitable portions of CD25 expression and present new evidence that under
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physiological conditions in quiescent human T cells, induction of IL-2Rα is timely regulated

by two independent signals via TCR and high-affinity IL-2R. Fig 1 presents the summary

results of these experiments. Freshly isolated PBL were treated with phytohemagglutinin

(PHA, 10 μg/ml). PHA, a polyclonal mitogen for T lymphocytes, induces structural changes in

TCR/CD3 complex, triggers the cascade of signaling events that characterizes the early stage of

antigen activation, and mitogen doses of PHA induce the T lymphocytes exit from quiescence

into the cell cycle [1, 4, 25]. PHA was added to PBL alone or in the presence of selective tyro-

sine kinase inhibitors. We applied PP2 (4-Amino-5-(4-chlorohyenyl)-7-(t-butyl)pyrazolo

[3,4-d]pyrimidine) as an inhibitor for the Lck kinase. PP2 is at least 1,000-fold more active

against Src family kinases than other TCR-associated tyrosine kinases [26, 27]. It has also been

shown that PP2 is effective in blocking the anti-CD3-induced T-cell activation events, while it

is less effective at inhibiting the TCR-independent proliferation induced by phorbol ester and

IL-2 [28]. To determine directly whether IL-2R signaling is necessary for CD25 expression in

intact T-lymphocytes, we used WHI-P131 (4-(4´-Hydroxyphenyl)amino-6,7-dimethoxyqui-

nozoline) as an effective inhibitor of IL-2R-associated tyrosine kinase JAK3. WHI-P131 did

not inhibit JAK1 and JAK2, the Src and Tec families tyrosine kinases [29].

In PBL populations obtained from different healthy individuals CD25 could be detectable

in 0.5–6% of the total T cell pool. These CD4+CD25+ cells appear to represent the CD4+CD25

+ T regulatory cells (natural Tregs) [30, 31]. The increased CD25 expression was detectable at

5 h after PHA addition (Fig 1A, top row). Later, the percentage of CD25+ cells was substan-

tially increased from (8.7±0.8%, n = 10) after 5 h to (76.9±7.4%, n = 10) at 48 h, and to the

end of the second day only, the PBL population becomes represented mainly by large CD25

+ cells (Fig 1B and 1C). Both PP2 and WHI-P131decreased the number of CD25+ cells in

PHA-induced cultures, reduced the S-phase induction and suppressed the growth of activated

PBL (Fig 1A; Table 1). As follows from PI staining test in concentrations used PP2 (up to

1 μM) and WHI-P131 (up to 80 μM) did not increase significantly the number of dead cells in

culture (Table 1). Drug-treated PBL maintained also the normal ion homeostasis (as judged by

high potassium and low sodium content in cells) and were functionally viable (Table 1).

Isolated PBL were cultured 48 h with 10 μg/ml PHA in the absence or presence of 50 or

80 μM WHI-P131 or 1.0 μM PP2, or isolated PBL were incubated with submitogenic PHA

(0.7 μg/ml) for 20 h and then IL-2 (200 U/ml) was added for the next 24 h. Cell growth was

evaluated from protein measurements by Lowry method in the same probes where intracellu-

lar ion content (Ki/Nai) was measured. The percentage of cells in (S+G2+M) phases was deter-

mined from cell cycle analysis by flow cytometry. The high Ki/Nai ratio was considered as the

physiological marker for functional viability of PBL. Cell death was assessed by propidium

iodide (PI) incorporation into cells. The results indicate the percentage of the PI-staining cells

as determined by FASC analysis. Data represent mean ± SD of five independent experiments

with PBL from different donors.

We revealed that the PP2-inhibitable component of CD25 expression in PHA-stimulated

PBL was more significant in the small CD25+ cells, which number was peaked at the end of

the first day of activation (Fig 1A and 1B). During the second day, PP2-inhibitable expression

of CD25 reduced (Fig 1C). Unlike PP2 the inhibitory effect of WHI-P131 was observed during

the whole transit of activated PBL to proliferation and after 48 h up to 90% of large blasts had

CD25 markers.

In order to clarify whether the inhibitory effect of PP2 depends on the time of cell activa-

tion, we compared the drug effect at different time points of PHA stimulation and found that

during the first 19 h, PP2 prevented increase in the number of CD25+ cells while reducing

CD25 expression on small cells (Fig 2A and 2B). When applied 19 h after PHA addition PP2

had no effect on the increase in number of CD25+ cells which occurred during the second day
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Fig 1. PHA stimulation leads to long-term CD25 expression in human blood T lymphocytes. (A) The

representative histograms of nine experiments on PBL from different donors are shown. PBL were cultivated

with 10 μg/ml PHA in the absence or presence of 80 μM WHI-P131 (WHI) or 1.0 μM PP2 and after 5, 24 or 48 h

CD25 Expression in T Lymphocytes
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of stimulation (Fig 2B). The effects of PP2 and WHI-P131 on CD25 expression were additive

(Fig 2C). Altogether our data indicate that (1) PP2-inhibitable expression of CD25 is associated

with the early stages of mitogen-induced PBL activation and precedes the cell growth and (2)

TCR- and IL-2R-evoked downstream signals must cooperate in time to provide the sustained

IL-2Rα upregulation.

IL-2 up-regulates the CD25 expression in competent but not in quiescent

PBL

To make clear the role of early PP2-inhibitable CD25 induction we investigated whether exog-

enous IL-2 can induce the expression of IL-2Rα in quiescent T cells and found that in freshly

isolated PBL, IL-2 failed to induce a full proliferative response (4.3% cells in S+G2+M-phases

as compared to 43,7% in PHA-stimulated PBL cultures after 48 h) (Table 1). IL-2 also was not

capable inducing higher CD25 expression in resting PBL: in IL-2 stimulated cultures (50–250

U/ml, 48 h) the number of large CD25+ cells did not change or increased to no more than

9.6% (Fig 3A).

It has previously been shown that incubation of quiescent T cells with low doses of PHA

that did not induce cell proliferation, render the cells responsive to IL-2 [32]. We used this

experimental protocol and revealed that activated with “weak”, 0.7 μg/ml PHA, PBL cultures

contain increased number of CD25+ cells, 15.8±1,8% (n = 4) (Fig 3A and 3B, column 2).

Remarkably, this population of CD25+ cells which should bear on the surface high-affinity IL-

2R was present in PBL culture during the whole observation period (48 h). Further, in “condi-

tioned”, competent PBL, IL-2 increased surface CD25 expression: the number of CD25+ cells

in competent PBL after 48 h stimulation with IL-2 was comparable with the number of CD25

+ cells in PBL that were stimulated with the “strong”, 10 μg/ml PHA (Fig 3B, columns 3 and

8). In addition, competent cells enter into the cell cycle and proliferate well in the presence of

IL-2 (Fig 3C, column 3; Table 1). In view of the above data it is reasonable to assume that the

were analyzed by flow cytometry. The dot plots have been obtained with Win MDI Version 2.8. In order to

identify the axis labels, the additional vertical axis is shown in the upper row of histograms. Y-axis is 4 decades

logarithmic scale. 1, 2 –The gate was chosen considering the cell size increase during blasttransformation: 1-

CTR—control, non-stimulated PBL, 2 –after 48 h of culture with 10 μg/ml PHA. X-axis–forward scatter (FSC),

Y-axis–side scatter (SSC). (B) Time-course of CD25+ expression in PHA-induced PBL. 1 –Total number of

CD25+ cells, 2—large CD25+ cells, 3—small CD25+ cells. (C) WHI-P131- and PP2-inibitable portions of CD25

+ cells in PHA-stimulated PBL. Summary of independent experiments is presented as mean ±SEM (n = 9,

p<0.05). In each experiment, when analyzing the PHA-induced CD25 expression changes, the background

CD25 expression in resting cells (CTR) was subtracted. Summary data are presented as mean ± SEM (n = 10,

p<0.05).

doi:10.1371/journal.pone.0167215.g001

Table 1. The growth, proliferation and viability of human blood T lymphocytes, stimulated with PHA or IL-2 in the absence or presence of

WHI-P131 and PP2 for 48 h.

Incubation Cell growth ng / 106cells Proliferation S+G2+M, % Ion ratio Ki /Nai Cell death %

Resting PBL 52 ± 3± 1.1 ± 0.02 4.3 ± 0.75 5.3 ± 0.7

PHA10 133±14 43.7 ± 2.5 5.1 ± 0.78 13.7 ± 1.0

PHA10 +WHI-P131, 50 84±7 14.7 ± 1.5 4.9 ± 0.90 15.0 ± 0.7

PHA10 +WHI-P131, 80 64±5 5.4 ± 0.2 4.3 ± 0.58 15.8 ±1.0

PHA10 + PP2, 1.0 68 ± 7 10.4 ± 0.9 4.5 ± 0.70 12.1 ±0.7

IL-2, 100 60 ± 4 2.3 ± 0.1 4.3 ± 0.60 3.2 ±0.3

PHA 0.7 50 ± 4 6.9 ± 0.1 4.4 ± 0.70 5.9 ±0.6

PHA 0.7+IL-2, 100 119 ± 13 30.6 ± 5.4 5.0 ± 0.47 6.1 ±0.6

doi:10.1371/journal.pone.0167215.t001
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Fig 2. The inhibitory effect of WHI-P131 and PP2 on CD25 expression in PHA-stimulated human blood

T lymphocytes. (A) The PP2-inhibitable expression of CD25 is timely associated with the initial stages of

PBL activation. Cells were cultivated with 10 μg/ml PHA without or with 80 μM WHI-P131 (WHI) or 1.0 μM

PP2 for 19 h (middle row) or cells were cultivated with 10 μg/ml PHA for 19 h and thereafter WHI-P131 or PP2

were added for the next 21 h (bottom row). Additional Y-axis is 4 decades logarithmic scale. Representative

CD25 Expression in T Lymphocytes
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ability of IL-2 to promote IL-2Rα expression and cell proliferation in competent (but not in

quiescent) PBL cultures is provided by a pool of CD25+ cells with the functionally active IL-2R

having α-chain.

To identify signals that might be involved in competence induction, we assessed the effect

of kinase inhibitors on CD25 expression. In one set of experiments competent PBL had been

treated with WHI-P131 or PP2 for 1 h before IL-2 was added for the next 24 h. We revealed

that WHI-P131 totally inhibited CD25 expression in response to IL-2 in competent PBL (Fig

3B, column 4). Under the same conditions, the IL-2-induced CD25 expression was attenuated

in the presence of PP2 by no more than 40% (Fig 3B, column 5). In another set of experiments

the drugs were given during the preactivation, i.e. simultaneously with “weak” PHA. Under

these conditions, PP2 strongly inhibited the CD25 expression in response to IL-2 (Fig 3B, col-

umn 7). These data suggest that the competence induction and priming the quiescent T cells

to IL-2 can be provided by Src-associated signaling via “weak” TCR stimulation.

To find out whether there is a difference in the regulation of IL-2Rα expression in compe-

tent and mitogen-stimulated PBL we evaluated the content of IL-2Rα transcripts by RT-PCR

analysis. As shown in Fig 4A, in resting PBL, IL-2Rα mRNA was barely detectable. After PBL

stimulation with 10 μg/ml PHA the level of IL-2Rα mRNA rose within 2 h and increased grad-

ually to the high level for the next 24 h (Fig 4B). On the contrary, incubation of PBL with

“weak” 0.7 μg/ml PHA was accompanied by 1.5-2-fold increase in IL-2Rα mRNA level, which

was maintained low during two days (Fig 4B). Remarkably, after IL-2 stimulation of competent

PBL, the IL-2Rα mRNA content was increased within 2–4 h to the level in PBL stimulated

with “strong” mitogen concentration of PHA.

Relations between STAT5 activation and CD25 expression in human

activated with IL-2 or PHA

In order to clarify why IL-2 alone failed to induce the higher expression of CD25 and prolifera-

tion in quiescent PBL, we analyzed the STAT signals after IL-2 stimulation. In primary T cells,

the intermediate affinity IL-2Rβγc is capable of signaling: heterodimerization of the IL-2Rβ
and IL-2Rγc cytoplasmic domains is sufficient for IL-2 signal transduction defined as JAK and

STAT phosphorylation [33, 34]. In this paper we compared IL-2-induced changes in STAT3

and STAT5 activities as the main IL-2R downstream signals and focused on STAT5 as the

transcriptional factor which participate in IL-2Rα gene induction [7, 9]. Phospho-STAT5

(P-STAT5) was absent or barely detectable in unstimulated PBL (Fig 5A, lane 1). A high level

of P-STAT5 was observed already in 1–2 h IL-2 addition (Fig 5A, lane 2). During the next 24 h

the level of STAT5 phosphorylation remains high but further reduced (Fig 5C, line 2). Unlike

STAT5, Phospho-STAT3 (P-STAT3) was always estimated in resting PBL (Fig 5A, lane 1). In

response to IL-2 the content of P-STAT3 was transiently increased and then returned to the

initial level (Fig 5C, line 2). These experiments indicate that IL-2 induces STAT5 activation in

intact T lymphocytes however under these conditions STAT5 signal is attenuated with time.

WHI-P131, as an inhibitor of tyrosine kinase JAK 3, reduced the rapid IL-2-induced

increase in P-STAT5 and P-STAT3 to about one third, however, at 24 h the inhibition of

STAT phosphorylation was attenuated (Fig 5B, line 3 and 5C, line 3). This suggest that in

data on PBL from one donor are shown. (B) Summary data of four independent experiments are shown as

mean + SEM (n = 4, p<0.05). (C) The inhibitory effects of WHI-P131 (WHI) and PP2 on CD25 expression are

additive. Cells were cultivated with 10 μg/ml PHA without or with WHI-P131 (WHI, 20 and 50 μM), or PP2 (0.4

and 0.8 μM), or WHI-P131 (20 μM) and PP2 (0.4 μM) were given simultaneously for 24 h. Summary of

independent experiments are presented as mean + SEM (n = 4). *, p<0.05. CTR—control, non-stimulated

PBL.

doi:10.1371/journal.pone.0167215.g002
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Fig 3. Stimulation with non-mitogenic PHA and IL-2 leads to long-term CD25 expression and proliferation in human

blood T lymphocytes. (A) The representative histograms of one experiment on PBL from one donor are shown. PBL were

not stimulated (CTR) or stimulated with 0.7 μg/ml (0.7PHA), or 10 μg/ml (10PHA) PHA, or 200 U/ml IL-2 (IL-2) for 48 h. In the

same experiment, PBL were preincubated in culture medium with 0.7 μg/ml PHA and 80 μM WHI-P131 (WHI) or 1.0 μM PP2

for 24 h prior to IL-2 stimulation, or drugs were added simultaneously with 0.7 μg/ml PHA for 24 h and thereafter IL-2 was

added for the next 24 h. Additional Y-axis is 4 decades logarithmic scale. (B) CD25 expression in resting PBL in response to

0.7 μg/ml PHA (2) and 10 μg/ml PHA (8), or in competent PBL in response to IL-2 in the absence (3) or presence of WHI-P131

(4) or PP2 (5), or in response to IL-2 in PBL preactivated with 0.7 μM PHA in the presence of WHI-P131 (6) or PP2 (7).

Summary data of independent experiments on PBL from different donors are shown as mean + SEM (n = 4, p<0.05). (C)

Proliferation of resting PBL in response to 0.7 μg/ml PHA (2) and 10 μg/ml PHA (6, 7), or competent PBL in response to IL-2 in

the absence (3) or presence of PP2 (4) or WHI-P131 (5). Bars represent the number of cells in (S+G2+M) phases of cell cycle

at 48h after PBL stimulation. Summary data of independent experiments on PBL from different donors is shown as mean

+ SEM (n = 4, p<0.05).

doi:10.1371/journal.pone.0167215.g003
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Fig 4. Expression of mRNA encoding for IL-2Rα in human blood T lymphocytes stimulated by PHA or

IL-2. (A) The representative PCR amplification of IL-2Rα in PBL, resting (Ctrl) or stimulated with 10 μg/ml

PHA (10PHA) for 4 and 24 h, or in competent lymphocytes treated with 0.7 μg/ml PHA (0.7PHA) for 24 h and

then stimulated by IL-2 (0.7PHA+IL-2) for 4 and 24 h. β-glucuronidase (GUS) was used as an internal control.

(B) Quantification of the results presented in (A). The mRNA expression is shown relative to the optical signals

obtained with the RNAs in resting or competent PBL. The summary data of independent experiments on PBL

of four donors, mean ± SEM (n = 4).

doi:10.1371/journal.pone.0167215.g004
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quiescent, primary PBL, (1) IL-2-induced short-term regulation of both STAT3 and STAT5

activity may be provided by JAK3-dependent mechanism, whereas (2) the sustained STAT3 as

well as long-term STAT5 phosphorylation in the presence of IL-2 appeared to be

JAK3-independent.

Next, we examined the IL-2 action on the phosphorylation status of STAT proteins in com-

petent PBL after preactivation with “weak” PHA. The phosphorylation status of STAT3 in

competent cells was as high as in resting cells and IL-2 did not affect or slightly increased

STAT3 phosphorylation but only during first 0.5–2 h (data not shown). In contrast, there was

no or little phosphorylation of STAT5 in “conditioned” competent PBL (Fig 5D, lane 7). In

competent cells, IL-2 rapidly increased the phosphorylation of STAT5 and later on the high

level of STAT5 phosphorylation maintained for the next 24 h (Fig 5D, lane 7). Thus, in con-

trast to resting PBL, in competent T lymphocytes, IL-2 induced the higher and sustained

STAT5 activation.

The next task was to analyze STAT signals in PBL stimulated with mitogenic, “strong” PHA

which was capable to induce high and long-term CD25 expressions in primary T lymphocytes.

We revealed that P-STAT5 appeared at 2–5 h following PHA stimulation, reached the high

level at 24 h and remained high during the entire period of observation (48 h) (Fig 5B, line 1).

In contrast, P-STAT3 slightly increased in first hours after PHA addition and then remained

unchanged (Fig 5C, line 1). The differences between STAT3 and STAT5 signals were also

revealed when we investigated the effect of WHI-P131 on changes in P-STAT3 and P-STAT5.

In PHA-induced PBL, in the presence of WHI-P131 STAT3 phosphorylation was half sup-

pressed, whereas STAT5 phosphorylation was abrogated (Fig 5B, line 4 and 5C, line 4). These

data suggest that in PHA-induced PBL, JAK3 is involved in STAT5 activation throughout the

transit from resting state to proliferation. To test this assumption, we assessed the phosphory-

lation of STAT5 and JAK3 in activated PBL. In resting PBL as well as in competent cells, acti-

vated with “weak” PHA (0.7PHA) for 24 h, phosphorylation of STAT5 or JAK3 was hardly

detectable (Fig 5D, lanes 1 and 7). In the presence of “strong” PHA (10PHA), high phosphory-

lation of both proteins was observed between 2 and 24 h and WHI-P131 inhibited totally the

sustained STAT5 and JAK3 phosphorylation (Fig 5D, lanes 3 and 4). We also revealed that

WHI-P131 diminished significantly the level of total JAK3. For example, in PBL treated with

high concentration of WHI-P131 (80 μM) total JAK3 was not detected (Fig 5D, lane 4).

When comparing the experimental conditions for triggering of STAT5 phosphorylation,

CD25 expression and proliferation in PBL, stimulated either with PHA or IL-2 in experiments

on different donors, we found that the long-term surface expression of CD25 was always

observed concurrently with the high and sustained STAT5 activity. Namely, in resting cells stim-

ulated with strong, mitogenic PHA (10PHA) or in competent cells (0.7PHA) stimulated with

IL-2 high number of CD25+ cells correlated with higher, sustained STAT5 phosphorylation (Fig

Fig 5. PHA induces delayed and sustained STAT5 activation in human blood T lymphocytes. (A)

Representative Western blots of total lysates of PBL stimulated with 100 units/ml IL-2 (IL-2) or 10 μg/ml PHA

(PHA) for 2, 24 or 48 h in the absence or presence of 80 μM WHI-P131 (W). (B) and (C) Densitometric analysis

of STAT5 (B) and STAT3 (C) tyrosine phosphorylation in PBL stimulated with PHA (line 1) or IL-2 (line2) in the

absence or presence of 80 μM WHI-P131 (W, lines 3 and 4). At each time point P-STAT5 and P-STAT3 levels

relative to total STAT5 and total STAT3 levels were calculated and these values were normalized to those from

samples at 24 h on the same protein gel blot to determine fold change. Summary of independent experiments on

PBL from six donors are presented as mean ± SEM (n = 6, p<0.05). Significant changes from P-STAT/STAT

ratio at 24 h are indicated with an asterisk, p<0.05. (D) Sustained STAT5 activity is provided by JAK3 kinase in

mitogen-induced PBL. PBL were stimulated with 10 μg/ml PHA (10PHA) or with 100U/ml IL-2 (IL-2) or IL-2 after

pretreatment of resting PBL with 0.7 μg/ml PHA (0.7PHA) in the absence or presence of 80 μM WHI-P131

(WHI). Data are representative of three experiments on PBL from different healthy donors. Ctrl—control,

unstimulated PBL.

doi:10.1371/journal.pone.0167215.g005
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6A and 6B). In contrast, in resting cells stimulated with IL-2 there occurs short-term increase in

STAT5 phosphorylation only and no CD25 expression.

Altogether, the above findings demonstrate that in primary human T cells exogenous IL-2

alone is capable to induce STAT5 signal however this signal is attenuated over time and is

insufficient to induce the higher CD25 (IL-2Rα) expression and to start the cell cycle progres-

sion. To induce the high and prolonged CD25 expression that is associated with cell growth

and proliferation, the quiescent T cells must be stimulated through the TCR by mitogen or the

competent T cells may be stimulated by IL-2.

Discussion

In this study, we distinguished pharmacologically distinct signaling pathways involved in IL-

2Rα upregulation during the activation of human blood T lymphocytes. We have demon-

strated that under physiological conditions in primary T cells, cell surface CD25 expression

(used as a marker of IL-2Rα gene expression) is timely regulated via initial TCR signal strength

and IL-2R-associated JAK3/STAT5 signaling. Data obtained are consistent with the two-step

model of IL-2Rα expression in T cells [5, 9, 35]. TCR engagement by partial or full agonist ini-

tiates the first wave of gene expression, including IL-2Rα gene. This initial up-regulation of the

IL-2Rα allows the formation of the trimeric IL-2Rαβγc. Concomitantly, antigens also induce

the secretion of IL-2, which in turn increase and prolong IL-2Rα expression via JAK3/STAT5

signaling. As a result, in the late activated T cells, there is a functional system IL-2/IL-2R that

plays a critical role in T cell proliferation and effective immune response.

Fig 6. Sustained STAT5 phosphorylation is necessary to induce long-term CD25 expression in human T

lymphocytes. (A) CD25+ cell number in PBL population stimulated with 100 units/ml IL-2 (IL-2) or 10 μg/ml PHA

(10PHA) for 24 or 48 h or 0,7 μg/ml PHA(0.7PHA) for 48 h in the absence or presence of IL-2, %. Summary of

independent experiments on PBL from four donors are presented as mean ± SEM (n = 4, p<0.05). (B) Relative optical

density in bands corresponding to normalized STAT5 tyrosine phosphorylation (P-STAT5). Summary of 11

independent experiments on PBL from different healthy donors are presented as mean + SEM (n = 11, p<0.05). Ctrl

—control, unstimulated PBL.

doi:10.1371/journal.pone.0167215.g006
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This model is based on detailed studies of transcriptional regulation of IL-2Rα gene expres-

sion. It is established that the transcription of IL-2Rα gene is controlled by six positive regula-

tory regions that are important for TCR-mediated regulation and for IL-2-mediated

regulation of the gene [9, 15]. TCR-mediated activation of the IL-2Rα promoter involves the

cooperation between several factors, including NF-kB, whereas IL-2-mediated regulation of

the gene is mainly provided by STAT5.

Here, we have analyzed how the two-step model of IL-2Rα expression works in native pri-

mary T lymphocytes, stimulated with PHA as a polyclonal T cell mitogen. In order to distin-

guish distinct signaling pathways involved in IL-2Rα regulation in primary T cells we applied

the selective drugs such as WHI-P131 and PP2. WHI-P131 is an effective inhibitor of IL-2R-

associated tyrosine kinase JAK3 (29). PP2 is at least 1,000-fold more active against Src family

kinases than other TCR-associated tyrosine kinases [26, 27]. In fact, PP2, a selective inhibitor

of Src tyrosine kinase, prevents the downstream signaling pathways responsible for both IL-2

and IL-2Rα gene regulation. Therefore, it might be assumed that PP2 effects on CD25 expres-

sion was due to the decreased IL-2 production in the presence of PP2. However, as shown

recently, T cell stimulation under experimental conditions in which IL-2 production was not

induced or was prevented results in the induction of high-affinity IL-2R that was unable to

transmit a proliferative signal [36].

Together our findings suggest that in primary peripheral T lymphocytes, stimulated

through TCR complex by mitogen, IL-2-independent mechanism may be involved in early

CD25 (IL-2Rα) expression. First, in quiescent primary PBL, exogenous IL-2 alone is not able

to induce high CD25 expression which is typical for activated and proliferating T cells. Second,

in quiescent primary PBL, stimulated by IL-2, STAT5 alone is not sufficient to induce the high

and sustained CD25 expression and the proliferative response. Finally, PBL when treated with

“weak” PHA has a small pool of competent CD25+ cells bearing a high affinity IL-2R. These

competent cells are characterized by the elevated IL-2Rα mRNA expression, which was main-

tained at low but stable level throughout the “weak” PHA stimulation. In competent PBL

STAT5 proteins, that can serve as markers of IL-induced cell cycle progression of T cells, are

inactive. In the absence of IL-2 the competent cells remain “silent” and do not proliferate.

The transcription of IL-2Rα gene is controlled by six positive regulatory regions (PRRs)

that are important for TCR-mediated regulation (PRRI and PRRII) and for IL-2-mediated reg-

ulation (PRRIII and PRRIV) of the gene [9, 15]. Of importance, PRRI binds NF-kB, whereas

PRRIII and PRRIV bind STAT5A and STAT5B. Thus, TCR-mediated activation of the IL-2Rα
promoter involves the cooperation between several factors, including NF-kB, whereas IL-

2-mediated regulation of the gene is mainly provided by STAT5A and STAT5B. Based on

these studies we suggest that in quiescent primary T cells, the initial signal for CD25 (IL-2Rα)

expression may be directly provided by antigenic/mitogenic stimulation via TCR/Src/. . . NF-

kB signaling pathway.

The effect of IL-2 in cellular immunity is mainly exerted by the transcription factors STAT

via IL-2R-associated JAK1 and JAK3 tyrosine kinases [7, 33, 34, 37, 38]. STAT5 is uniquely

required for the expression of genes that regulate the cell cycle in peripheral T cells [39]. Lack

of STAT5 expression inhibits also the expression of CD25 leading to a failure of T cell prolifer-

ation [40]. As previously reported [41] and is also demonstrated in this study, in quiescent

PBL, STAT5 proteins are inactive and exogenous IL-2 promotes STAT5 signal that alone is

not sufficient to induce higher CD25 expression, blasttransformation and cell proliferation.

Using chimeric receptors, it has been shown that a receptor containing the JAK boxes and one

STAT5 docking site can mediate STAT5 activation but is unable to stimulate IL-2Rα expres-

sion [42]. It has also been reported that duration of STAT5 activation influences the response

of IL-2Rα gene to cytokines [43].
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Our experience shows that in primary T cells, the high. sustained CD25 expression takes

place concurrently with the prolonged STAT5 activation. This occurs when “strong” PHA acti-

vates quiescent T cells or IL-2 stimulates competent T cells that were preactivated with “weak”

mitogen. We next show that in competent T cells, IL-2 is able to turn on the sustained JAK3/

STAT5 intracellular signaling. Indeed, it is assumed that the type of IL-2-induced JAK/STAT

signaling may vary during the activation of T cells. As shown, in the absence of TCR stimuli,

exogenous IL-2 induced survival signals from the intermediate affinity IL-2Rβγc and JAK3 is

not involved in this signaling [44–47]. Here, based on the time dependency of CD25 expres-

sion and STAT5 phosphorylation in activated PBL, we suggest that in quiescent primary T

cells, the prolonged STAT5 activity in the presence of IL-2 is mainly provided by JAK3-inde-

pendent mechanism via IL-2R lacking CD25. It is interesting that JAK3 null mice do not gen-

erate CD25+CD4+ T cells [48]. On the contrary, in a population of “conditioned”, competent

T cells bearing the CD25 in response to IL-2 JAK3/STAT5 signaling via the high-affinity IL-

2Rαβγc is augmented to maintain the sustained IL-2Rα expression as well as cell growth and

proliferation.

In summary, in this study we provide evidence for temporal relations between the initial

mitogen-induced and the delayed IL-2-induced intracellular signaling involved in the IL-2Rα
expression in human blood T lymphocytes. The role of preactivation is emphasized for cell

surface expression of IL-2Rα. In the context of T cell activation, continuous STAT5 activity

results in high T cell proliferation by an indirect mechanism, resulting from the IL-2Rα
expression and STAT5 is essential for maximal responsiveness to antigens in vivo, underscor-

ing the physiological importance of IL-2-induced IL-2Rα expression. Now, it is important to

know whether signaling pathways downstream of the TCR and the IL-2R are also coordinated

in time at the transcriptional level to induce the full program of IL-2Rα gene expression.

Understanding the temporal relationships between antigen- and cytokine-evoked signals for

the regulation of the IL-2R gene in human T cells may be useful for improving immunothera-

peutic strategies.
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