



# Article Design, Synthesis, and Biological Evaluation of a Series of 5and 7-Hydroxycoumarin Derivatives as 5-HT<sub>1A</sub> Serotonin Receptor Antagonists

Kinga Ostrowska <sup>1,\*</sup><sup>(D)</sup>, Anna Leśniak <sup>2</sup>, Zuzanna Czarnocka <sup>1</sup>, Jagoda Chmiel <sup>1</sup>, Magdalena Bujalska-Zadrożny <sup>2</sup> and Bartosz Trzaskowski <sup>3</sup><sup>(D)</sup>

- <sup>1</sup> Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Str., 02-097 Warsaw, Poland; zuzanna.czarnocka@gmail.com (Z.C.); jagodachmiel170896@gmail.com (J.C.)
- <sup>2</sup> Department of Pharmacodynamics, Faculty of Pharmacy, Centre for Preclinical Research and Technology, Medical University of Warsaw, 1 Banacha Str., 02-097 Warsaw, Poland; anna.lesniak@wum.edu.pl (A.L.); Magdalena.bujalska@wum.edu.pl (M.B.-Z.)
- <sup>3</sup> Centre of New Technologies, University of Warsaw, 2C Banacha Str., 02-097 Warsaw, Poland; b.trzaskowski@cent.uw.edu.pl
- \* Correspondence: kostrowska@wum.edu.pl; Tel.: +48-22-572-0669



Citation: Ostrowska, K.; Leśniak, A.; Czarnocka, Z.; Chmiel, J.; Bujalska-Zadrożny, M.; Trzaskowski, B. Design, Synthesis, and Biological Evaluation of a Series of 5- and 7-Hydroxycoumarin Derivatives as 5-HT<sub>1A</sub> Serotonin Receptor Antagonists. *Pharmaceuticals* **2021**, *14*, 179. https://doi.org/10.3390/ ph14030179

Academic Editor: Caroline Sevoz-Couche

Received: 28 December 2020 Accepted: 20 February 2021 Published: 24 February 2021

**Publisher's Note:** MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.



**Copyright:** © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). **Abstract:** We have designed and synthesized a series of 60 new 5- and 7-hydroxycoumarin derivatives bearing the piperazine moiety with the expected binding to  $5\text{-}HT_{1A}$  and  $5\text{-}HT_{2A}$  receptors. Molecular docking of all investigated compounds revealed subnanomolar estimates of  $5\text{-}HT_{1A}RK_i$  for three ligands and  $5\text{-}HT_{2A}RK_i$  for one ligand as well as numerous low nanomolar estimates of  $K_i$  for both receptors. Intrigued by these results we synthesized all 60 new derivatives using microwave-assisted protocols. We show that three new compounds show a relatively high antagonistic activity against the  $5\text{-}HT_{1A}$  receptor, although lower than the reference compound WAY-100635. These compounds also showed relatively low binding affinities to the  $5\text{-}HT_{2A}$  receptor. We also provide a detailed structure–activity analysis of this series of compounds and compare it with previously obtained results for an exhaustive series of coumarin derivatives.

**Keywords:** molecular docking; microwave-assisted synthesis; hydroxycoumarin derivatives; 5-HT<sub>1A</sub>; 5-HT<sub>2A</sub>; receptors ligands; CNS activity

## 1. Introduction

N-arylpiperazine-containing ligands are a large class of chemical compounds with various known biological activities, such as enzyme inhibition, antibacterial, antineoplastic, and anticancer properties, as well as adrenergic and serotonin receptor inhibition [1-7]. This last activity is particularly prominent for this family of compounds, as even some of its simplest members, such as 1-(3-chlorophenyl) piperazine or m-trifluoromethylphenylpiperazine, are known to interact with serotonin receptors [4,8]. The high affinity of these systems to 5HT receptors stems from the highly basic nitrogen atom of the piperazine, which is able to form strong interactions with the conserved acidic amino acids in the GPCR transmembrane domain of these proteins [9]. In order to be effective as 5HT receptor antagonists or agonists, such compounds require in their structure, however, also a relatively bulky moiety connected usually to the N-arylpiperazine via a flexible aliphatic linker. Such a design principle has been first realized in buspirone, a 5-HT<sub>1A</sub> receptor agonist, which also has moderate activity against other 5HT receptors and selected dopamine receptors, and is followed until today with the goal of finding new agonists/antagonists of 5HT receptors [10–12]. 5HT receptors proteins modulate the release of many neurotransmitters, therefore are an important target for a variety of drugs, including antipsychotics, antidepressants, hallucinogens anorectics, and antimigraine agents [13-16].

Among many groups considered as the bulky moiety connected to N-arylpiperazine coumarin derivatives have gained some attention, particularly after the investigations of Chen et al., who showed that selected N-arylpiperazines connected to coumarins in position 7 via a (CH<sub>2</sub>)<sub>4</sub> linker have nanomolar Ki values toward 5-HT<sub>1A</sub> and 5-HT<sub>2A</sub> receptors [17,18]. Inspired by these works we have expanded the family of potential serotonin agonists/antagonists based on the same design principle by introducing different arylpiperazine derivatives of 7-hydroxycoumarin, some of which showed subnanomolar affinities to 5-HT<sub>1A</sub> receptor and low nanomolar affinities to 5-HT<sub>2A</sub> receptor [19,20]. Later we have also obtained a series of arylpiperazine derivatives of 5-hydroxycoumarin [21–23]. We showed that the highest, subnanomolar affinities for 5-HT<sub>1A</sub> receptor were associated with the presence of the acetyl group in the C-6 position at the coumarin ring and the substituents in the 2 or 3 position in the phenyl ring of piperazine. Finally, in 2020 we designed a new series of arylpiperazinyl derivatives of 6-acetyl-5-hydroxy-4,7-dimethylcoumarin, which also showed very low nanomolar affinities toward  $5HT_{1A}$  and  $5HT_{2A}$  but also low affinities to the  $D_2$  receptor [24]. In these studies we noticed that the length of the alkyl linker (three-carbon versus four-carbon) had little impact on the obtained Ki values, since the affinities for specific serotonin receptors for analogous compounds containing the same arylpiperazinyl fragments, differing only in the length of the alkyl linker, were very similar. It is worth noting that this finding is not based on single cases but on a large number of cases, showing a clear tendency for this particular length of the linker (Figure 1).



la-lf

lla-llf



la, lb, lla, llb

CI CI CI Ic, Id, IIc, IId



le, If, Ile, Ilf

| <b>la</b> , n = 3, K <sub>i</sub> = 1.3±0.1  | <b>Ic</b> , n = 3, K <sub>i</sub> = 1.6±0.1  | <b>le</b> , n = 3, K <sub>i</sub> = 1.0±0.1   |
|----------------------------------------------|----------------------------------------------|-----------------------------------------------|
| <b>Ib</b> , n = 4, K <sub>i</sub> = 1±0.1    | <b>Id</b> , n = 4, K <sub>i</sub> =2.2±0.2   | <b>If</b> , n = 4, K <sub>i</sub> = 1.5±0.005 |
| <b>lla</b> , n = 3 Ki = 1.7±0.005            | <b>IIc</b> , n = 3 K <sub>i</sub> = 8.0±0.04 | <b>lle</b> , n = 3 K <sub>i</sub> = 1.5±0.2   |
| <b>IIb</b> , n = 4, K <sub>i</sub> = 3.0±0.1 | <b>IId</b> , n = 4, K <sub>i</sub> = 4.0±0.8 | <b>IIf</b> , n = 4, K <sub>i</sub> = 3.0±0.2  |

Figure 1. Selected 5-HT<sub>1A</sub> receptor affinities of previously synthesized coumarins derivatives.

R=

To conclude our search for new biologically active compounds in this series as well as to gain even more knowledge of the structure–activity relationships we have designed two new series of arylpiperazine derivatives of 5-hydroxycoumarins and 7-hydroxycoumarins. These series were designed based on the aryl substituents giving the highest affinities in our previous studies, but with different lengths of the alkyl linkers, consisting of either two or five CH<sub>2</sub> moieties. In this study we have used molecular docking to homology models of 5-HT<sub>1A</sub> and 5-HT<sub>2A</sub> receptors followed by microwave-assisted protocols to synthesize all 60 compounds. We also performed functional activity studies for the 5-HT<sub>1A</sub> receptor, as well as 5-HT<sub>2A</sub> receptor affinity studies.

### 2. Results and Discussion

## 2.1. Docking Studies

The results of the Ki estimates obtained from the computational studies are presented in Tables 1 and 2. While for the starting compounds 1–6 the Ki values were estimated at 56–922 nM for 5-HT<sub>1A</sub> and above 1  $\mu$ m for 5-HT<sub>2A</sub> receptor, some of the functionalized

derivatives show nanomolar or even subnanomolar affinities. In particular, there are three new compounds with the estimated Ki versus 5-HT<sub>1A</sub> receptor below 1 nm (**1a**, **6b**, and **6g**) and one for 5-HT<sub>2A</sub> receptor (**5j**). As there are many other compounds with the estimated Ki below 10 nM we decided to synthesize all of these systems to verify their 5-HT<sub>1A/2A</sub> receptor affinities. We also decided to perform a detailed analysis of the predicted binding poses for 5-HT<sub>1A</sub> receptor, as the Ki values for the 5HT<sub>2A</sub> receptor are usually less favorable and our previous studies showed that this class of compounds in most cases binds stronger to 5-HT<sub>1A</sub> receptor than to 5-HT<sub>2A</sub> receptor [19–24].

| Compound   | 5-HT <sub>1A</sub> Ki[nM] 5-HT <sub>2A</sub> Ki[nM] |      |
|------------|-----------------------------------------------------|------|
| 1          | 206.3                                               | 1023 |
| 1a         | 0.4 9.64                                            |      |
| 1b         | 3.2 36.1                                            |      |
| 1c         | 1.2 7.7                                             |      |
| 1d         | 2.6                                                 | 19.6 |
| 1e         | 5.0                                                 | 9.2  |
| 1f         | 10.8                                                | 30.5 |
| 1g         | 4.6                                                 | 6.4  |
| 1h         | 1.6                                                 | 2.4  |
| 1i         | 4.0                                                 | 2.0  |
| 1j         | 10.0                                                | 1.1  |
| 2          | 922.3                                               | 6610 |
| 2a         | 3.9                                                 | 22.3 |
| 2b         | 6.6                                                 | 44.8 |
| 2c         | 8.0                                                 | 29.8 |
| 2d         | 1.5                                                 | 12.7 |
| 2e         | 13.1                                                | 40.3 |
| 2f         | 31.9                                                | 12.4 |
| 2g         | 4.6 4.4                                             |      |
| 2h         | 9.4                                                 | 20.6 |
| 2i         | 5.9 11.3                                            |      |
| 2j         | 16.6 18.9                                           |      |
| 3          | 154.4 3080                                          |      |
| 3a         | 35.5 33.6                                           |      |
| 3b         | 23.3 53.2                                           |      |
| 3c         | 5.9 6.8                                             |      |
| 3d         | 928.5                                               | 7.0  |
| 3e         | 106.2 59.7                                          |      |
| 3f         | 1.9 1.1                                             |      |
| 3g         | 3.2                                                 | 10.0 |
| 3h         | 12.4                                                | 11.8 |
| 3i         | 3.6                                                 | 5.2  |
| 3ј         | 37.2                                                | 31.5 |
| ketanserin | 71.3                                                | 58.7 |
| WAY-100635 | 50.5                                                | 73.9 |

Table 1. Computational Ki values for compounds for compounds of series 1, 2, and 3.

| Compound   | 5-HT <sub>1A</sub> Ki[nm] | 5-HT <sub>2A</sub> Ki[nm] |
|------------|---------------------------|---------------------------|
| 4          | 429.2                     | 3270                      |
| 4a         | 1.4 20.8                  |                           |
| 4b         | 3.1 44.7                  |                           |
| 4c         | 10.3                      | 16.3                      |
| 4d         | 10.8                      | 30.8                      |
| 4e         | 52.2                      | 17.1                      |
| 4f         | 17.7                      | 25.5                      |
| 4g         | 3.9                       | 1.6                       |
| 4h         | 7.3                       | 17.8                      |
| <b>4i</b>  | 2.0                       | 5.1                       |
| 4j         | 2.7                       | 2.1                       |
| 5          | 57.7                      | 2100                      |
| 5a         | 3.5                       | 16.1                      |
| 5b         | 25.7                      | 27.2                      |
| 5c         | 72.2                      | 5.8                       |
| 5d         | 8.3                       | 2.7                       |
| 5e         | 12.5                      | 3.5                       |
| 5f         | 58.5                      | 5.2                       |
| 5g         | 4.7 2.9                   |                           |
| 5h         | 20.6 5.0                  |                           |
| 5i         | 20.4 5.2                  |                           |
| 5j         | 3.7 0.9                   |                           |
| 6          | 171.6 4430                |                           |
| 6a         | 17.3 10.8                 |                           |
| 6b         | 0.7 25.4                  |                           |
| 6c         | 1.9 8.7                   |                           |
| 6d         | 2.6                       | 5.8                       |
| 6e         | 3.7                       | 36.9                      |
| 6 <b>f</b> | 4.6 6.9                   |                           |
| 6g         | 0.3 10.3                  |                           |
| 6h         | 1.5                       | 9.9                       |
| <b>6i</b>  | 2.8                       | 9.9                       |
| 6j         | 10.0                      | 2.9                       |
| ketanserin | 71.3                      | 58.7                      |
| WAY-100635 | 50.5                      | 73.9                      |

Table 2. Computational Ki values for compounds for compounds of series 4, 5, and 6.

Of the three compounds predicted to have subnanomolar affinities to 5-HT<sub>1A</sub> receptor (1a, 6b, 6g) all have the crucial interaction between the basic nitrogen atom of the piperazine group with the conserved D116 of the receptor binding site (see Figure 2). As one can see the poses of these three systems are also very similar, with the coumarin part going deep into the binding pocket, toward transmembrane (TM) helix 7 and the arylpiperazine extending toward transmembrane helix 4. Apart from the salt bridge to D114 from transmembrane helix 3, 1a is predicted to form also hydrogen bonds between the methoxy moiety of the arylpiperazine and S199 (TM4) as well as between the coumarin part and N392 (TM7). On the other hand **6b** is predicted to be additionally stabilized by the interaction between the F atom of the arylpiperazine and S199 (TM4), while 6g by the hydrogen bond between the oxygen atom of the linker and Y390 (TM7). It is also worth mentioning that these poses are similar to our previously predicted poses for the coumarin derivatives with three CH<sub>2</sub> moieties. On the other hand for some derivatives with four CH<sub>2</sub> groups we predicted a different orientation of the ligand, where the coumarin part extends toward TM helix 4, while the arylpiperazine part goes deep into the pocket and interacts with the residues located on TM7 [24].



**Figure 2.** Predicted binding poses for the  $5HT_{1A}$  receptor and compounds (**a**) **1a**, (**b**) **6b**, and (**c**) **6g**, and (**d**) the location of the binding site in the GPCR. Nonpolar hydrogen atoms were omitted for clarity.

### 2.2. Chemistry

The starting coumarins 5-hydroxy-4,7-dimethylchromen-2-one (A), 6-acetyl-5-hydroxy-4,7-dimethylchromen-2-one (B), and 8-acetyl-7-hydroxy-4-methylchromen-2-one (C) were resynthesized according to previously published studies [25,26]. The reaction of starting coumarins (A-C) with 1,2-dibromoethane in acetonitrile in the presence of potassium iodide and potassium carbonate afforded with different yields (25-80%) 5-(2-bromo ethoxy)-4,7dimethyl-2H-chromen-2-one (2), 6-acetyl-5-(2-bromoethoxy)-4,7-dimethyl-2H-chromen-2-one (4) and 8-acetyl-7-(2-bromoethoxy)-4-methylchromen-2-one (6), while upon reaction of 1,5-dibromopentane, in the same conditions, 5-(5-bromopentyloxy)-4,7-dimethyl-2Hchromen-2-one (1), 6-acetyl-5-(5-bromopentyloxy)-4,7-dimethyl-2H-chromen-2-one (3) and 8-acetyl-7-(5-brompenthoxy)-4-methylchromen-2-one (5) were obtained with different yields (44-89%). In the next step, the final compounds were synthesized as pictured in Scheme 1 and according to the previously published study [19]. The synthesis of compounds 1a-1j, 2a-2j, 3a-3j, 4a-4j, 5a-5j, and 6a-6j was carried out by reacting the bromoalkyl derivatives (1-6) with appropriate arylpiperazine: (4-(2-methoxyphenyl)piperazine, (4-(2-fluorophenyl) piperazine, (4-(3-methoxyphenyl)piperazine, (4-(2,5-dimethylyphenyl) piperazine, (4-(3-fluorophenyl)piperazine, (4-(2-bromophenyl)piperazine, (4-(3-bromophenyl) piperazine, (4-(3,5-dimethylphenyl)piperazine, (4-(2,3-dichlorophenyl)piperazine, (4-(2cyano phenyl)piperazine) in acetonitrile and in the presence of potassium iodide and potassium carbonate. Reaction progress was monitored by TLC using silica gel plates (eluent: CHCl3: MeOH; 10:0.25). All compounds synthesized in this work were obtained using a microwave reactor and were purified by column chromatography using silica gel and CHCl<sub>3</sub>:MeOH (100:1) as the eluent, as in the previously published study [19]. All syntheses were performed in the millimolar scale, starting from 1 mmol of the starting coumarin derivatives **1–6**, and the final yields of the products were in the 43–98% range. All compounds were fully characterized using standard methods, <sup>1</sup>H NMR, <sup>13</sup>C NMR spectroscopy, and HRMS spectrometry. All NMR spectra are presented in the Supplementary Materials.



[i]:  $Br(CH_2)_2Br$  or  $Br(CH_2)_5Br$ , KI,  $K_2CO_3$  (molar ratio: 3:0.6:1.7), ACN, MW (number of cycles 3: time of heating 6 min, total time of heating 18 min)

[ii]: amine; KI, K<sub>2</sub>CO<sub>3</sub> (molar ratio: 2:0.012:0.86), ACN, MW (number of cycles 3: time of heating 6 min, total time of heating 18 min)

Scheme 1. Synthesis of compounds investigated in this work.

#### 2.3. Biological Evaluation

2.3.1. 5-HT<sub>1A</sub> Receptor Activity

After purification via column chromatography, all newly synthesized compounds were subjected to in vitro evaluation of their functional activity for the 5-HT<sub>1A</sub> receptor, as well as 5-HT<sub>2A</sub> receptor affinity studies. Since in our previous study similar coumarin

derivatives showed high affinities to 5-HT<sub>1A</sub> receptor and low to 5-HT<sub>2A</sub> receptor we decided to employ in this study a functional assay to establish the potency and efficacy of 5-HT<sub>1A</sub> binding of our series of compound. The major advantage of this approach over determining only receptor affinity is the ability to predict intracellular consequences of receptor binding, leading to either receptor activation, blockage, or alteration of constitutive activity. Moreover, measures of affinity may not correspond to drug potency, owing to the possible existence of a receptor reserve [27]. Also, for ligands displaying functional bias, measuring one distinctive activation pattern allows for the prediction of the therapeutic usefulness of the drug in question [28]. Thus, functional characteristics are of major importance for any drug discovery program which strives for in vivo evaluation of compound activity. For the 5-HT<sub>2A</sub> receptor we expected, on the hand, low affinities and decided to perform standard receptor affinity studies.

As shown in Table 3, arylpiperazinyl derivatives of coumarin displayed varied selectivity for 5-HT<sub>1A</sub> receptor with respect to WAY-100635, a reference compound which is a piperazine drug that acts as a selective 5-HT<sub>1A</sub> receptor antagonist. The highest activity was found for compounds **1a**, **3a**, **4a**, **5a**, and **5b** with the following values: **1a** (EC<sub>50</sub> = 29.4  $\pm$  7.3 nM) > **5a** (EC<sub>50</sub> = 30.5  $\pm$  2.56 nM) > **3a** (EC<sub>50</sub> = 39.4  $\pm$  3.63 nM) > **5b** (EC<sub>50</sub> = 82  $\pm$  13.4 nM) > **4a** (EC<sub>50</sub> = 91.6  $\pm$  13.3 nM). Compounds **2b**, **2d**, **2f**, **2h**, and **2j** did not show any activity and four compounds **1d**, **1g**, **3j**, and **6g** were not tested due to a very poor solubility under experimental conditions. The remaining coumarin derivatives showed moderate to low activity ranging from EC<sub>50</sub> = 527  $\pm$  191 nM for compound **4e**, to EC<sub>50</sub> = 365,800  $\pm$  46,480 nM for compound **2i**.

The structure–activity studies revealed that the presence of a (2-methoxyphenyl) piperazine moiety and a five carbon linker (**1a**, **3a**, **4a**, **5a**) was the most beneficial for 5-HT<sub>1A</sub> antagonistic activity. This was a trend independent of the starting coumarin derivative, as a high antagonistic activity was obtained for 5-hydroxy-4,7-dimethylchromen-2-one derivative (**1a**), 6-acetyl-5-hydroxy-4,7-dimethylchromen-2-one (**3a**), and 8-acetyl-7-hydroxy-4-methylchromen- 2-one (**5a**). Only one compound with a two carbon linker, namely **4a** (6-acetyl-5-hydroxy-4,7-dimethylchromen-2-one), showed a similarly high level of activity. Also, a high activity was found for one derivative bearing a (2-fluorophenyl) piperazine moiety, 8-acetyl-7-hydroxy-4-methylchromen-2-one (**5b**).

In the family of 5-hydroxy-4,7-dimethylchromen-2-one (A) derivatives, compounds with a five carbon linker were much more active than those with a two carbon linker. Comparing the systems containing the same piperazinyl part within this family, we can see that the five carbon linker derivatives have always a higher activity than the one with two CH<sub>2</sub> moieties, e.g., EC<sub>50</sub> = 29.4  $\pm$  7.3 nM for 1a and EC<sub>50</sub> = 1881  $\pm$  427 nM for 2a;  $EC_{50} = 980 \pm 207$  nM for **1b** and no activity for **2b**;  $EC_{50} = 1698 \pm 358$  nM for **1c** and  $EC_{50}$  = 19130 ± 2363 nM for 2c, etc. For 6-acetyl-5-hydroxy-4,7-dimethylchromen-2-one (B) derivatives, which differ from the A family in the presence of an additional acetyl group at the position C-6 of the coumarin ring, derivatives with the five-carbon linker had higher activity than those with the two-carbon linker, when they contained 2-methoxyphenyl (see 3a and 4a), 3-methoxyphenyl (see 3c and 4c), 2,5-dimethylyphenyl (see 3d and 4d), 3bromophenyl (see 3g and 4g), or 2,5-dimethylyphenyl moiety (see 3h and 4h). On the other hand, derivatives with the two-carbon linker showed higher activity than those with the five-carbon linkers, when they contained the 2-fluorophenyl (see 3b and 4b), 3-fluorophenyl (see 3e and 4e), 2-bromophenyl (see 3f and 4f), or 2,3-dichlorophenyl moiety (see 3i and 4i). Such a difference may stem from the fact that a longer alkyl linker may maximize the interactions of the ligand with the receptor's residues of different transmembrane regions for all derivatives apart from selected **B** derivatives, which due to the presence of the additional acetyl moiety makes the ligand too large for bulkier arylpiperazines to find optimal interactions in the binding site. Molecular docking studies suggest that upon anchoring to D116 coumarin derivatives can extend both toward transmembrane regions 4 and 7 to find favorable interactions within the binding site. The two-carbon linker makes such an extension impossible, lowering in most cases the potency of the antagonist.

| Compound $prod = 1 2 2 4 4 = 7.3$ 1a $75 \pm 0.21$ $294 \pm 7.3$ 1b $6.0 \pm 0.2$ $980 \pm 207$ 1c $58 \pm 0.22$ $1698 \pm 388$ 1dnot testednot tested1e $4.6 \pm 0.3$ $24,320 \pm 3730$ 1f $4.7 \pm 0.14$ $20,920 \pm 2072$ 1gnot testednot tested1h $3.7 \pm 0.18$ $198,100 \pm 51,350$ 1i $4.8 \pm 0.14$ $13,740 \pm 1733$ 1j $4.1 \pm 0.38$ $74,720 \pm 23,990$ 2a $5.7 \pm 0.18$ $198,100 \pm 51,350$ 2bno activityno activity2c $4.7 \pm 0.11$ $19,130 \pm 2663$ 2dno activityno activity2fno activityno activity2hno activityno activity3a $7.4 \pm 0.17$ $39.4 \pm 3.63$ 3b $4.7 \pm 0.11$ $19,200 \pm 1177$ 3c $5.8 \pm 0.2$ $1549 \pm 190$ 3d $5.9 \pm 0.16$ $1245 \pm 112$ 3f $6.15 \pm 0.017$ $94.3 \pm 3.63$ 3g $5.8 \pm 0.02$ $1549 \pm 138$ 3g $5.8 \pm 0.011$ $174.939 \pm 436$ 3h $5.9 \pm 0.16$ $1245 \pm 112$ 3f $6.15 \pm 0.011$ $1245 \pm 112$ 3i $6.5 \pm 0.013$ $2007 \pm $                                                                                                                                                                                 | Compound   | $pIC_{-2} + SEM = EC_{-2} (pM + 2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
| 1a $7.3 \pm 0.21$ $2.9.4 \pm 7.3$ 1b $6.0 \pm 0.2$ $9.00 \pm 207$ 1c $5.8 \pm 0.22$ $1698 \pm 358$ 1dnot testednot tested1e $4.6 \pm 0.3$ $24,320 \pm 3730$ 1f $4.7 \pm 0.14$ $20,920 \pm 2072$ 1gnot testednot tested1h $3.7 \pm 0.18$ $198,100 \pm 51,350$ 1i $4.8 \pm 0.14$ $13,740 \pm 1733$ 1j $4.1\pm 0.38$ $74,720 \pm 23,990$ 2a $5.7 \pm 0.18$ $1881 \pm 427$ 2bno activityno activity2c $4.7 \pm 0.11$ $19,130 \pm 2363$ 2dno activityno activity2a $3.5 \pm 0.2$ $1549 \pm 0.12$ 2bno activityno activity2c $4.7 \pm 0.11$ $19,200 \pm 1177$ 3c $5.8 \pm 0.2$ $1549 \pm 190$ 3d $5.9 \pm 0.11$ $1722 \pm 122$ 3f $6.15 \pm 0.11$ $702 \pm 1122$ 3f $6.15 \pm 0.11$ $702 \pm 1122$ 3g $5.89 \pm 0.12$ $1284 \pm 254$ 3h $5.9 \pm 0.16$ $1245 \pm 1122$ 3i $4.8 \pm 0.11$ $15,400 \pm 1290$ 3jnot testednot tested4a $70.513 = 0.382 \pm 138$ 3g $5.5 \pm 0.13$ $503 \pm 21.81$ 4d $4.1 \pm 0.04$ $74,730 \pm 4576$ 4e $6.3 \pm 0.13$ $503 \pm 21.81$ 4g $4.9 \pm 0.11$ $11,070 \pm 1395$ 4h $4.4 \pm 0.11$ $26,840 \pm 5904$ 4i $5.5 \pm 0.11$ $30.5 \pm 2.56$ 5b $7.1 \pm 0.13$                                                                                                                                         |            | $\mathbf{p_{IC_{50}} \pm SEM} \qquad \mathbf{EC_{50}} (\mathbf{n_{IM} \pm SEM})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                    |
| 1b $0.0 \pm 0.2$ $9.9 \pm 2.07$ 1c $5.8 \pm 0.22$ $1698 \pm 338$ 1dnot testednot tested1e $4.6 \pm 0.3$ $24,320 \pm 3730$ 1f $4.7 \pm 0.14$ $20,920 \pm 2072$ 1gnot testednot tested1h $3.7 \pm 0.18$ $198,100 \pm 51,350$ 1i $4.8 \pm 0.14$ $13,740 \pm 1733$ 1j $4.1 \pm 0.38$ $74,720 \pm 23,990$ 2a $5.7 \pm 0.18$ $1881 \pm 427$ 2bno activityno activity2c $4.7 \pm 0.11$ $19,130 \pm 2363$ 2dno activityno activity2fno activityno activity2a $3.4 \pm 1.4$ $365,800 \pm 64,640$ 2jno activityno activity2a $5.8 \pm 0.2$ $152,920 \pm 1177$ 3a $7.4 \pm 0.17$ $39.4 \pm 3.63$ 3b $4.7 \pm 0.17$ $39.4 \pm 3.63$ 3b $4.7 \pm 0.17$ $934 \pm 3.63$ 3b $4.7 \pm 0.17$ $9434 \pm 1037$ 3c $5.8 \pm 0.2$ $1254 \pm 254$ 3f $6.16 \pm 0.11$ $702 \pm 112$ 3f $6.16 \pm 0.14$ $68.9 \pm 138$ 3g $5.9 \pm 0.16$ $1225 \pm 112$ 3i $3.2 \pm 0.21$ $1254 \pm 254$ 3h $5.9 \pm 0.16$ $12254 \pm 122$ 3i $5.9 \pm 0.16$ $12254 \pm 122$ 3i $5.3 \pm 0.07$ $5007 \pm 1177$ 4d $4.9 \pm 0.011$ $11,670 \pm 1290$ 4f $5.04 \pm 0.07$ $5007 \pm 1177$ 4g $4.9 \pm 0.11$ $10,70 \pm 1395$ 4g $4.9 \pm $                                                                                                                                     | la         | $7.5 \pm 0.21$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $29.4 \pm 7.3$                                     |
| Ic $3.5 \pm 0.22$ $1085 \pm 3.58$ Idnot testednot testedIe $4.6 \pm 0.3$ $24,320 \pm 3730$ If $4.7 \pm 0.14$ $20,920 \pm 2072$ Ignot testednot testedIh $3.7 \pm 0.18$ $198,100 \pm 51,350$ Ii $4.8 \pm 0.14$ $13,740 \pm 1733$ Ij $4.1 \pm 0.38$ $74,720 \pm 23,990$ 2a $5.7 \pm 0.18$ $1881 \pm 427$ 2bno activityno activity2c $4.7 \pm 0.11$ $19,130 \pm 2663$ 2dno activityno activity2fno activityno activity2gi $3.4 \pm 1.4$ $365,800 \pm 46,480$ 2jno activityno activity3a $7.4 \pm 0.17$ $39.4 \pm 3.63$ 3b $4.7 \pm 0.1$ $192,00 \pm 1177$ 3c $5.8 \pm 0.2$ $1549 \pm 190$ 3d $5.0 \pm 0.11$ $702 \pm 1122$ 3f $6.16 \pm 0.14$ $689 \pm 138$ 3g $5.89 \pm 0.12$ $1284 \pm 254$ 3h $5.9 \pm 0.12$ $1284 \pm 254$ 3h $5.9 \pm 0.12$ $1284 \pm 254$ 3i $4.8 \pm 0.11$ $15,400 \pm 1290$ 3jnot testednot tested4a $7.0 \pm 0.11$ $91.6 \pm 13.3$ 4c $5.3 \pm 0.13$ $5003 \pm 2182$ 4d $4.1 \pm 0.04$ $74,730 \pm 4576$ 4e $6.3 \pm 0.13$ $3008 \pm 148$ 4i $5.0 \pm 0.11$ $11,070 \pm 1497$ 4g $4.9 \pm 0.11$ $11,070 \pm 1497$ 4g $4.9 \pm 0.11$ $12,000 \pm 2299$ 5d $4.9 $                                                                                                                                              | 16         | $6.0 \pm 0.2$ $980 \pm 207$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                    |
| Idnot restednot rested1e $4.6 \pm 0.3$ $24,320 \pm 3730$ 1f $4.7 \pm 0.14$ $20,920 \pm 2072$ 1gnot testednot tested1h $3.7 \pm 0.18$ $198,100 \pm 51,350$ 1i $4.8 \pm 0.14$ $13,740 \pm 1733$ 1j $4.1 \pm 0.38$ $74,720 \pm 23,990$ 2a $5.7 \pm 0.18$ $1881 \pm 427$ 2bno activityno activity2c $4.7 \pm 0.11$ $19,130 \pm 2363$ 2dno activityno activity2fno activityno activity2hno activityno activity2hno activityno activity2hno activityno activity2hno activityno activity2hno activityno activity3a $7.4 \pm 0.17$ $39.4 \pm 363$ 3b $4.7 \pm 0.1$ $19200 \pm 1177$ 3c $5.8 \pm 0.2$ $1549 \pm 190$ 3d $5.0 \pm 0.17$ $9434 \pm 1037$ 3e $6.15 \pm 0.11$ $702 \pm 112$ 3f $6.15 \pm 0.011$ $702 \pm 112$ 3f $6.15 \pm 0.011$ $702 \pm 112$ 3g $5.89 \pm 0.12$ $1284 \pm 254$ 3h $5.9 \pm 0.16$ $1245 \pm 112$ 3i $4.8 \pm 0.11$ $15,400 \pm 1290$ 3jnot testednot tested4a $70 \pm 0.11$ $91.6 \pm 13.3$ 4b $5.3 \pm 0.07$ $5007 \pm 1177$ 4d $4.1 \pm 0.04$ $74,730 \pm 4576$ 4e $6.3 \pm 0.13$ $3003 \pm 218$ 4c $5.3 \pm 0.07$ $5007 \pm $                                                                                                                                                                              |            | $5.8 \pm 0.22$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $1698 \pm 358$                                     |
| le4.b2.4,2,2,1,4,3,2,0,4,3,3,3,3,3,3,3,3,3,4,3,4,4,3,4,3,3,3,3,3,3,3,3,3,4,3,4,4,4,3,4,3,4,3,4,3,4,3,4,3,4,3,4,3,4,3,4,3,4,3,4,3,4,3,4,3,4,3,4,3,4,3,4,3,4,3,4,4,4,3,4,3,4,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ld         | not tested not tested                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                    |
| 1r4.7 ± 0.1420.920 ± 20.21gnot testednot tested1h3.7 ± 0.18198,100 ± 51,3501i4.8 ± 0.1413.740 ± 7331j4.1 ± 0.3874,720 ± 23,9902a5.7 ± 0.181881 ± 4272bno activityno activity2c4.7 ± 0.1119,130 ± 23632dno activityno activity2fno activityno activity2hno activityno activity2hno activityno activity2hno activityno activity2hno activityno activity2hno activityno activity3a7.4 ± 0.1739.4 ± 3633b4.7 ± 0.119.200 ± 11773c5.8 ± 0.21549 ± 10073d5.0 ± 0.179434 ± 10073e6.15 ± 0.11702 ± 1123f6.16 ± 0.14689 ± 1383g5.89 ± 0.161245 ± 1123i4.8 ± 0.1115,400 ± 12903jnot testednot testedat7.0 ± 0.1191.6 ± 13.34b5.3 ± 0.075007 ± 1174c5.3 ± 0.075003 ± 2184c5.3 ± 0.018317 ± 14974g4.9 ± 0.1111,070 ± 13954h4.4 ± 0.1126,840 ± 59044i5.5 ± 0.15308 ± 1484j6.3 ± 0.0512,940 ± 8025e4.5 ± 0.1127,440 ± 19865g4.6 ± 0.1127,440 ± 1986                                                                                                                                                                                                                                                                                                                                                                                              | le         | $4.6 \pm 0.3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $24,320 \pm 3730$                                  |
| lsnot testednot tested1h $3.7 \pm 0.18$ 198,100 $\pm 51,350$ 1i $4.8 \pm 0.14$ $13,740 \pm 1733$ 1j $4.1 \pm 0.38$ $74,720 \pm 23,990$ 2a $5.7 \pm 0.18$ $1881 \pm 427$ 2bno activityno activity2c $4.7 \pm 0.11$ 19,130 $\pm 2363$ 2dno activityno activity2fno activityno activity2hno activityno activity2hno activityno activity2hno activityno activity3a $7.4 \pm 0.17$ $39.4 \pm 3.63$ 3b $4.7 \pm 0.1$ $19,200 \pm 1177$ 3c $5.8 \pm 0.2$ $1549 \pm 190$ 3d $5.0 \pm 0.17$ $9434 \pm 1037$ 3e $6.15 \pm 0.11$ $702 \pm 112$ 3f $6.16 \pm 0.14$ $689 \pm 138$ 3g $5.89 \pm 0.12$ $1284 \pm 254$ 3h $5.9 \pm 0.16$ $1245 \pm 112$ 3i $4.8 \pm 0.11$ $15,400 \pm 1220$ 3jnot testednot tested4a $70 \pm 0.11$ $91.6 \pm 13.3$ 4b $5.3 \pm 0.13$ $5003 \pm 218$ 4c $5.3 \pm 0.13$ $5007 \pm 117$ 4f $5.08 \pm 0.10$ $8172 \pm 191$ 4f $5.08 \pm 0.10$ $8172 \pm 191$ 4f $5.08 \pm 0.10$ $8172 \pm 191$ 4f $5.04 \pm 0.13$ $5003 \pm 218$ 4c $5.3 \pm 0.13$ $5003 \pm 218$ 4c $5.3 \pm 0.13$ $3098 \pm 148$ 5a $7.5 \pm 0.11$ $30.5 \pm 2.56$ 5b $7.1 \pm 0.13$ $82 $                                                                                                                                                           | 11         | $4.7 \pm 0.14$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $20,920 \pm 2072$                                  |
| In $3.7 \pm 0.18$ $198,100 \pm 31,330$ 1i $4.8 \pm 0.14$ $13,740 \pm 1733$ 1j $4.1 \pm 0.38$ $74,720 \pm 23,3990$ 2a $5.7 \pm 0.18$ $1881 \pm 427$ 2bno activityno activity2c $4.7 \pm 0.11$ $19,130 \pm 2363$ 2dno activityno activity2fno activityno activity2hno activityno activity2i $3.4 \pm 1.4$ $365,000 \pm 46,480$ 2jno activityno activity3a $7.4 \pm 0.17$ $39,4 \pm 3.63$ 3b $4.7 \pm 0.1$ $19,200 \pm 1177$ 3c $5.8 \pm 0.2$ 1549 \pm 1903d $5.0 \pm 0.17$ $34 \pm 1.33$ 3g $5.0 \pm 0.17$ $34 \pm 1.33$ 3g $5.0 \pm 0.17$ $434 \pm 1037$ 3e $6.15 \pm 0.11$ $702 \pm 112$ 3f $6.16 \pm 0.14$ $699 \pm 138$ 3g $5.89 \pm 0.12$ $128 \pm 254$ 3h $5.99 \pm 0.16$ $1245 \pm 112$ 3i $4.8 \pm 0.11$ $9.16 \pm 13.3$ 4b $5.3 \pm 0.07$ 5007 \pm 1174d $4.1 \pm 0.04$ $72 \pm 191$ 4f $5.08 \pm 0.10$ 817 \pm 14974g $4.9 \pm 0.11$ 10.70 \pm 13954h $4.4 \pm 0.11$ 26.80 \pm 20995d $4.9 \pm 0.11$ 10.70 \pm 13954h $4.1 \pm 0.04$ $72 \pm 191$ 4f $5.06$ 5g $4.5 \pm 0$                                                                                                                                                                                                                                                 | lg         | not tested                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | not tested                                         |
| 14.8 ± 0.141.5/40 ± 1/31j4.1 ± 0.387.72 ± 23,9902a5.7 ± 0.181.881 ± 4272bno activityno activity2c4.7 ± 0.1119,130 ± 23632dno activityno activity2fno activityno activity2i3.4 ± 1.4365,800 ± 46,4802jno activityno activity3a7.4 ± 0.1739.4 ± 3.633b4.7 ± 0.119.200 ± 11773c5.8 ± 0.21549 ± 1903d5.0 ± 0.179434 ± 10373e6.15 ± 0.117.02 ± 1123f6.16 ± 0.146.89 ± 1383g5.89 ± 0.161245 ± 1123i4.8 ± 0.1115,400 ± 12903jnot testednot tested4a7.0 ± 0.1191.6 ± 13.34b5.3 ± 0.075007 ± 1174d4.1 ± 0.0474/730 ± 45764e6.3 ± 0.18522 ± 1914f5.08 ± 0.108317 ± 14974g4.9 ± 0.1111,070 ± 13954h4.4 ± 0.1126,840 ± 59044i5.5 ± 0.153098 ± 1484j6.3 ± 0.1382 ± 15.45c4.6 ± 0.1321,250 ± 23635f4.5 ± 0.1127,400 ± 18665g4.6 ± 0.1321,260 ± 28995d5.1 ± 0.1126,840 ± 59044i5.5 ± 0.1233,3098 ± 14.85c4.6 ± 0.1321,250 ± 23635f4.5 ± 0.1127,400 ± 1866 <tr< th=""><th>In</th><th><math>3.7 \pm 0.18</math></th><th><math>198,100 \pm 51,350</math></th></tr<>                                                                                                                                                                                                                                                                                  | In         | $3.7 \pm 0.18$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $198,100 \pm 51,350$                               |
| 1)4.1 ± 0.38 $74,20 \pm 2390$ 2a5.7 ± 0.181881 ± 4272bno activityno activityno activity2c4.7 ± 0.1119,130 ± 23632dno activityno activity2i3.4 ± 1.4365,800 ± 46,4802jno activityno activity2a $3.4 \pm 1.4$ 365,800 ± 46,4802jno activityno activity3a $7.4 \pm 0.17$ $39.4 \pm 3.63$ 3b $4.7 \pm 0.1$ 19,200 ± 11773c $5.8 \pm 0.2$ 1549 ± 1903d $5.0 \pm 0.17$ 9434 ± 10373e $6.15 \pm 0.11$ $702 \pm 112$ 3f $6.16 \pm 0.14$ $689 \pm 128$ 3g $5.89 \pm 0.12$ 1284 ± 2543h $5.9 \pm 0.16$ 1245 ± 1123i $4.8 \pm 0.11$ 15,400 ± 12903jnot testednot tested4a $70 \pm 0.11$ 91.6 ± 13.34b $5.3 \pm 0.13$ 5003 ± 2184c $5.3 \pm 0.13$ 5003 ± 2184c $5.3 \pm 0.13$ 5003 ± 2184f $5.90.11$ $11.070 \pm 1395$ 4h $4.4 \pm 0.11$ $26,840 \pm 5904$ 4i $5.5 \pm 0.15$ $3098 \pm 148$ 4j $6.3 \pm 0.06$ $538 \pm 105$ 5a $7.5 \pm 0.11$ $30.5 \pm 2.56$ 5b $7.1 \pm 0.13$ $82 \pm 13.4$ 5c $4.6 \pm 0.14$ $22,800 \pm 2899$ 5d $4.9 \pm 0.011$ $27,800 \pm 2802$ 5e $4.5 \pm 0.11$ $27,400 \pm 1896$ 5g $4.6 \pm 0.13$ $21.520$                                                                                                                                                                                                          | 11         | $4.8 \pm 0.14$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $13,740 \pm 1733$                                  |
| 2a3b10.161001 $1001 \pm 42/3$ 2bno activityno activityno activity2c $47 \pm 0.11$ $19,130 \pm 2363$ 2dno activityno activity2fno activityno activity2i $34 \pm 1.4$ $365,800 \pm 46,480$ 2jno activityno activity3a $7.4 \pm 0.17$ $39.4 \pm 3.63$ 3b $4.7 \pm 0.1$ $19,200 \pm 1177$ 3c $58 \pm 0.2$ $1549 \pm 100$ 3d $5.0 \pm 0.17$ $9434 \pm 1037$ 3e $6.15 \pm 0.11$ $702 \pm 112$ 3f $6.16 \pm 0.14$ $689 \pm 138$ 3g $5.89 \pm 0.12$ $1284 \pm 254$ 3h $5.9 \pm 0.16$ $1245 \pm 112$ 3i $4.8 \pm 0.11$ $15,400 \pm 1290$ 3jnot testednot tested4a $7.0 \pm 0.11$ $91.6 \pm 13.3$ 4b $5.3 \pm 0.13$ $5003 \pm 218$ 4c $5.3 \pm 0.07$ $5007 \pm 117$ 4d $4.1 \pm 0.04$ $74,730 \pm 4576$ 4e $6.3 \pm 0.16$ $527 \pm 191$ 4f $5.06$ $7.2 \pm 0.11$ 4g $4.9 \pm 0.11$ $11,070 \pm 1395$ 4h $4.4 \pm 0.11$ $26,800 \pm 2899$ 5d $7.1 \pm 0.13$ $82 \pm 13.4$ 5c $4.6 \pm 0.14$ $22,860 \pm 2899$ 5d $4.9 \pm 0.05$ $12,940 \pm 802$ 5g $4.6 \pm 0.14$ $22,860 \pm 2899$ 5d $4.5 \pm 0.11$ $27,440 \pm 1986$ 5g $4.6 \pm 0.14$ $22,860 \pm 2899$ 5d $4.5 \pm 0.11$ $27,440 \pm 1986$ <                                                                                                                                            | 1)         | $4.1 \pm 0.38$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $74,720 \pm 23,990$                                |
| 2b100 attivity100 attivity2c $4.7 \pm 0.11$ 19,130 $\pm 2363$ 2dno activityno activityno activity2fno activityno activity2hno activityno activity2i $3.4 \pm 1.4$ $365,800 \pm 6,480$ 2jno activityno activity3a $7.4 \pm 0.17$ $39.4 \pm 3.63$ 3b $4.7 \pm 0.1$ $19,200 \pm 1177$ 3c $5.8 \pm 0.2$ $1549 \pm 190$ 3d $5.0 \pm 0.17$ $9434 \pm 1037$ 3e $6.15 \pm 0.11$ $702 \pm 112$ 3f $6.16 \pm 0.14$ $689 \pm 138$ 3g $5.89 \pm 0.12$ $1284 \pm 254$ 3h $5.9 \pm 0.16$ $12245 \pm 112$ 3i $4.8 \pm 0.11$ $15,400 \pm 1290$ 3jnot testednot tested4a $7.0 \pm 0.11$ $91.6 \pm 13.3$ 4b $5.3 \pm 0.07$ $5007 \pm 117$ 4d $4.1 \pm 0.04$ $74,730 \pm 4576$ 4e $6.3 \pm 0.18$ $527 \pm 191$ 4f $5.08 \pm 0.10$ $8317 \pm 1497$ 4g $4.9 \pm 0.11$ $11,070 \pm 1395$ 4h $4.4 \pm 0.11$ $26,840 \pm 5904$ 4i $5.5 \pm 0.15$ $3089 \pm 148$ 4j $6.3 \pm 0.06$ $538 \pm 105$ 5a $7.5 \pm 0.11$ $30.5 \pm 2.56$ 5b $7.1 \pm 0.13$ $82 \pm 13.4$ 5c $4.6 \pm 0.14$ $22,860 \pm 2899$ 5d $4.5 \pm 0.11$ $27,40 \pm 1986$ 5g $4.6 \pm 0.13$ $21,520 \pm 2347$ 5h $4.5 \pm 0.11$ $27,390 \pm 4563$ 5                                                                                                                                         | 2d<br>2h   | $5.7 \pm 0.16$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $1001 \pm 427$                                     |
| 2d1015/1015/1015/1015/102dno activityno activityno activity2fno activityno activity2i $3.4 \pm 1.4$ $365,800 \pm 46,480$ 2jno activityno activity3a $7.4 \pm 0.17$ $39.4 \pm 3.63$ 3b $4.7 \pm 0.1$ $19,200 \pm 1177$ 3c $5.8 \pm 0.2$ $1549 \pm 190$ 3d $5.0 \pm 0.17$ $9434 \pm 1037$ 3e $6.15 \pm 0.11$ $702 \pm 112$ 3f $6.16 \pm 0.14$ $689 \pm 138$ 3g $5.89 \pm 0.12$ $1284 \pm 254$ 3h $5.9 \pm 0.16$ $1245 \pm 112$ 3i $4.8 \pm 0.11$ $15.400 \pm 1290$ 3jnot testednot tested4a $7.0 \pm 0.11$ $91.6 \pm 13.3$ 4b $5.3 \pm 0.07$ $5007 \pm 117$ 4d $4.1 \pm 0.04$ $74,730 \pm 4576$ 4e $6.3 \pm 0.18$ $527 \pm 191$ 4f $5.08 \pm 0.10$ $8317 \pm 1497$ 4g $4.9 \pm 0.11$ $11.070 \pm 1395$ 4h $4.4 \pm 0.11$ $26,840 \pm 5904$ 4i $5.5 \pm 0.15$ $3098 \pm 148$ 4j $6.3 \pm 0.06$ $538 \pm 105$ 5a $7.5 \pm 0.11$ $30.5 \pm 2.56$ 5b $7.1 \pm 0.13$ $82 \pm 134$ 5c $4.6 \pm 0.14$ $22,860 \pm 2899$ 5d $4.9 \pm 0.05$ $12,940 \pm 802$ 5e $4.5 \pm 0.11$ $2735 \pm 626$ 5b $7.1 \pm 0.13$ $82 \pm 134$ 5c $4.6 \pm 0.14$ $22,890 \pm 2477$ 5h $4.5 \pm 0.11$ $2735 \pm 626$ <                                                                                                                                           | 20         | $4.7 \pm 0.11$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $10 \ a c (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)$ |
| 2110 activity10 activity21 $3.4 \pm 1.4$ $365,800 \pm 46,480$ 21 $3.4 \pm 1.4$ $365,800 \pm 46,480$ 21 $no$ activityno activity3a $7.4 \pm 0.17$ $39.4 \pm 3.63$ 3b $4.7 \pm 0.1$ $19,200 \pm 1177$ 3c $5.8 \pm 0.2$ $1549 \pm 190$ 3d $5.0 \pm 0.17$ $9434 \pm 1037$ 3e $6.15 \pm 0.11$ $702 \pm 112$ 3f $6.16 \pm 0.14$ $689 \pm 138$ 3g $5.89 \pm 0.12$ $1284 \pm 254$ 3h $5.9 \pm 0.16$ $1245 \pm 112$ 3i $4.8 \pm 0.11$ $15,400 \pm 1290$ 3jnot testednot tested4a $7.0 \pm 0.11$ $91.6 \pm 13.3$ 4b $5.3 \pm 0.07$ $5007 \pm 117$ 4d $4.1 \pm 0.04$ $74,730 \pm 4576$ 4e $6.3 \pm 0.18$ $527 \pm 191$ 4f $5.08 \pm 0.10$ $8317 \pm 1497$ 4g $4.9 \pm 0.11$ $11,070 \pm 1395$ 4h $4.4 \pm 0.11$ $26,840 \pm 5904$ 4i $5.5 \pm 0.15$ $3098 \pm 148$ 4j $6.3 \pm 0.06$ $538 \pm 105$ 5a $7.1 \pm 0.13$ $82 \pm 13.4$ 5c $4.6 \pm 0.14$ $22,860 \pm 2899$ 5d $4.9 \pm 0.05$ $12,940 \pm 802$ 5e $4.5 \pm 0.11$ $27,940 \pm 986$ 5g $4.6 \pm 0.13$ $21,520 \pm 2347$ 5h $4.5 \pm 0.14$ $32,890 \pm 2417$ 5i $4.2 \pm 0.14$ $32,890 \pm 2417$ 5i $4.2 \pm 0.11$ $59,520 \pm 4987$ 5j $4.8 \pm 0.07$ $45,330 \pm 8178$ 6c<                                                                                                          | 20         | $4.7 \pm 0.11$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $19,130 \pm 2303$                                  |
| 2h100 activity100 activity2hno activityno activity3i $3.4 \pm 1.4$ $365800 \pm 46480$ 2jno activityno activity3a $7.4 \pm 0.17$ $39.4 \pm 3.63$ 3b $4.7 \pm 0.1$ $19200 \pm 1177$ 3c $582 \pm 0.2$ $1549 \pm 190$ 3d $5.0 \pm 0.17$ $9434 \pm 1037$ 3e $6.15 \pm 0.11$ $702 \pm 112$ 3f $6.16 \pm 0.14$ $689 \pm 138$ 3g $5.89 \pm 0.12$ $1284 \pm 254$ 3h $5.9 \pm 0.16$ $1245 \pm 112$ 3i $4.8 \pm 0.11$ $15.400 \pm 1290$ 3jnot testednot tested4a $70.0 \pm 0.11$ $91.6 \pm 13.3$ 4b $5.3 \pm 0.07$ $5007 \pm 117$ 4d $4.1 \pm 0.04$ $74.730 \pm 4576$ 4e $6.3 \pm 0.10$ $8317 \pm 1497$ 4g $4.9 \pm 0.11$ $11.070 \pm 1395$ 4h $4.4 \pm 0.11$ $2.6840 \pm 5904$ 4i $5.5 \pm 0.15$ $3988 \pm 148$ 4j $6.3 \pm 0.06$ $538 \pm 105$ 5a $7.5 \pm 0.11$ $30.5 \pm 2.56$ 5b $7.1 \pm 0.13$ $82 \pm 13.4$ 4j $4.5 \pm 0.12$ $3.3800 \pm 2663$ 5g $4.6 \pm 0.13$ $21.520 \pm 2347$ 5h $4.5 \pm 0.14$ $22.860 \pm 2399$ 5d $4.9 \pm 0.05$ $12.940 \pm 802$ 5g $4.6 \pm 0.13$ $21.520 \pm 2347$ 5h $4.5 \pm 0.14$ $32.800 \pm 2417$ 5i $4.2 \pm 0.41$ $55.920 \pm 4987$ 5j $4.8 \pm 0.22$ $13.860 \pm 2059$ 6a <td< th=""><th>2d<br/>2f</th><th>no activity</th><th>no activity</th></td<>                                              | 2d<br>2f   | no activity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | no activity                                        |
| 2i16 definity16 definity2i $34 \pm 14$ 365,800 $\pm 46,480$ 2jno activityno activity3a $74 \pm 0.17$ $39.4 \pm 3.63$ 3b $47 \pm 0.1$ $19,200 \pm 1177$ 3c $58 \pm 0.2$ $1549 \pm 190$ 3d $50 \pm 0.17$ $9434 \pm 1037$ 3e $6.15 \pm 0.11$ $702 \pm 112$ 3f $6.16 \pm 0.14$ $689 \pm 138$ 3g $5.89 \pm 0.12$ $1284 \pm 254$ 3h $5.9 \pm 0.16$ $1245 \pm 112$ 3i $4.8 \pm 0.11$ $15,400 \pm 1290$ 3jnot testednot tested4a $7.0 \pm 0.11$ $91.6 \pm 13.3$ 4b $5.3 \pm 0.13$ $5007 \pm 117$ 4d $4.1 \pm 0.04$ $74,730 \pm 4576$ 4e $6.3 \pm 0.18$ $527 \pm 191$ 4f $5.06 \pm 5.015$ $3098 \pm 148$ 4j $6.3 \pm 0.13$ $82 \pm 13.4$ 4g $4.9 \pm 0.11$ $11,070 \pm 1395$ 4h $4.4 \pm 0.11$ $26,840 \pm 5904$ 4i $5.5 \pm 0.15$ $3098 \pm 148$ 4j $6.3 \pm 0.06$ $538 \pm 105$ 5a $7.5 \pm 0.11$ $30.5 \pm 2.56$ 5b $7.1 \pm 0.13$ $82 \pm 13.4$ 5c $4.6 \pm 0.14$ $22,860 \pm 2899$ 5d $4.9 \pm 0.05$ $12,940 \pm 802$ 5e $4.5 \pm 0.11$ $27,40 \pm 1986$ 5g $4.6 \pm 0.13$ $21,520 \pm 2347$ 5h $4.5 \pm 0.11$ $27,40 \pm 1986$ 5g $4.6 \pm 0.13$ $21,520 \pm 2347$ 5i $4.2 \pm 0.41$ $55,920 \pm 4987$ 5j $4.8 \pm 0.$                                                                                                                | 21<br>2h   | no activity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | no activity                                        |
| 1 $3A \pm 1A$ $BO(00) \pm 107$ 3a $7A \pm 0.17$ $39.4 \pm 3.63$ 3b $4.7 \pm 0.1$ $19.200 \pm 1177$ 3c $58 \pm 0.2$ $1549 \pm 190$ 3d $50 \pm 0.17$ $9434 \pm 1037$ 3e $6.15 \pm 0.11$ $702 \pm 112$ 3f $6.16 \pm 0.14$ $689 \pm 138$ 3g $5.89 \pm 0.12$ $1284 \pm 254$ 3h $5.9 \pm 0.16$ $1245 \pm 112$ 3i $4.8 \pm 0.11$ $15.400 \pm 1290$ 3jnot testednot tested4a $7.0 \pm 0.11$ $91.6 \pm 13.3$ 4b $5.3 \pm 0.07$ $5007 \pm 117$ 4d $4.1 \pm 0.04$ $74.730 \pm 4576$ 4e $6.3 \pm 0.18$ $527 \pm 191$ 4f $5.08 \pm 0.10$ $8317 \pm 1497$ 4g $4.9 \pm 0.11$ $11.070 \pm 1395$ 4h $4.4 \pm 0.11$ $20.6840 \pm 5904$ 4i $5.5 \pm 0.15$ $3098 \pm 148$ 4j $6.3 \pm 0.06$ $538 \pm 105$ 5a $7.1 \pm 0.13$ $82 \pm 13.4$ 5c $4.6 \pm 0.14$ $22.860 \pm 2599$ 5d $4.9 \pm 0.11$ $12.940 \pm 802$ 5e $4.5 \pm 0.11$ $27.40 \pm 186$ 5g $4.6 \pm 0.14$ $22.860 \pm 2599$ 5d $4.9 \pm 0.11$ $12.940 \pm 1802$ 5e $4.5 \pm 0.11$ $27.40 \pm 186$ 5g $4.6 \pm 0.14$ $22.860 \pm 2599$ 5d $4.9 \pm 0.11$ $12.940 \pm 802$ 5e $4.5 \pm 0.11$ $27.940 \pm 802$ 5e $4.5 \pm 0.11$ $27.940 \pm 802$ 5e $4.5 \pm 0.11$ $27.940 \pm 802$ 5e $4$                                                                                                    | 21         | $34 \pm 14$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $365800\pm46480$                                   |
| a1010101010103a7.4 \pm 0.1739.4 \pm 3.633b4.7 \pm 0.119200 ± 11773c5.8 \pm 0.21549 ± 1903d5.0 \pm 0.179434 ± 10373e6.15 \pm 0.11702 ± 1123f6.16 ± 0.146.89 ± 1133g5.89 ± 0.121284 ± 2543h5.9 ± 0.161245 ± 1123i4.8 ± 0.1115.400 ± 12903jnot testednot tested4a7.0 ± 0.1191.6 ± 13.34b5.3 ± 0.135003 ± 2184c5.3 ± 0.075007 ± 1174d4.1 ± 0.0474.730 ± 45764e6.3 ± 0.18527 ± 1914f5.08 ± 0.108317 ± 14974g4.9 ± 0.1111.070 ± 13954h4.4 ± 0.1126.80 ± 59044i5.5 ± 0.153098 ± 1484j6.3 ± 0.06538 ± 1055a7.5 ± 0.1130.5 ± 2.565b7.1 ± 0.1382 ± 13.45c4.6 ± 0.1422.860 ± 28995d4.9 ± 0.0512.940 ± 8025e4.5 ± 0.1233.890 ± 25635f4.5 ± 0.1127.40 ± 19865g4.6 ± 0.1321.520 ± 23475h4.5 ± 0.1127.35 ± 6266b4.3 ± 0.0745.330 ± 81786c4.3 ± 0.0745.330 ± 81256gnot testednot tested6h4.3 ± 0.0746.8026gnot testednot tested <t< th=""><th>21</th><th><math>0.4 \pm 1.4</math></th><th><math>n_{0}</math> activity</th></t<>                                                                                                                                                                                                                                                                                                                    | 21         | $0.4 \pm 1.4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $n_{0}$ activity                                   |
| 3b $4.7 \pm 0.1$ $19,200 \pm 1177$ 3c $5.8 \pm 0.2$ $1549 \pm 190$ 3d $5.0 \pm 0.17$ $9434 \pm 1037$ 3e $6.15 \pm 0.11$ $702 \pm 112$ 3f $6.16 \pm 0.14$ $689 \pm 138$ 3g $5.89 \pm 0.12$ $1284 \pm 254$ 3h $5.99 \pm 0.16$ $1245 \pm 112$ 3i $4.8 \pm 0.11$ $15,400 \pm 1290$ 3jnot testednot tested4a $7.0 \pm 0.11$ $91.6 \pm 13.3$ 4b $5.3 \pm 0.13$ $5003 \pm 218$ 4c $5.3 \pm 0.07$ $5007 \pm 117$ 4d $4.1 \pm 0.04$ $74,730 \pm 4576$ 4e $6.3 \pm 0.18$ $527 \pm 191$ 4f $5.08 \pm 0.10$ $8317 \pm 1497$ 4g $4.9 \pm 0.11$ $11,070 \pm 1395$ 4h $4.4 \pm 0.11$ $26,840 \pm 5904$ 4i $5.5 \pm 0.15$ $3098 \pm 148$ 4j $6.3 \pm 0.06$ $538 \pm 105$ 5a $7.5 \pm 0.11$ $30.5 \pm 2.56$ 5b $7.1 \pm 0.13$ $82 \pm 13.4$ 5c $4.6 \pm 0.14$ $22,860 \pm 2899$ 5d $4.9 \pm 0.05$ $12,940 \pm 802$ 5e $4.5 \pm 0.11$ $27,400 \pm 1986$ 5g $4.6 \pm 0.13$ $21,520 \pm 2347$ 5h $4.5 \pm 0.11$ $27,590 \pm 4987$ 5j $4.8 \pm 0.22$ $13,380 \pm 2563$ 5f $4.5 \pm 0.11$ $27,590 \pm 4987$ 5j $4.8 \pm 0.22$ $13,860 \pm 2059$ 6a $5.5 \pm 0.1$ $2735 \pm 626$ 6b $4.3 \pm 0.07$ $45,330 \pm 8178$ 6c $4.3 \pm 0.09$ $47,790 \pm 9556$ 6i </th <th>-)<br/>3a</th> <th><math>74 \pm 0.17</math></th> <th><math>39.4 \pm 3.63</math></th> | -)<br>3a   | $74 \pm 0.17$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $39.4 \pm 3.63$                                    |
| 3c $5.8 \pm 0.2$ $1549 \pm 190$ 3d $5.0 \pm 0.17$ $9434 \pm 1037$ 3e $6.15 \pm 0.11$ $702 \pm 112$ 3f $6.16 \pm 0.14$ $689 \pm 138$ 3g $5.89 \pm 0.12$ $1284 \pm 254$ 3h $5.9 \pm 0.16$ $1245 \pm 112$ 3i $4.8 \pm 0.11$ $15400 \pm 1290$ 3jnot testednot tested4a $7.0 \pm 0.11$ $91.6 \pm 13.3$ 4b $5.3 \pm 0.13$ $5003 \pm 218$ 4c $5.3 \pm 0.07$ $5007 \pm 117$ 4d $4.1 \pm 0.04$ $74.730 \pm 4576$ 4e $6.3 \pm 0.18$ $527 \pm 191$ 4f $5.08 \pm 0.10$ $8317 \pm 1497$ 4g $4.9 \pm 0.11$ $11.070 \pm 1395$ 4h $4.4 \pm 0.11$ $26,804 \pm 5904$ 4i $5.5 \pm 0.15$ $3098 \pm 148$ 4j $6.3 \pm 0.06$ $538 \pm 105$ 5a $7.5 \pm 0.11$ $30.5 \pm 2.56$ 5b $7.1 \pm 0.13$ $82 \pm 13.4$ 5c $4.6 \pm 0.14$ $22,860 \pm 2899$ 5d $4.9 \pm 0.05$ $12,940 \pm 802$ 5e $4.5 \pm 0.11$ $27,440 \pm 1986$ 5g $4.6 \pm 0.13$ $21,520 \pm 2347$ 5h $4.5 \pm 0.14$ $32,890 \pm 2417$ 5i $4.2 \pm 0.41$ $53,920 \pm 4987$ 5j $4.8 \pm 0.07$ $45,330 \pm 8178$ 6c $4.3 \pm 0.07$ $45,330 \pm 8178$ 6c $4.3 \pm 0.07$ $46,850 \pm 8125$ 6gnot testednot tested6h $4.3 \pm 0.09$ $47,790 \pm 9556$ 6i $3.7 \pm 0.24$ $204,000 \pm 56,920$ 6j <th>3b</th> <th><math>4.7 \pm 0.1</math></th> <th><math>19.200 \pm 1177</math></th>                   | 3b         | $4.7 \pm 0.1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $19.200 \pm 1177$                                  |
| 3d $5.0 \pm 0.17$ $9434 \pm 1037$ 3e $6.15 \pm 0.11$ $702 \pm 112$ 3f $6.16 \pm 0.14$ $689 \pm 138$ 3g $5.89 \pm 0.12$ $1284 \pm 254$ 3h $5.9 \pm 0.16$ $1245 \pm 112$ 3i $4.8 \pm 0.11$ $15,400 \pm 1290$ 3jnot testednot tested4a $7.0 \pm 0.11$ $91.6 \pm 13.3$ 4b $5.3 \pm 0.13$ $5007 \pm 117$ 4d $4.1 \pm 0.04$ $74,730 \pm 4576$ 4e $6.3 \pm 0.13$ $5007 \pm 117$ 4d $4.1 \pm 0.04$ $74,730 \pm 4576$ 4e $6.3 \pm 0.10$ $8177 \pm 1497$ 4g $4.9 \pm 0.11$ $11,070 \pm 1395$ 4h $4.4 \pm 0.11$ $26,840 \pm 5904$ 4i $5.5 \pm 0.15$ $3098 \pm 148$ 4j $6.3 \pm 0.06$ $538 \pm 105$ 5a $7.5 \pm 0.11$ $30.5 \pm 2.56$ 5b $7.1 \pm 0.13$ $82 \pm 13.4$ 5c $4.6 \pm 0.14$ $22,860 \pm 2899$ 5d $4.9 \pm 0.05$ $12,940 \pm 802$ 5e $4.5 \pm 0.11$ $27,402 \pm 1986$ 5g $4.6 \pm 0.13$ $21,520 \pm 2347$ 5h $4.5 \pm 0.14$ $32,890 \pm 2417$ 5i $4.2 \pm 0.41$ $55,920 \pm 4987$ 5j $4.8 \pm 0.22$ $13,360 \pm 2059$ 6a $5.5 \pm 0.1$ $2735 \pm 626$ 6b $4.3 \pm 0.09$ $47,750 \pm 9511$ 6c $4.3 \pm 0.09$ $47,750 \pm 9511$ 6d $4.2 \pm 0.11$ $59,890 \pm 12,467$ 6e $4.0 \pm 0.11$ $49,860 \pm 15,583$ 6f $4.3 \pm 0.09$ $47,700 \pm 9556$ <                                                                                     | 30         | $5.8 \pm 0.2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $1549 \pm 190$                                     |
| 3e $6.15 \pm 0.11$ $702 \pm 112$ 3f $6.16 \pm 0.14$ $689 \pm 138$ 3g $5.89 \pm 0.12$ $1284 \pm 254$ 3h $5.9 \pm 0.16$ $1245 \pm 112$ 3i $4.8 \pm 0.11$ $15,400 \pm 1290$ 3jnot testednot tested4a $7.0 \pm 0.11$ $91.6 \pm 13.3$ 4b $5.3 \pm 0.13$ $5003 \pm 218$ 4c $5.3 \pm 0.07$ $5007 \pm 117$ 4d $4.1 \pm 0.04$ $74,730 \pm 4576$ 4e $6.3 \pm 0.18$ $527 \pm 191$ 4f $5.08 \pm 0.10$ $8317 \pm 1497$ 4g $4.9 \pm 0.11$ $11,070 \pm 1395$ 4h $4.4 \pm 0.11$ $26,840 \pm 5904$ 4i $5.5 \pm 0.15$ $308 \pm 148$ 4j $6.3 \pm 0.06$ $538 \pm 105$ 5a $7.5 \pm 0.11$ $30.5 \pm 2.56$ 5b $7.1 \pm 0.13$ $8 \pm 13.4$ 5c $4.6 \pm 0.14$ $22,860 \pm 2899$ 5d $4.9 \pm 0.05$ $12,940 \pm 802$ 5e $4.5 \pm 0.11$ $27,440 \pm 1986$ 5g $4.6 \pm 0.13$ $21,520 \pm 2347$ 5h $4.5 \pm 0.11$ $27,520 \pm 4987$ 5j $4.8 \pm 0.22$ $13,860 \pm 2059$ 6a $5.5 \pm 0.11$ $2735 \pm 626$ 6b $4.3 \pm 0.07$ $45,330 \pm 8178$ 6c $4.3 \pm 0.07$ $45,830 \pm 8125$ 6gnot testednot tested6h $4.3 \pm 0.07$ $46,850 \pm 8125$ 6gnot testednot tested6h $4.3 \pm 0.07$ $46,850 \pm 8125$ 6gnot testednot tested6h $4.3 \pm 0.$                                                                                                                       | 3d         | $5.0 \pm 0.17$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $9434 \pm 1037$                                    |
| 3f $6.16 \pm 0.14$ $689 \pm 138$ 3g $5.89 \pm 0.12$ $1284 \pm 254$ 3h $5.9 \pm 0.16$ $1245 \pm 112$ 3i $4.8 \pm 0.11$ $15,400 \pm 1290$ 3jnot testednot tested4a $7.0 \pm 0.11$ $91.6 \pm 13.3$ 4b $5.3 \pm 0.13$ $5003 \pm 218$ 4c $5.3 \pm 0.07$ $5007 \pm 117$ 4d $4.1 \pm 0.04$ $74,730 \pm 4576$ 4e $6.3 \pm 0.18$ $527 \pm 191$ 4f $5.08 \pm 0.10$ $817 \pm 1497$ 4g $4.9 \pm 0.11$ $11,070 \pm 1395$ 4h $4.4 \pm 0.11$ $26,840 \pm 5904$ 4i $5.5 \pm 0.15$ $3098 \pm 148$ 4j $6.3 \pm 0.06$ $538 \pm 105$ 5a $7.5 \pm 0.11$ $30.5 \pm 2.56$ 5b $7.1 \pm 0.13$ $82 \pm 13.4$ 5c $4.6 \pm 0.14$ $22,860 \pm 2899$ 5d $4.9 \pm 0.05$ $12,940 \pm 802$ 5e $4.5 \pm 0.11$ $27,440 \pm 1986$ 5g $4.6 \pm 0.13$ $21,294 \pm 2847$ 5h $4.5 \pm 0.11$ $27,440 \pm 1986$ 5g $4.6 \pm 0.14$ $32,890 \pm 2417$ 5i $4.2 \pm 0.41$ $55,920 \pm 4987$ 5j $4.8 \pm 0.22$ $13,860 \pm 2059$ 6a $5.5 \pm 0.11$ $27,440 \pm 1986$ 5g $4.6 \pm 0.11$ $27,890 \pm 2447$ 5h $4.5 \pm 0.11$ $27,890 \pm 2447$ 5h $4.5 \pm 0.11$ $27,890 \pm 2447$ 6h $4.3 \pm 0.07$ $45,330 \pm 8178$ 6c $4.3 \pm 0.07$ $45,330 \pm 8178$ 6c $4.3 \pm 0.07$ $46,850 \pm 8125$                                                                                      | 3e         | $6.15 \pm 0.11$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $702 \pm 112$                                      |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3f         | $6.16\pm0.14$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $689 \pm 138$                                      |
| 3h $5.9 \pm 0.16$ $1245 \pm 112$ 3i $4.8 \pm 0.11$ $15,400 \pm 1290$ 3jnot testednot tested4a $7.0 \pm 0.11$ $91.6 \pm 13.3$ 4b $5.3 \pm 0.07$ $5007 \pm 117$ 4d $4.1 \pm 0.04$ $74,730 \pm 4576$ 4e $6.3 \pm 0.18$ $527 \pm 191$ 4f $5.08 \pm 0.10$ $8317 \pm 1497$ 4g $4.9 \pm 0.11$ $11,070 \pm 1395$ 4h $4.4 \pm 0.11$ $26,840 \pm 5904$ 4i $5.5 \pm 0.15$ $3098 \pm 148$ 4j $6.3 \pm 0.06$ $538 \pm 105$ 5a $7.5 \pm 0.11$ $30.5 \pm 2.56$ 5b $7.1 \pm 0.13$ $82 \pm 13.4$ 5c $4.6 \pm 0.14$ $22,860 \pm 2899$ 5d $4.9 \pm 0.05$ $12,940 \pm 802$ 5e $4.5 \pm 0.12$ $33,890 \pm 2563$ 5f $4.5 \pm 0.11$ $27,440 \pm 1986$ 5g $4.6 \pm 0.13$ $21,520 \pm 2347$ 5h $4.5 \pm 0.11$ $27,440 \pm 1986$ 5g $4.6 \pm 0.13$ $21,520 \pm 2347$ 5h $4.5 \pm 0.11$ $27,440 \pm 1986$ 5g $4.6 \pm 0.13$ $21,520 \pm 2347$ 5h $4.5 \pm 0.11$ $27,350 \pm 626$ 6b $4.3 \pm 0.07$ $45,330 \pm 8178$ 6c $4.3 \pm 0.07$ $45,330 \pm 8178$ 6c $4.3 \pm 0.07$ $46,850 \pm 8125$ 6gnot testednot tested6h $4.3 \pm 0.07$ $46,850 \pm 8125$ 6gnot testednot tested6h $4.3 \pm 0.07$ $46,850 \pm 8125$ 6gnot testednot tested6h <th>3g</th> <th><math>5.89\pm0.12</math></th> <th><math>1284\pm254</math></th>                                      | 3g         | $5.89\pm0.12$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $1284\pm254$                                       |
| 3i $48 \pm 0.11$ $15,400 \pm 1290$ 3jnot testednot tested4a $7.0 \pm 0.11$ $91.6 \pm 13.3$ 4b $5.3 \pm 0.13$ $5003 \pm 218$ 4c $5.3 \pm 0.07$ $5007 \pm 117$ 4d $4.1 \pm 0.04$ $74,730 \pm 4576$ 4e $6.3 \pm 0.18$ $527 \pm 191$ 4f $5.08 \pm 0.10$ $8317 \pm 1497$ 4g $4.9 \pm 0.11$ $11,070 \pm 1395$ 4h $4.4 \pm 0.11$ $26,840 \pm 5904$ 4i $5.5 \pm 0.15$ $3098 \pm 148$ 4j $6.3 \pm 0.06$ $538 \pm 105$ 5a $7.5 \pm 0.11$ $30.5 \pm 2.56$ 5b $7.1 \pm 0.13$ $82 \pm 13.4$ 5c $4.6 \pm 0.14$ $22,860 \pm 2899$ 5d $4.9 \pm 0.05$ $12,940 \pm 802$ 5e $4.5 \pm 0.11$ $27,440 \pm 1986$ 5g $4.6 \pm 0.14$ $32,890 \pm 2563$ 5f $4.5 \pm 0.14$ $32,890 \pm 2417$ 5i $4.2 \pm 0.41$ $55,920 \pm 4987$ 5j $4.8 \pm 0.22$ $13,860 \pm 2059$ 6a $5.5 \pm 0.1$ $2735 \pm 626$ 6b $4.3 \pm 0.07$ $45,330 \pm 8178$ 6c $4.3 \pm 0.07$ $46,850 \pm 8125$ 6gnot testednot tested6h $4.3 \pm 0.07$ $46,850 \pm 8125$ 6gnot testednot tested6h $4.3 \pm 0.07$ $46,850 \pm 8125$ 6gnot testednot tested6h $4.3 \pm 0.07$ $45,830 \pm 8125$ 6gnot testednot tested6h $4.3 \pm 0.09$ $47,790 \pm 9556$ 6i $3.7 $                                                                                                                                | 3h         | $5.9\pm0.16$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $1245\pm112$                                       |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3i         | $4.8\pm0.11$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $15,\!400\pm1290$                                  |
| 4a7.0 $\pm$ 0.1191.6 $\pm$ 13.34b5.3 $\pm$ 0.135003 $\pm$ 2184c5.3 $\pm$ 0.075007 $\pm$ 1174d4.1 $\pm$ 0.0474,730 $\pm$ 45764e6.3 $\pm$ 0.18527 $\pm$ 1914f5.08 $\pm$ 0.108317 $\pm$ 14974g4.9 $\pm$ 0.1111,070 $\pm$ 13954h4.4 $\pm$ 0.1126,840 $\pm$ 59044i5.5 $\pm$ 0.153098 $\pm$ 1484j6.3 $\pm$ 0.06538 $\pm$ 1055a7.5 $\pm$ 0.1130.5 $\pm$ 2.565b7.1 $\pm$ 0.1382 $\pm$ 13.45c4.6 $\pm$ 0.1422,860 $\pm$ 28995d4.9 $\pm$ 0.0512,940 $\pm$ 8025e4.5 $\pm$ 0.1127,440 $\pm$ 19865g4.6 $\pm$ 0.1321,520 $\pm$ 23475h4.5 $\pm$ 0.1432,890 $\pm$ 24175i4.2 $\pm$ 0.4152,920 $\pm$ 49875j4.8 $\pm$ 0.2213,860 $\pm$ 20596a5.5 $\pm$ 0.12735 $\pm$ 6266b4.3 $\pm$ 0.0947,150 $\pm$ 95116c4.3 $\pm$ 0.0947,150 $\pm$ 95116d4.2 $\pm$ 0.1159,890 $\pm$ 12,4676e4.0 $\pm$ 0.1198,950 $\pm$ 15,5836f4.3 $\pm$ 0.0947,790 $\pm$ 95566i3.7 $\pm$ 0.24204,000 $\pm$ 56,9206j5.1 $\pm$ 0.117804 $\pm$ 1876WAY-1006358.4 $\pm$ 0.124.3 $\pm$ 0.86                                                                                                                                                                                                                                                                                            | 3j         | not tested                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | not tested                                         |
| 4b $5.3 \pm 0.13$ $5003 \pm 218$ 4c $5.3 \pm 0.07$ $5007 \pm 117$ 4d $4.1 \pm 0.04$ $74,730 \pm 4576$ 4e $6.3 \pm 0.18$ $527 \pm 191$ 4f $5.08 \pm 0.10$ $8317 \pm 1497$ 4g $4.9 \pm 0.11$ $11,070 \pm 1395$ 4h $4.4 \pm 0.11$ $26,840 \pm 5904$ 4i $5.5 \pm 0.15$ $3098 \pm 148$ 4j $6.3 \pm 0.06$ $538 \pm 105$ 5a $7.5 \pm 0.11$ $30.5 \pm 2.56$ 5b $7.1 \pm 0.13$ $82 \pm 13.4$ 5c $4.6 \pm 0.14$ $22,860 \pm 2899$ 5d $4.9 \pm 0.05$ $12,940 \pm 802$ 5e $4.5 \pm 0.12$ $33,890 \pm 2563$ 5f $4.5 \pm 0.12$ $33,890 \pm 2563$ 5f $4.5 \pm 0.11$ $27,440 \pm 1986$ 5g $4.6 \pm 0.13$ $21,520 \pm 2347$ 5h $4.5 \pm 0.14$ $32,890 \pm 2417$ 5i $4.2 \pm 0.41$ $55,920 \pm 4987$ 5j $4.8 \pm 0.22$ $13,860 \pm 2059$ 6a $5.5 \pm 0.1$ $2735 \pm 626$ 6b $4.3 \pm 0.07$ $45,330 \pm 8178$ 6c $4.3 \pm 0.07$ $46,850 \pm 8125$ 6gnot testednot tested6h $4.3 \pm 0.07$ $46,850 \pm 8125$ 6gnot testednot tested6h $4.3 \pm 0.09$ $47,790 \pm 9556$ 6i $3.7 \pm 0.24$ $204,000 \pm 56,920$ 6j $5.1 \pm 0.1$ $7804 \pm 1876$ WAY-100635 $8.4 \pm 0.12$ $4.3 \pm 0.86$                                                                                                                                                                | 4a         | $7.0\pm0.11$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $91.6\pm13.3$                                      |
| 4c $5.3 \pm 0.07$ $5007 \pm 117$ 4d $4.1 \pm 0.04$ $74,730 \pm 4576$ 4e $6.3 \pm 0.18$ $527 \pm 191$ 4f $5.08 \pm 0.10$ $8317 \pm 1497$ 4g $4.9 \pm 0.11$ $11,070 \pm 1395$ 4h $4.4 \pm 0.11$ $26,840 \pm 5904$ 4i $5.5 \pm 0.15$ $3098 \pm 148$ 4j $6.3 \pm 0.06$ $538 \pm 105$ 5a $7.5 \pm 0.11$ $30.5 \pm 2.56$ 5b $7.1 \pm 0.13$ $82 \pm 13.4$ 5c $4.6 \pm 0.14$ $22,860 \pm 2899$ 5d $4.9 \pm 0.05$ $12,940 \pm 802$ 5e $4.5 \pm 0.11$ $27,440 \pm 1986$ 5g $4.6 \pm 0.13$ $21,520 \pm 2347$ 5h $4.5 \pm 0.14$ $32,890 \pm 2417$ 5i $4.2 \pm 0.41$ $55,920 \pm 4987$ 5j $4.8 \pm 0.22$ $13,860 \pm 2059$ 6a $5.5 \pm 0.11$ $2735 \pm 626$ 6b $4.3 \pm 0.09$ $47,150 \pm 9511$ 6c $4.3 \pm 0.09$ $47,150 \pm 9511$ 6d $4.2 \pm 0.11$ $59,890 \pm 12,467$ 6e $4.0 \pm 0.11$ $98,950 \pm 15,583$ 6f $4.3 \pm 0.09$ $47,790 \pm 9556$ 6i $3.7 \pm 0.24$ $204,000 \pm 56,920$ 6j $5.1 \pm 0.1$ $7804 \pm 1876$ WAY-100635 $8.4 \pm 0.12$ $4.3 \pm 0.86$                                                                                                                                                                                                                                                                            | 4b         | $5.3\pm0.13$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $5003\pm218$                                       |
| 4d $4.1 \pm 0.04$ $74,730 \pm 4576$ 4e $6.3 \pm 0.18$ $527 \pm 191$ 4f $5.08 \pm 0.10$ $8317 \pm 1497$ 4g $4.9 \pm 0.11$ $11,070 \pm 1395$ 4h $4.4 \pm 0.11$ $26,840 \pm 5904$ 4i $5.5 \pm 0.15$ $3098 \pm 148$ 4j $6.3 \pm 0.06$ $538 \pm 105$ 5a $7.1 \pm 0.13$ $82 \pm 13.4$ 5c $4.6 \pm 0.14$ $22,860 \pm 2899$ 5d $4.9 \pm 0.05$ $12,940 \pm 802$ 5e $4.5 \pm 0.12$ $33,890 \pm 2563$ 5f $4.5 \pm 0.12$ $33,890 \pm 2563$ 5f $4.5 \pm 0.12$ $33,890 \pm 2417$ 5h $4.5 \pm 0.14$ $32,890 \pm 2417$ 5i $4.2 \pm 0.41$ $55,920 \pm 4987$ 5j $4.8 \pm 0.22$ $13,860 \pm 2059$ 6a $5.5 \pm 0.1$ $2735 \pm 626$ 6b $4.3 \pm 0.09$ $47,150 \pm 9511$ 6c $4.3 \pm 0.09$ $47,150 \pm 9511$ 6d $4.2 \pm 0.11$ $98,950 \pm 15,583$ 6f $4.3 \pm 0.09$ $47,790 \pm 9556$ 6i $3.7 \pm 0.24$ $204,000 \pm 56,920$ 6j $5.1 \pm 0.1$ $7804 \pm 1876$ WAY-100635 $8.4 \pm 0.12$ $4.3 \pm 0.86$                                                                                                                                                                                                                                                                                                                                                  | 4c         | $5.3\pm0.07$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $5007 \pm 117$                                     |
| 4e $6.3 \pm 0.18$ $527 \pm 191$ 4f $5.08 \pm 0.10$ $8317 \pm 1497$ 4g $4.9 \pm 0.11$ $11,070 \pm 1395$ 4h $4.4 \pm 0.11$ $26,840 \pm 5904$ 4i $5.5 \pm 0.15$ $3098 \pm 148$ 4j $6.3 \pm 0.06$ $538 \pm 105$ 5a $7.5 \pm 0.11$ $30.5 \pm 2.56$ 5b $7.1 \pm 0.13$ $82 \pm 13.4$ 5c $4.6 \pm 0.14$ $22,860 \pm 2899$ 5d $4.9 \pm 0.05$ $12,940 \pm 802$ 5e $4.5 \pm 0.12$ $33,890 \pm 2563$ 5f $4.5 \pm 0.11$ $27,440 \pm 1986$ 5g $4.6 \pm 0.13$ $21,520 \pm 2347$ 5h $4.5 \pm 0.14$ $32,890 \pm 2417$ 5i $4.2 \pm 0.41$ $55,920 \pm 4987$ 5j $4.8 \pm 0.22$ $13,860 \pm 2059$ 6a $5.5 \pm 0.1$ $2735 \pm 626$ 6b $4.3 \pm 0.07$ $45,330 \pm 8178$ 6c $4.3 \pm 0.09$ $47,150 \pm 9511$ 6d $4.2 \pm 0.11$ $59,890 \pm 12,467$ 6e $4.0 \pm 0.11$ $98,950 \pm 15,583$ 6f $4.3 \pm 0.09$ $47,790 \pm 9556$ 6i $3.7 \pm 0.24$ $204,000 \pm 56,920$ 6j $5.1 \pm 0.1$ $7804 \pm 1876$ WAY-100635 $8.4 \pm 0.12$ $4.3 \pm 0.86$                                                                                                                                                                                                                                                                                                              | 4d         | $4.1\pm0.04$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $74,730 \pm 4576$                                  |
| 4f $5.08 \pm 0.10$ $8317 \pm 1497$ 4g $4.9 \pm 0.11$ $11,070 \pm 1395$ 4h $4.4 \pm 0.11$ $26,840 \pm 5904$ 4i $5.5 \pm 0.15$ $3098 \pm 148$ 4j $6.3 \pm 0.06$ $538 \pm 105$ 5a $7.5 \pm 0.11$ $30.5 \pm 2.56$ 5b $7.1 \pm 0.13$ $82 \pm 13.4$ 5c $4.6 \pm 0.14$ $22,860 \pm 2899$ 5d $4.9 \pm 0.05$ $12,940 \pm 802$ 5e $4.5 \pm 0.12$ $33,890 \pm 2563$ 5f $4.5 \pm 0.11$ $27,440 \pm 1986$ 5g $4.6 \pm 0.14$ $22,890 \pm 2417$ 5h $4.5 \pm 0.11$ $27,440 \pm 1986$ 5g $4.6 \pm 0.14$ $32,890 \pm 2417$ 5i $4.2 \pm 0.41$ $55,920 \pm 4987$ 5j $4.8 \pm 0.22$ $13,860 \pm 2059$ 6a $5.5 \pm 0.1$ $2735 \pm 626$ 6b $4.3 \pm 0.07$ $45,330 \pm 8178$ 6c $4.3 \pm 0.07$ $45,330 \pm 8178$ 6f $4.3 \pm 0.07$ $46,850 \pm 8125$ 6gnot testednot tested6h $4.3 \pm 0.09$ $47,790 \pm 9556$ 6i $3.7 \pm 0.24$ $204,000 \pm 56,920$ 6j $5.1 \pm 0.1$ $7804 \pm 1876$ WAY-100635 $8.4 \pm 0.12$ $4.3 \pm 0.86$                                                                                                                                                                                                                                                                                                                            | 4e         | $6.3 \pm 0.18$ $527 \pm 19$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                    |
| 4g $4.9 \pm 0.11$ $11,070 \pm 1395$ 4h $4.4 \pm 0.11$ $26,840 \pm 5904$ 4i $5.5 \pm 0.15$ $3098 \pm 148$ 4j $6.3 \pm 0.06$ $538 \pm 105$ 5a $7.5 \pm 0.11$ $30.5 \pm 2.56$ 5b $7.1 \pm 0.13$ $82 \pm 13.4$ 5c $4.6 \pm 0.14$ $22,860 \pm 2899$ 5d $4.9 \pm 0.05$ $12,940 \pm 802$ 5e $4.5 \pm 0.12$ $33,890 \pm 2563$ 5f $4.5 \pm 0.11$ $27,440 \pm 1986$ 5g $4.6 \pm 0.14$ $22,800 \pm 2347$ 5h $4.5 \pm 0.11$ $27,440 \pm 1986$ 5g $4.6 \pm 0.14$ $32,890 \pm 2417$ 5i $4.2 \pm 0.41$ $55,920 \pm 4987$ 5j $4.8 \pm 0.22$ $13,860 \pm 2059$ 6a $5.5 \pm 0.1$ $2735 \pm 626$ 6b $4.3 \pm 0.07$ $45,330 \pm 8178$ 6c $4.3 \pm 0.09$ $47,150 \pm 9511$ 6d $4.2 \pm 0.11$ $59,890 \pm 12,467$ 6e $4.0 \pm 0.11$ $98,950 \pm 15,583$ 6f $4.3 \pm 0.09$ $47,790 \pm 9556$ 6i $3.7 \pm 0.24$ $204,000 \pm 56,920$ 6j $5.1 \pm 0.1$ $7804 \pm 1876$ WAY-100635 $8.4 \pm 0.12$ $4.3 \pm 0.86$                                                                                                                                                                                                                                                                                                                                             | 4f         | $5.08 \pm 0.10$ $8317 \pm 1497$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                    |
| 4h $4.4 \pm 0.11$ $26,840 \pm 5904$ 4i $5.5 \pm 0.15$ $3098 \pm 148$ 4j $6.3 \pm 0.06$ $538 \pm 105$ 5a $7.5 \pm 0.11$ $30.5 \pm 2.56$ 5b $7.1 \pm 0.13$ $82 \pm 13.4$ 5c $4.6 \pm 0.14$ $22,860 \pm 2899$ 5d $4.9 \pm 0.05$ $12,940 \pm 802$ 5e $4.5 \pm 0.12$ $33,890 \pm 2563$ 5f $4.5 \pm 0.11$ $27,440 \pm 1986$ 5g $4.6 \pm 0.13$ $21,520 \pm 2347$ 5h $4.5 \pm 0.14$ $32,890 \pm 2417$ 5i $4.2 \pm 0.41$ $55,920 \pm 4987$ 5j $4.8 \pm 0.22$ $13,860 \pm 2059$ 6a $5.5 \pm 0.1$ $2735 \pm 626$ 6b $4.3 \pm 0.07$ $45,330 \pm 8178$ 6c $4.3 \pm 0.09$ $47,150 \pm 9511$ 6d $4.2 \pm 0.11$ $59,890 \pm 12,467$ 6e $4.0 \pm 0.11$ $98,950 \pm 15,583$ 6f $4.3 \pm 0.09$ $47,790 \pm 9556$ 6i $3.7 \pm 0.24$ $204,000 \pm 56,920$ 6j $5.1 \pm 0.1$ $7804 \pm 1876$ WAY-100635 $8.4 \pm 0.12$ $4.3 \pm 0.86$                                                                                                                                                                                                                                                                                                                                                                                                                     | 4g         | $4.9 \pm 0.11$ $11,070 \pm 139.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                    |
| 41 $5.5 \pm 0.15$ $3098 \pm 148$ 4j $6.3 \pm 0.06$ $538 \pm 105$ 5a $7.5 \pm 0.11$ $30.5 \pm 2.56$ 5b $7.1 \pm 0.13$ $82 \pm 13.4$ 5c $4.6 \pm 0.14$ $22,860 \pm 2899$ 5d $4.9 \pm 0.05$ $12,940 \pm 802$ 5e $4.5 \pm 0.12$ $33,890 \pm 2563$ 5f $4.5 \pm 0.11$ $27,440 \pm 1986$ 5g $4.6 \pm 0.13$ $21,520 \pm 2347$ 5h $4.5 \pm 0.14$ $32,890 \pm 2417$ 5i $4.2 \pm 0.41$ $55,920 \pm 4987$ 5j $4.8 \pm 0.22$ $13,860 \pm 2059$ 6a $5.5 \pm 0.1$ $2735 \pm 626$ 6b $4.3 \pm 0.07$ $45,330 \pm 8178$ 6c $4.3 \pm 0.09$ $47,150 \pm 9511$ 6d $4.2 \pm 0.11$ $59,890 \pm 12,467$ 6e $4.0 \pm 0.11$ $98,950 \pm 15,583$ 6f $4.3 \pm 0.07$ $46,850 \pm 8125$ 6gnot testednot tested6h $4.3 \pm 0.09$ $47,790 \pm 9556$ 6i $3.7 \pm 0.24$ $204,000 \pm 56,920$ 6j $5.1 \pm 0.1$ $7804 \pm 1876$ WAY-100635 $8.4 \pm 0.12$ $4.3 \pm 0.86$                                                                                                                                                                                                                                                                                                                                                                                               | 4h         | $4.4 \pm 0.11$ 26,840 ± 5904                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                    |
| 4j $6.3 \pm 0.06$ $3.38 \pm 105$ 5a $7.5 \pm 0.11$ $30.5 \pm 2.56$ 5b $7.1 \pm 0.13$ $82 \pm 13.4$ 5c $4.6 \pm 0.14$ $22,860 \pm 2899$ 5d $4.9 \pm 0.05$ $12,940 \pm 802$ 5e $4.5 \pm 0.12$ $33,890 \pm 2563$ 5f $4.5 \pm 0.11$ $27,440 \pm 1986$ 5g $4.6 \pm 0.13$ $21,520 \pm 2347$ 5h $4.5 \pm 0.14$ $32,890 \pm 2417$ 5i $4.2 \pm 0.41$ $55,920 \pm 4987$ 5j $4.8 \pm 0.22$ $13,860 \pm 2059$ 6a $5.5 \pm 0.1$ $2735 \pm 626$ 6b $4.3 \pm 0.07$ $45,330 \pm 8178$ 6c $4.3 \pm 0.07$ $45,330 \pm 12,467$ 6e $4.0 \pm 0.11$ $98,950 \pm 12,467$ 6e $4.0 \pm 0.11$ $98,950 \pm 15,583$ 6f $4.3 \pm 0.07$ $46,850 \pm 8125$ 6gnot testednot tested6h $4.3 \pm 0.09$ $47,790 \pm 9556$ 6i $3.7 \pm 0.24$ $204,000 \pm 56,920$ 6j $5.1 \pm 0.1$ $7804 \pm 1876$ WAY-100635 $8.4 \pm 0.12$ $4.3 \pm 0.86$                                                                                                                                                                                                                                                                                                                                                                                                                             | 41         | $5.5 \pm 0.15$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $3098 \pm 148$                                     |
| 5a7.5 $\pm$ 0.1130.5 $\pm$ 2.565b7.1 $\pm$ 0.1382 $\pm$ 13.45c4.6 $\pm$ 0.1422,860 $\pm$ 28995d4.9 $\pm$ 0.0512,940 $\pm$ 8025e4.5 $\pm$ 0.1233,890 $\pm$ 25635f4.5 $\pm$ 0.1127,440 $\pm$ 19865g4.6 $\pm$ 0.1321,520 $\pm$ 23475h4.5 $\pm$ 0.1432,890 $\pm$ 24175i4.2 $\pm$ 0.4155,920 $\pm$ 49875j4.8 $\pm$ 0.2213,860 $\pm$ 20596a5.5 $\pm$ 0.12735 $\pm$ 6266b4.3 $\pm$ 0.0745,330 $\pm$ 81786c4.3 $\pm$ 0.0947,150 $\pm$ 95116d4.2 $\pm$ 0.1159,890 $\pm$ 12,4676e4.0 $\pm$ 0.1198,950 $\pm$ 15,5836f4.3 $\pm$ 0.0746,850 $\pm$ 81256gnot testednot tested6h4.3 $\pm$ 0.0947,790 $\pm$ 95566i3.7 $\pm$ 0.24204,000 $\pm$ 56,9206j5.1 $\pm$ 0.17804 $\pm$ 1876WAY-1006358.4 $\pm$ 0.124.3 $\pm$ 0.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4j         | $6.3 \pm 0.06$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $538 \pm 105$                                      |
| 50 $7.1 \pm 0.13$ $82 \pm 13.4$ 5c $4.6 \pm 0.14$ $22,860 \pm 2899$ 5d $4.9 \pm 0.05$ $12,940 \pm 802$ 5e $4.5 \pm 0.12$ $33,890 \pm 2563$ 5f $4.5 \pm 0.11$ $27,440 \pm 1986$ 5g $4.6 \pm 0.13$ $21,520 \pm 2347$ 5h $4.5 \pm 0.14$ $32,890 \pm 2417$ 5i $4.2 \pm 0.41$ $55,920 \pm 4987$ 5j $4.8 \pm 0.22$ $13,860 \pm 2059$ 6a $5.5 \pm 0.1$ $2735 \pm 626$ 6b $4.3 \pm 0.07$ $45,330 \pm 8178$ 6c $4.3 \pm 0.09$ $47,150 \pm 9511$ 6d $4.2 \pm 0.11$ $59,890 \pm 12,467$ 6e $4.0 \pm 0.11$ $98,950 \pm 15,583$ 6f $4.3 \pm 0.07$ $46,850 \pm 8125$ 6gnot testednot tested6h $4.3 \pm 0.09$ $47,790 \pm 9556$ 6i $3.7 \pm 0.24$ $204,000 \pm 56,920$ 6j $5.1 \pm 0.1$ $7804 \pm 1876$ WAY-100635 $8.4 \pm 0.12$ $4.3 \pm 0.86$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5a         | $7.5 \pm 0.11$ $30.5 \pm 2.56$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                    |
| 5c $4.6 \pm 0.14$ $22,860 \pm 2699$ 5d $4.9 \pm 0.05$ $12,940 \pm 802$ 5e $4.5 \pm 0.12$ $33,890 \pm 2563$ 5f $4.5 \pm 0.11$ $27,440 \pm 1986$ 5g $4.6 \pm 0.13$ $21,520 \pm 2347$ 5h $4.5 \pm 0.14$ $32,890 \pm 2417$ 5i $4.2 \pm 0.41$ $55,920 \pm 4987$ 5j $4.8 \pm 0.22$ $13,860 \pm 2059$ 6a $5.5 \pm 0.1$ $2735 \pm 626$ 6b $4.3 \pm 0.07$ $45,330 \pm 8178$ 6c $4.3 \pm 0.09$ $47,150 \pm 9511$ 6d $4.2 \pm 0.11$ $59,890 \pm 12,467$ 6e $4.0 \pm 0.11$ $98,950 \pm 15,583$ 6f $4.3 \pm 0.07$ $46,850 \pm 8125$ 6gnot testednot tested6h $4.3 \pm 0.09$ $47,790 \pm 9556$ 6i $3.7 \pm 0.24$ $204,000 \pm 56,920$ 6j $5.1 \pm 0.1$ $7804 \pm 1876$ WAY-100635 $8.4 \pm 0.12$ $4.3 \pm 0.86$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 50         | $7.1 \pm 0.13$ $82 \pm 13.4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                    |
| 5d $4.9 \pm 0.05$ $12,940 \pm 802$ 5e $4.5 \pm 0.12$ $33,890 \pm 2563$ 5f $4.5 \pm 0.11$ $27,440 \pm 1986$ 5g $4.6 \pm 0.13$ $21,520 \pm 2347$ 5h $4.5 \pm 0.14$ $32,890 \pm 2417$ 5i $4.2 \pm 0.41$ $55,920 \pm 4987$ 5j $4.8 \pm 0.22$ $13,860 \pm 2059$ 6a $5.5 \pm 0.1$ $2735 \pm 626$ 6b $4.3 \pm 0.07$ $45,330 \pm 8178$ 6c $4.3 \pm 0.07$ $45,330 \pm 8178$ 6d $4.2 \pm 0.11$ $59,890 \pm 12,467$ 6e $4.0 \pm 0.11$ $98,950 \pm 15,583$ 6f $4.3 \pm 0.07$ $46,850 \pm 8125$ 6gnot testednot tested6h $4.3 \pm 0.09$ $47,790 \pm 9556$ 6i $3.7 \pm 0.24$ $204,000 \pm 56,920$ 6j $5.1 \pm 0.1$ $7804 \pm 1876$ WAY-100635 $8.4 \pm 0.12$ $4.3 \pm 0.86$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 50         | $4.6 \pm 0.14$ 22,860 ± 2899                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                    |
| Se $4.3 \pm 0.12$ $33,990 \pm 2303$ 5f $4.5 \pm 0.11$ $27,440 \pm 1986$ 5g $4.6 \pm 0.13$ $21,520 \pm 2347$ 5h $4.5 \pm 0.14$ $32,890 \pm 2417$ 5i $4.2 \pm 0.41$ $55,920 \pm 4987$ 5j $4.8 \pm 0.22$ $13,860 \pm 2059$ 6a $5.5 \pm 0.1$ $2735 \pm 626$ 6b $4.3 \pm 0.07$ $45,330 \pm 8178$ 6c $4.3 \pm 0.07$ $45,330 \pm 8178$ 6c $4.3 \pm 0.09$ $47,150 \pm 9511$ 6d $4.2 \pm 0.11$ $59,890 \pm 12,467$ 6e $4.0 \pm 0.11$ $98,950 \pm 15,583$ 6f $4.3 \pm 0.07$ $46,850 \pm 8125$ 6gnot testednot tested6h $4.3 \pm 0.09$ $47,790 \pm 9556$ 6i $3.7 \pm 0.24$ $204,000 \pm 56,920$ 6j $5.1 \pm 0.1$ $7804 \pm 1876$ WAY-100635 $8.4 \pm 0.12$ $4.3 \pm 0.86$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 50         | $4.9 \pm 0.05 \qquad 12,940 \pm 802 \\ 4.5 \pm 0.12 \qquad 22,800 \pm 25.02 \\ 12,940 \pm 0.02 \\ 12$ |                                                    |
| Si4.3 $\pm$ 0.1127,440 $\pm$ 19305g4.6 $\pm$ 0.1321,520 $\pm$ 23475h4.5 $\pm$ 0.1432,890 $\pm$ 24175i4.2 $\pm$ 0.4155,920 $\pm$ 49875j4.8 $\pm$ 0.2213,860 $\pm$ 20596a5.5 $\pm$ 0.12735 $\pm$ 6266b4.3 $\pm$ 0.0745,330 $\pm$ 81786c4.3 $\pm$ 0.0947,150 $\pm$ 95116d4.2 $\pm$ 0.1159,890 $\pm$ 12,4676e4.0 $\pm$ 0.1198,950 $\pm$ 15,5836f4.3 $\pm$ 0.0746,850 $\pm$ 81256gnot testednot tested6h4.3 $\pm$ 0.0947,790 $\pm$ 95566i3.7 $\pm$ 0.24204,000 $\pm$ 56,9206j5.1 $\pm$ 0.17804 $\pm$ 1876WAY-1006358.4 $\pm$ 0.124.3 $\pm$ 0.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 56         | $4.5 \pm 0.12 \qquad \qquad 33,890 \pm 2563 \\ 4.5 \pm 0.11 \qquad \qquad 27.440 \pm 1000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                    |
| 5g4.0 $\pm$ 0.1321,020 $\pm$ 25475h4.5 $\pm$ 0.1432,890 $\pm$ 24175i4.2 $\pm$ 0.4155,920 $\pm$ 49875j4.8 $\pm$ 0.2213,860 $\pm$ 20596a5.5 $\pm$ 0.12735 $\pm$ 6266b4.3 $\pm$ 0.0745,330 $\pm$ 81786c4.3 $\pm$ 0.0947,150 $\pm$ 95116d4.2 $\pm$ 0.1159,890 $\pm$ 12,4676e4.0 $\pm$ 0.1198,950 $\pm$ 15,5836f4.3 $\pm$ 0.0746,850 $\pm$ 81256gnot testednot tested6h4.3 $\pm$ 0.0947,790 $\pm$ 95566i3.7 $\pm$ 0.24204,000 $\pm$ 56,9206j5.1 $\pm$ 0.17804 $\pm$ 1876WAY-1006358.4 $\pm$ 0.124.3 $\pm$ 0.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 59         | $4.5 \pm 0.11$<br>$4.6 \pm 0.13$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $27,440 \pm 1700$<br>21 520 + 2347                 |
| Sit4.3 $\pm$ 0.1152,000 $\pm$ 2417Si4.2 $\pm$ 0.4155,920 $\pm$ 4987Sj4.8 $\pm$ 0.2213,860 $\pm$ 20596a5.5 $\pm$ 0.12735 $\pm$ 6266b4.3 $\pm$ 0.0745,330 $\pm$ 81786c4.3 $\pm$ 0.0947,150 $\pm$ 95116d4.2 $\pm$ 0.1159,890 $\pm$ 12,4676e4.0 $\pm$ 0.1198,950 $\pm$ 15,5836f4.3 $\pm$ 0.0746,850 $\pm$ 81256gnot testednot tested6h4.3 $\pm$ 0.0947,790 $\pm$ 95566i3.7 $\pm$ 0.24204,000 $\pm$ 56,9206j5.1 $\pm$ 0.17804 $\pm$ 1876WAY-1006358.4 $\pm$ 0.124.3 $\pm$ 0.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 55<br>5h   | $4.0 \pm 0.13$<br>$4.5 \pm 0.14$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $21,320 \pm 2547$<br>$32,890 \pm 2417$             |
| 51 $1.2 \pm 0.11$ $300,20 \pm 100$ 5j $4.8 \pm 0.22$ $13,860 \pm 2059$ 6a $5.5 \pm 0.1$ $2735 \pm 626$ 6b $4.3 \pm 0.07$ $45,330 \pm 8178$ 6c $4.3 \pm 0.09$ $47,150 \pm 9511$ 6d $4.2 \pm 0.11$ $59,890 \pm 12,467$ 6e $4.0 \pm 0.11$ $98,950 \pm 15,583$ 6f $4.3 \pm 0.07$ $46,850 \pm 8125$ 6gnot testednot tested6h $4.3 \pm 0.09$ $47,790 \pm 9556$ 6i $3.7 \pm 0.24$ $204,000 \pm 56,920$ 6j $5.1 \pm 0.1$ $7804 \pm 1876$ WAY-100635 $8.4 \pm 0.12$ $4.3 \pm 0.86$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5i         | $4.5 \pm 0.14$<br>$4.2 \pm 0.41$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $52,000 \pm 2417$<br>55 920 + 4987                 |
| 6a $5.5 \pm 0.1$ $2735 \pm 626$ 6b $4.3 \pm 0.07$ $45,330 \pm 8178$ 6c $4.3 \pm 0.09$ $47,150 \pm 9511$ 6d $4.2 \pm 0.11$ $59,890 \pm 12,467$ 6e $4.0 \pm 0.11$ $98,950 \pm 15,583$ 6f $4.3 \pm 0.07$ $46,850 \pm 8125$ 6gnot testednot tested6h $4.3 \pm 0.09$ $47,790 \pm 9556$ 6i $3.7 \pm 0.24$ $204,000 \pm 56,920$ 6j $5.1 \pm 0.1$ $7804 \pm 1876$ WAY-100635 $8.4 \pm 0.12$ $4.3 \pm 0.86$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5i         | $4.8 \pm 0.22$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $13.860 \pm 2059$                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6a         | $5.5 \pm 0.1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $2735 \pm 626$                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6b         | $4.3\pm0.07$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $45.330 \pm 8178$                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6c         | $4.3\pm0.09$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $47,150 \pm 9511$                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6d         | $4.2 \pm 0.11$ 59,890 ± 12,467                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                    |
| 6f $4.3 \pm 0.07$ $46,850 \pm 8125$ 6gnot testednot tested6h $4.3 \pm 0.09$ $47,790 \pm 9556$ 6i $3.7 \pm 0.24$ $204,000 \pm 56,920$ 6j $5.1 \pm 0.1$ $7804 \pm 1876$ WAY-100635 $8.4 \pm 0.12$ $4.3 \pm 0.86$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6e         | $4.0 \pm 0.11 \qquad \qquad 98,950 \pm 15,583$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6f         | $4.3 \pm 0.07 \qquad \qquad 46,850 \pm 8125$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                    |
| 6h $4.3 \pm 0.09$ $47,790 \pm 9556$ 6i $3.7 \pm 0.24$ $204,000 \pm 56,920$ 6j $5.1 \pm 0.1$ $7804 \pm 1876$ WAY-100635 $8.4 \pm 0.12$ $4.3 \pm 0.86$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6g         | not tested not tested                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                    |
| 6i $3.7 \pm 0.24$ $204,000 \pm 56,920$ 6j $5.1 \pm 0.1$ $7804 \pm 1876$ WAY-100635 $8.4 \pm 0.12$ $4.3 \pm 0.86$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6h         | $4.3 \pm 0.09 \qquad \qquad 47,790 \pm 9556$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                    |
| 6j $5.1 \pm 0.1$ $7804 \pm 1876$ WAY-100635 $8.4 \pm 0.12$ $4.3 \pm 0.86$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6i         | $3.7 \pm 0.24$ 204,000 $\pm$ 56,920                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                    |
| WAY-100635 $8.4 \pm 0.12$ $4.3 \pm 0.86$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6j         | $5.1\pm0.1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $7804 \pm 1876$                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | WAY-100635 | $8.4\pm0.12$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $4.3\pm0.86$                                       |

Table 3. Antagonistic activity of compounds for the 5-HT  $_{\rm IA}$  receptor.

Finally, for 8-acetyl-7-hydroxy-4-methylchromen-2-one (**C**) derivatives, all compounds with the five-carbon linker (**5a–5i**) showed higher antagonistic activities than their two-carbon linker counterparts (**6a–6i**), with the exception of 8-acetyl-7-(2-[4-(2-cyanophenyl) piperazin-1-yl]ethoxy)-4-methylchromen-2-one (**6j**), which showed a higher activity ( $EC_{50} = 7804 \pm 1876$  nM) than its analogue, 8-acetyl-7-(5-[4-(2-cyanophenyl)piperazin-1-yl]penthoxy)-4-methylchromen-2-one (**5j**) ( $EC_{50} = 13,860 \pm 2059$  nM). We can speculate that the higher antagonistic activities are a result of a similar structural feature as in the **A** family, due to a different position of the acetyl moiety in the **C** family, which lowers the volume of these derivatives with respect to the **B** family.

There is also a group of compounds with a moderately high 5-HT<sub>1A</sub> antagonistic activity, which consists of 5-(5-(4-(2-fluorophenyl)piperazin-1-yl)pentyloxy)-4,7-dimethyl-2H-chromen-2-one (**1b**), 6-acetyl-5-(5-(4-(2-bromophenyl)piperazin-1-yl)pentyloxy)-4,7-dimethyl-2H-chromen-2-one (**3e**), 6-acetyl-5-(5-(4-(2-bromophenyl)piperazin-1-yl)pentyloxy)-4,7-dimethyl-2H-chromen-2-one (**3f**), 6-acetyl-5-(2-(4-(3-fluorophenyl)piperazin-1-yl)ethoxy)-4,7-dimethyl-2H-chromen-2-one (**4e**) and 6-acetyl-5-(2-(4-(2-cyanophenyl)piperazin-1-yl) ethoxy)-4,7-dimethyl-2H-chromen-2-one (**4e**) and 6-acetyl-5-(2-(4-(2-cyanophenyl)piperazin-1-yl) ethoxy)-4,7-dimethyl-2H-chromen-2-one (**4e**) and 6-acetyl-5-(2-(4-(2-cyanophenyl)piperazin-1-yl) ethoxy)-4,7-dimethyl-2H-chromen-2-one (**4j**) (EC<sub>50</sub> = 980 ± 207 nM, EC<sub>50</sub> = 702 ± 112 nM, EC<sub>50</sub> = 689 ± 138 nM, EC<sub>50</sub> = 527 ± 191 nM, and EC<sub>50</sub> = 538 ± 105 nM, respectively). There is no one particular shared structural feature of this group of compounds as it is composed of both 5-(CH<sub>2</sub>) (**1b**, **3e**, and **3f**) and 2-(CH<sub>2</sub>) (**4e**, **4j**) linkers and various arylpiperazines (2 or 3-fluorophenyl, 2-bromophenyl, or 2-cyanophenyl).

Two compounds, namely 5-(2-(4-(3-fluorophenyl)piperazin-1-yl)ethoxy)-4,7-dimethyl -2H-chromen-2-one (2e) and 5-(4-(4-(3-bromophenyl)piperazin-1-yl)ethoxy)-4,7-dimethyl-2H-chromen-2-one (2g) acted as weak partial agonists at the 5-HT1A receptor. (Table 4). Interestingly, both of these derivatives contain a two-carbon linker between the arylpiperazinyl and the coumarin core and the phenyl ring on the piperazine with a halogen atom in position C-3. In the case of compound 2e (Emax =  $118 \pm 1.48$ ) it is a fluorine atom, while in the case of 2g (Emax =  $118 \pm 6.5$ ) it is a bromine atom.

Table 4. G-protein enhancing effect of compounds 2e and 2f at the 5-HT<sub>1A</sub> receptor.

| Compound | pEC <sub>50</sub> | $EC_{50}$ (nM $\pm$ SEM) | Emax (% $\pm$ SEM) |
|----------|-------------------|--------------------------|--------------------|
| 2e       | $6.7\pm0.25$      | $178.7\pm39.3$           | $118 \pm 1.48$     |
| 2g       | $5.2\pm0.73$      | $5083\pm2636$            | $113\pm 6.5$       |

#### 2.3.2. 5-HT<sub>2A</sub> Receptor Affinity

As, it was shown in our previous studies, coumarin derivatives containing the threecarbon or four-carbon linker between the coumarin and piperazine moieties showed moderate affinities for the 5-HT<sub>2A</sub> receptor [19–21]. As shown in Table 5, arylpiperazinyl derivatives of coumarin containing the two-carbon or five-carbon carbon linkers displayed varied 5-HT<sub>2A</sub> receptor binding, but none of them showed affinities comparable to the reference compound, katanserin (K<sub>i</sub> = 3.6 ± 0.5 nM). The highest binding was found for compounds **5i**, **1j**, and **5g** (K<sub>i</sub> = 51 ± 8.3 nM, 79 ± 18 nM and 81 ± 19 nM, respectively). Compounds **5b**, **5c**, and **5f** showed moderate binding ranging from K<sub>i</sub> = 108 ± 24 nM for compound **5f**, K<sub>i</sub> = 122 ± 43 nM for compound **5b**, to K<sub>i</sub> = 144 ± 38 nM for compound **5c**. The remaining compounds showed weak 5-HT<sub>2A</sub> receptor binding, ranging between K<sub>i</sub> = 291 ± 57 nM for compound **5h** and K<sub>i</sub> = 11,870 ± 3086 nM for compound **4d**.

Table 5. 5-HT<sub>2A</sub> receptor binding of investigated compounds.

| Compound | $pK_i$ (M $\pm$ SEM) | $\mathbf{K_i}$ (nM $\pm$ SEM) |
|----------|----------------------|-------------------------------|
| 1a       | $6.191\pm0.12$       | $776 \pm 187$                 |
| 1b       | $5.90\pm0.2$         | $1263\pm479$                  |
| 1c       | $6.21\pm0.13$        | $610\pm139$                   |
| 1d       | not tested           | not tested                    |
| 1e       | $5.63\pm0.16$        | $2346\pm673$                  |

Table 5. Cont.

| Compound          | $pK_i$ (M $\pm$ SEM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $K_i$ (nM $\pm$ SEM)           |  |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|--|
| 1f                | $5.81 \pm 0.09$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $1548 \pm 323$                 |  |
| 1g                | not tested not tested                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                |  |
| 1h                | $5.74\pm0.14$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $1818\pm 636$                  |  |
| 1i                | $5.84 \pm 0.11$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $1452\pm 653$                  |  |
| <br>1i            | $7.10 \pm 0.12$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $79 \pm 18$                    |  |
| -,<br>2a          | $5.77 \pm 0.15$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $1713 \pm 582$                 |  |
| 2b                | $5.67\pm0.11$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $2129\pm 662$                  |  |
| 2c                | $6.33 \pm 0.10$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $458\pm109$                    |  |
| 2d                | $5.13\pm0.12$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $7321 \pm 2079$                |  |
| 2e                | not tested                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | not tested                     |  |
| 2f                | $5.02\pm0.12$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $9600\pm2841$                  |  |
| 2g                | $5.45\pm0.11$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $3538 \pm 1135$                |  |
| 2h                | $5.53\pm0.13$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $2920\pm992$                   |  |
| 2i                | $5.37\pm0.17$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $4306 \pm 1550$                |  |
| 2j                | $5.25\pm0.14$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $5619 \pm 1854$                |  |
| 3a                | $6.19\pm0.12$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $641 \pm 128$                  |  |
| 3b                | $5.93\pm0.11$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $1223 \pm 166$                 |  |
| 3c                | $6.31\pm0.14$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $492\pm99.7$                   |  |
| 3d                | $5.71\pm0.14$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $1938\pm 388$                  |  |
| 3e                | $5.85\pm0.09$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $1421\pm426.3$                 |  |
| 3f                | $6.45\pm0.09$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $354\pm110$                    |  |
| 3g                | $6.18\pm0.11$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $664 \pm 154$                  |  |
| 3h                | $5.75\pm0.13$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $1796\pm521$                   |  |
| 3i                | $6.31\pm0.09$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $486\pm102$                    |  |
| 3j                | not tested                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | not tested                     |  |
| 4a                | $5.28\pm0.13$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $5214 \pm 1246$                |  |
| 4b                | $5.15\pm0.12$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $7053 \pm 1650$                |  |
| 4c                | $6.29\pm0.15$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $513 \pm 137$                  |  |
| 4d                | $4.93\pm0.14$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $11,\!870 \pm 3086$            |  |
| 4e                | $5.41\pm0.11$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $3859\pm810$                   |  |
| 4f                | $4.97\pm0.16$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $10,\!610\pm 3045$             |  |
| 4g                | $5.40\pm0.07$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $3986\pm745$                   |  |
| 4h                | $5.72\pm0.08$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $1924\pm 382$                  |  |
| <b>4i</b>         | $5.78\pm0.13$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $1642\pm344$                   |  |
| 4j                | $5.61\pm0.04$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $2429\pm374$                   |  |
| 5a                | $6.46\pm0.11$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $343\pm86$                     |  |
| 5b                | $6.91\pm0.17$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $122\pm43$                     |  |
| 5c                | $6.84\pm0.13$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $144\pm38$                     |  |
| 5d                | $5.82\pm0.08$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $1497\pm279$                   |  |
| 5e                | $5.67 \pm 0.09$ $2114 \pm 420$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                |  |
| 5f                | $6.96 \pm 0.10$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $108 \pm 24$                   |  |
| 5g                | $7.09 \pm 0.13$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $81 \pm 19$                    |  |
| 5h                | $6.54 \pm 0.09$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $291 \pm 57$                   |  |
| 51                | $7.20 \pm 0.07$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $51 \pm 8.3$                   |  |
| 51                | $5.59 \pm 0.13$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $2551 \pm 765$                 |  |
| 6a                | $6.12 \pm 0.11$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $752 \pm 171$                  |  |
| 6b                | $5.82 \pm 0.11$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $1509 \pm 344$                 |  |
| 6C                | $6.03 \pm 0.09 																																		$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                |  |
| 60                | $5.69 \pm 0.10$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $2046 \pm 405$                 |  |
| 6e                | $\begin{array}{c} 5.70 \pm 0.00 & 10/1 \pm 2/4 \\ 5.82 \pm 0.08 & 1503 \pm 249 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                |  |
|                   | $5.02 \pm 0.00$ $1503 \pm 268$<br>$5.83 \pm 0.12$ $1494 \pm 466$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |  |
| bg<br>ch          | $5.83 \pm 0.12$ $1494 \pm 466$<br>$6.32 \pm 0.11$ $470 \pm 0.6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                |  |
| оп<br><i>с</i> :  | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                |  |
| 01<br>4:          | $\begin{array}{c} 0.12 \pm 0.11 \\ 6.20 \pm 0.11 \\ 100 \\ 101 \\ 100 \\ 101 \\ 100 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 1$ |                                |  |
| 0j<br>Icotansarin | $0.50 \pm 0.11$<br>8 44 $\pm$ 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $470 \pm 121$<br>$3.6 \pm 0.5$ |  |
| Ketalisellii      | $0.44 \pm 0.07$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $3.0 \pm 0.3$                  |  |

Overall, for the 5-HT<sub>2A</sub> receptor, the group of 8-acetyl-7-hydroxy-4-methylchromen-2-one (C) derivatives with the five-carbon linker (compounds 5a-5j) turned out to be the most promising ones. In this group we found compounds with the highest (5i, 5g) and moderate affinity (5b, 5c, 5f). All derivatives with the five-carbon linker in the remaining families (A nad B) showed rather weak affinities, except 5-(5-(4-(2-cyanophenyl)piperazin-1yl)pentyloxy)-4,7-dimethyl-2H-chromen-2-one (1j), from the 5-hydroxy-4,7-dimethylchromen-2-one (A) group of compounds. All derivatives containing the two-carbon linker also showed rather weak affinities for the 5-HT<sub>2A</sub> receptor. These results indicate that only compounds bearing the (2-cyanophenyl)piperazin-1-yl (1j), (2,2-dichloro)piperazin-1-yl (5i) or (3-bromophenyl)piperazin-1-yl (5g) moieties were able to bind to the 5-HT<sub>2A</sub> with high affinities. The introduction of the 2-cyano group to the phenyl ring of piperazine increased the 5-HT<sub>2A</sub> receptor affinity in the case of 5-hydroxy- 4,7-dimethylchromen-2-one (A). On the other hand, introduction of the same cyano moiety to the phenyl ring of piperazine in 8-acetyl-7-hydroxy-4-methylchromen-2-one (C), drastically decreased binding from  $K_i = 79 \pm 18$  for 1j to  $K_i = 2551 \pm 765$  for 5j. The introduction of the 2,3-dichloro or 3-bromo moiety to phenyl ring of piperazine increased the affinity when the coumarin moiety was 8-acetyl-7-hydroxy-4-methyl chromen-2-one (C). In the case of 5-hydroxy-4,7-dimethyl chromen-2-one (A) and 6-acetyl-5-hydroxy-4,7-dimethylchromen-2-one (B) derivatives, introduction of the 2,3-dichloro or 3-bromo moieties resulted in derivatives with weak 5-HT<sub>2A</sub> receptor affinities as seen for 1i, 2i, 3i, 4i, 6i (K<sub>i</sub> =  $1452 \pm 653$ , K<sub>i</sub> =  $4306 \pm 1550$ ,  $K_i$  = 486 ± 102,  $K_i$  = 1642 ± 344 and  $K_i$  = 755 ± 178, respectively)) and **2g**, **3g**, **4g**, **6g**  $(K_i = 3538 \pm 1135, K_i = 664 \pm 154, K_i = 3986 \pm 745 \text{ and } K_i = 1494 \pm 466, \text{ respectively}).$ Changing the C-3 position of the bromo substituent on the phenyl ring of piperazine to the C-2 position slightly decreased binding affinity from  $K_i = 81 \pm 19$  for 8-acetyl-7-(5-[4-(3bromohenyl)piperazin-1-yl]penthoxy)- -4-methylchromen-2-one (5g) to  $K_i = 108 \pm 24$  for 8-acetyl-7-(5-[4-(2-bromophenyl)piperazin-1-yl]- penthoxy)-4-methyl chromen-2-one (5f). Converting the bromine atom at the C-3 position to a fluorine atom drastically decreased binding affinity from  $K_i = 81 \pm 19$  for **5g** to  $K_i = 2114 \pm 420$  for **5e**. Similarly, the replacement of the cyano group at the C-2 position with a fluoro or bromo moiety at the C-2 position resulted in a decrease in affinity for the 5-HT<sub>2A</sub> receptor, from  $K_i$  = 79 ± 18 for 1j to  $K_i = 1263 \pm 479$  for **1b** and  $K_i = 1548 \pm 323$  for **1f**.

The moderate agreement between the experimental and theoretical  $K_i$  values for  $5HT_{2A}$  receptor warrant a short comment. While the predicted K<sub>i</sub> values for the newly synthesized set of coumarins derivatives are usually in the low nanomolar range, the experimental values are usually closer to micromolar values. The most likely explanation of these discrepancies is the combination of the imperfection of our computational model of the 5HT<sub>2A</sub> receptor, particularly in the binding site part and the limited accuracy of the computational methods. The second problem is very well-known in the scientific community, as it has been shown that while Autodock and other similar programs can identify the correct binding poses, they often have problem is predicting correct bonding affinities [29]. As for the accuracy of homology models of GPCRs, they certainly can be improved by resorting to more sophisticated methods, such as e.g., using multiple templates or going beyond the homology modelling, and we are planning to make use of these new methods in the future [30–32]. Nevertheless the most 2D schematic representations of the predicted binding sites for the selects, most interesting coumarins derivatives are presented in the Supplementary Materials. Taking compound **1** as the example we can suggest, that this compound is able to perfectly fit into the binding site of the 5HT<sub>2A</sub> receptor, keeping the salt bridge to D155, while retaining the coumarin part in the hydrophobic region of the binding site and the piperazine part in the hydrophilic one. This is not true for this compound binding to the  $5HT_{1A}$  receptor, as the salt bridge to D116 forced 1j to move the coumarin part into a more hydrophilic region, lowering the affinity to the receptor. Additionally, 1j in the binding site of the 5HT<sub>2A</sub> receptor is stabilized by two hydrogen bonds and a  $\pi$ - $\pi$ stacking interactions with F340.

#### 3. Materials and Methods

All starting materials were purchased from Aldrich or Merck and used without further purification. Microwave oven Plazmatronika 1000 was used (http://www.plazmatronika. com.pl (accessed on 27 December 2020)). Melting points were determined with ElectroThermal 9001 Digital Melting Point apparatus and are uncorrected. High resolution mass spectra were recorded on Quattro LCT (TOF). <sup>1</sup>H NMR, <sup>13</sup>C NMR spectra in solution were recorded at 25 C with a Varian NMRS-300 spectrometer, and standard Varian software was employed. The calculated shielding constants were used as an aid in an assignment of resonances of <sup>13</sup>C atoms. Chemical shifts d [ppm] were referenced to TMS. TLC was carried out using Kieselgel 60 F254 sheets and spots were visualized by UV e 254 and 365 nm.

#### 3.1. Chemistry

Compounds **1–6** and **1a–1j**, **2a–2j**, **3a–3j**, **4a–4j**, **5a–5j**, **6a–6j** were prepared in accordance with the previously reported procedures [19,33]. Atom numbering, <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra of all synthesized compounds are available in the ESI.

5-(5-bromopentyloxy)-4,7-dimethyl-2H-chromen-2-one (1). Yield 44%; white solid; m.p. 99–101 °C; Rf = 0.86; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, δ, ppm): 6.74 (1H, s, H-8), 6.51 (1H, s, H-6), 6.05 (1H, s, H-3), 4.04 (2H, t, *J* = 8 Hz, H-1'), 3.46 (2H, t, *J* = 8 Hz, H-5'), 2.58 (3H, s, H-10), 2.39 (3H, s, H-9), 2.01–1.85 (4H, m, H-2', H-4'), 1.73–1.60 (2H, m, H-3'); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>, δ, ppm): 161.2 (C-2), 157.4 (C-5), 155.5 (C-4), 154.2 (C-8a), 143.2 (C-7), 113.7 (C-4a), 110.4 (C-6), 108.4 (C-3), 108.0 (C-8), 68.8 (C-1'), 33.6 (C-5'), 33.2 (C-4'), 32.5 (C-2'), 28.4 (C-3'), 25.2 (C-10), 22.2 (C-9); TOF MS ES+: [M+Na]<sup>+</sup> calcd for C<sub>16</sub>H<sub>19</sub>O<sub>3</sub>Na Br (361.0415) found 361.0401.

5-(5-(4-(2-methoxyphenyl)piperazin-1-yl)pentyloxy)-4,7-dimethyl-2H-chromen-2-one (1a). Yield 90%; white solid; m.p. 66–68 °C; Rf = 0.16; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>,  $\delta$ , ppm): 7.03–6.85 (4H, m, H-3", H-4", H-5", H-6"), 6.73 (1H, s, H-8), 6.51 (1H, s, H-6), 6.04 (1H, s, H-3), 4.03 (2H, t, *J* = 10 Hz, H-1'), 3.86 (3H, s, H-7"), 3.11 (4H, br. s., H-3p, H-5p), 2.67 (4H, br. s., H-2p, H-6p), 2.58 (3H, s, H-10), 2.46 (2H, t, *J* = 10 Hz, H-5'), 2.38 (3H, s, H-9), 1.92–1.88 (2H, m, H-2'), 1.64–1.55 (4H, m, H-3', H-4'); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>,  $\delta$ , ppm): 161.2 (C-1"), 157.4 (C-2), 155.5 (C-4), 154.3 (C-5), 152.4 (C-8a), 143.2 (C-7, C-2"), 123.4 (C-6"), 121.2 (H-4"), 118.5 (C-5"), 113.6 (C-4a), 111.4 (C-6), 110.3 (C-3), 108.4 (C-3"), 118.1 (C-8), 68.9 (C-1'), 58.5 (C-3p, C-5p), 55.6 (C-5'), 53.5 (C-7"), 50.2 (C-2p, C-6p), 29.2 (C-2'), 24.7 (C-4'), 24.4 (C-10, C-3'), 22.2 (C-9); TOF MS ES+: [M+H]<sup>+</sup> calcd for C<sub>27</sub>H<sub>35</sub>O<sub>4</sub>N<sub>2</sub> (451.2597) found 451.2583.

5-(5-(4-(2-fluorophenyl)piperazin-1-yl)pentyloxy)-4,7-dimethyl-2H-chromen-2-one (1b). Yield 91%; white solid; m.p. 106–108 °C; Rf = 0.20; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>,  $\delta$ , ppm): 7.09–6.89 (4H, m, H-3", H-4", H-5", H-6"), 6.75 (1H, s, H-8), 6.51 (1H, s, H-6), 6.04 (1H, s, H-3), 4.03 (2H, t, *J* = 8 Hz, H-1'), 3.12 (4H, t, *J* = 6 Hz, H-3p, H-5p), 2.64 (4H, t, *J* = 6 Hz, H-2p, H-6p), 2.58 (3H, s, H-10), 2.45 (2H, t, *J* = 10 Hz, H-5'), 2.38 (3H, s, H-9), 1.94–1.87 (2H, m, H-2'), 1.66–1.52 (4H, m, H-3', H-4'); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>,  $\delta$ , ppm): 161.1 (C-2), 157.5 (C-2"), 157.4 (C-4), 155.5 (C-5), 154.2 (C-8a), 143.2 (C-7), 140.1 (C-1"), 124.7 (C-5"), 122.8 (C-4"), 119.2 (C-3"), 116.4 (C-6"), 116.2 (C-4a), 113.6 (C-6), 110.3 (C-3), 108.0 (C-8), 68.9 (C-1'), 58.5 (C-3p, C-5p), 53.4 (C-5'), 50.4 (C-2p, C-6p), 29.2 (C-2'), 26.4 (C-4'), 24.7 (C-3'), 24.4 (C-10), 22.2 (C-9); TOF MS ES+: [M+H]<sup>+</sup> calcd for C<sub>26</sub>H<sub>32</sub>O<sub>3</sub>N<sub>2</sub>F (439.2397) found 439.2403.

5-(5-(4-(3-methoxyphenyl)piperazin-1-yl)pentyloxy)-4,7-dimethyl-2H-chromen-2-one (1c). Yield 84%; white solid; m.p. 103–105 °C; Rf = 0.31; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, δ, ppm): 7.17 (1H, t, *J* = 12 Hz, H-5″), 6.74 (1H, s, H-8), 6.51–6.43 (4H, m, H-6, H-4″, H-2″, H-6″), 6.04 (1H, s, H-3), 4.03 (2H, t, *J* = 8 Hz, H-1′), 3.79 (3H, s, H-7″), 3.21 (4H, t, *J* = 8 Hz, H-3p, H-5p), 2.62–2.58 (7H, m, H-10, H-2p, H-6p), 2.43 (2H, t, *J* = 8 Hz, H-5′), 2.38 (3H, s, H-9), 1.94–1.85 (2H, m, H-2′), 1.68–1.51 (4H, m, H-3′, H-4′); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>, δ, ppm): 161.2 (C-3″), 160.8 (C-2), 157.4 (C-4), 155.5 (C-5), 154.2 (C-8a, C-1″), 143.2 (C-7), 130.1 (C-5″), 113.6 (C-4a), 110.3 (C-6), 109.2 (C-3), 108.4 (C-4″), 108.0 (C-8), 105.0 (C-6″), 103.0 (C-2″), 68.9 (C-1′), 58.4 (C-3p, C-5p), 55.4 (C-5′), 53.1 (C-7″), 48.7 (C-2p, C-6p), 29.2

(C-2'), 24.8 (C-4', C-3'), 24.4 (C-10), 22.2 (C-9); TOF MS ES+: [M+H]<sup>+</sup> calcd for C<sub>27</sub>H<sub>35</sub>O<sub>4</sub>N<sub>2</sub> (451.2597) found 451.2585.

5-(5-(4-(2,5-dimethylphenyl)piperazin-1-yl)pentyloxy)-4,7-dimethyl-2H-chromen-2-one (1d). Yield 82%; white solid; m.p. 132–134 °C; Rf = 0.29; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>,  $\delta$ , ppm): 7.05 (1H, d, *J* = 12 Hz, H-3"), 6.83–6.78 (2H, m, H-6, H-4"), 6.74 (1H, s, H-6"), 6.52 (1H, s, H-8), 6.05 (1H, s, H-3), 4.04 (2H, t, *J* = 8 Hz, H-1'), 2.95 (4H, t, *J* = 6 Hz, H-3p, H-5p), 2.62–2.59 (7H, m, H-2p, H-6p, H-10), 2.46 (2H, t, *J* = 10 Hz, H-5'), 2.39 (3H, s, H-9), 2.30 (3H, s, H-7"), 2.25 (3H, s, H-8"), 1.93–1.88 (2H, m, H-2'), 1.60–1.55 (4H, m, H-3', H-4'); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>,  $\delta$ , ppm): 161.2 (C-2), 157.4 (C-4), 155.5 (C-5), 154.2 (C-8a, C-1"), 143.2 (C-7), 136.6 (C-5"), 131.1 (C-2"), 129.4 (H-3"), 124.7 (C-4'), 120.3 (C-4a), 113.6 (C-6), 110.3 (C-3), 108.4 (C-6"), 108.0 (C-8), 68.8 (C-1', C-5'), 58.3 (C-3p, C-5p), 51.8 (C-2p, C-6p), 29.1 (C-2'), 24.8 (C-4'), 24.3 (C-3'), 22.2 (C-10), 21.3 (C-9), 17.6 (C-7", C-8"); TOF MS ES+: [M+H]<sup>+</sup> calcd for C<sub>28</sub>H<sub>37</sub>O<sub>3</sub>N<sub>2</sub> (449.2804) found 449.2790.

5-(5-(4-(3-fluorophenyl)piperazin-1-yl)pentyloxy)-4,7-dimethyl-2H-chromen-2-one (1e). Yield 77%; white solid; m.p. 101–102 °C; Rf = 0.28; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>,  $\delta$ , ppm): 7.22–7.14 (1H, m, H-5″), 6.73 (1H, s, H-2″), 6.68–6.51 (4H, m, H-6, H-8, H-4″, H-6″), 6.04 (1H, s, H-3), 4.03 (2H, t, *J* = 8 Hz, H-1′), 3.21 (4H, t, *J* = 6 Hz, H-3p, H-5p), 2.61–2.57 (7H, m, H-10, H-2p, H-6p), 2.43 (2H, t, *J* = 10 Hz, H-5′), 2.38 (3H, s, H-9), 1.92–1.87 (2H, m, H-2′), 1.60–1.54 (4H, m, H-3′, H-4′); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>,  $\delta$ , ppm): 165.7 (C-3″), 161.2 (C-2), 157.5 (C-4), 155.5 (C-5), 154.3 (C-1″), 153.0 (C-8a), 143.2 (C-7), 130.4 (C-5″), 113.6 (C-4a), 111.2 (C-6), 110.3 (C-3), 108.4 (C-6″), 106.2 (C-4″),105.9 (C-8), 102.6 (C-2″), 69.0 (C-1′), 58.6 (C-3p, C-5p), 53.3 (C-5′), 48.8 (C-2p, C-6p), 29.3 (C-2′), 26.8 (C-4′), 24.8 (C-10), 24.5 (C-3′), 22.2 (C-9); TOF MS ES+: [M+H]<sup>+</sup> calcd for C<sub>26</sub>H<sub>32</sub>O<sub>3</sub>N<sub>2</sub>F (439.2386) found 439.2391.

5-(5-(4-(2-bromophenyl)piperazin-1-yl)pentyloxy)-4,7-dimethyl-2H-chromen-2-one (1f). Yield 48%; white solid; m.p. 143–144 °C; Rf = 0.34; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>,  $\delta$ , ppm): 7.56 (1H, dd, *J* = 12 Hz, H-3"), 7.30–7.24 (1H, m, H-5"), 7.05 (1H, dd, *J* = 12 Hz, H-4"), 6.91 (1H, t, *J* = 12 Hz, H-6"), 6.74 (1H, s, H-8), 6.52 (1H, s, H-6), 6.04 (1H, s, H-3), 4.04 (2H, t, *J* = 8 Hz, H-1'), 3.08 (4H, br. s., H-3p, H-5p), 2.66 (4H, br. s., H-2p, H-6p), 2.59 (3H, s, H-10), 2.47 (2H, t, *J* = 10 Hz, H-5'), 2.39 (3H, s, H-9), 1.93–1.88 (2H, m, H-2'), 1.60–1.55 (4H, m, H-3', H-4'); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>,  $\delta$ , ppm): 161.2 (C-2), 157.5 (C-4), 155.5 (C-5), 154.3 (C-8a, C-1"), 143.2 (C-7), 134.0 (C-3"), 128.5 (C-4"), 124.6 (H-5"), 121.2 (C-6", C-2"), 120.0 (C-4a), 113.6 (C-6), 110.3 (C-3), 108.0 (C-8), 69.0 (C-1'), 58.6 (C-3p, C-5p), 53.6 (C-5'), 51.8 (C-2p, C-6p), 29.3 (C-2'), 24.8 (C-4'), 24.5 (C-3', C-10), 22.2 (C-9); TOF MS ES+: [M+H]<sup>+</sup> calcd for C<sub>26</sub>H<sub>32</sub>O<sub>3</sub>N<sub>2</sub>Br (499.1596) found 499.1594.

5-(5-(4-(3-bromophenyl)piperazin-1-yl)pentyloxy)-4,7-dimethyl-2H-chromen-2-one (1g). Yield 66%; white solid; m.p. 107–109 °C; Rf = 0.26; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, δ, ppm): 7.13–7.07 (1H, m, H-4″), 7.03 (1H, t, *J* = 4 Hz, H-5″), 6.96–6.93 (1H, m, H-6″), 6.84–6.81 (1H, m, H-2″), 6.74 (1H, s, H-8), 6.51 (1H, s, H-6), 6.04 (1H, s, H-3), 4.04 (2H, t, *J* = 10 Hz, H-1′), 3.20 (4H, t, *J* = 6 Hz, H-3p, H-5p), 2.61–2.58 (7H, m, H-10, H-2p, H-6p), 2.43 (2H, t, *J* = 8 Hz, H-5′), 2.38 (3H, s, H-9), 1.92–1.87 (2H, m, H-2′), 1.59–1.54 (4H, m, H-3′, H-4′); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>, δ, ppm): 161.2 (C-2), 157.5 (C-4), 155.5 (C-5), 154.3 (C-1″), 152.6 (C-8a), 143.2 (C-7), 130.5 (C-5″), 123.4 (C-3″), 122.4 (C-4″), 118.8 (C-4a), 114.5 (C-6), 113.6 (C-2″), 110.3 (C-6″), 108.4 (C-3), 108.0 (C-8), 69.0 (C-1′), 58.6 (C-3p, C-5p), 53.3 (C-5′), 48.8 (C-2p, C-6p), 29.3 (C-2′), 26.7 (C-4′), 24.8 (C-10), 24.5 (C-3′), 22.2 (C-9); TOF MS ES+: [M+H]<sup>+</sup> calcd for C<sub>26</sub>H<sub>32</sub>O<sub>3</sub>N<sub>2</sub>Br (499.1596) found 439.1612.

5-(5-(4-(3,5-dimethylphenyl)piperazin-1-yl)pentyloxy)-4,7-dimethyl-2H-chromen-2-one (1h). Yield 65%; white solid; m.p. 104–106 °C; Rf = 0.34; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>,  $\delta$ , ppm): 6.74 (1H, s, H-8), 6.56 (2H, s, H-2″, H-6″), 6.52 (2H, s, H-4″, H-6), 6.04 (1H, s, H-3), 4.03 (2H, t, *J* = 8 Hz, H-1′), 3.19 (4H, t, *J* = 8 Hz, H-3p, H-5p), 2.62–2.58 (7H, m, H-2p, H-6p, H-10), 2.43 (2H, t, *J* = 10 Hz, H-5′), 2.38 (3H, s, H-9), 2.27 (6H, s, H-7″, H-8″), 1.92–1.87 (2H, m, H-2′), 1.63–1.54 (4H, m, H-3′, H-4′); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>,  $\delta$ , ppm): 161.2 (C-2), 157.5 (C-4), 155.5 (C-5), 154.3 (C-8a), 151.6 (C-1″), 143.2 (C-7), 136.8 (C-3″, C-5″), 121.9 (C-4″), 114.2 (C-4a), 113.6 (C-2″, C-6″), 110.3 (C-6), 108.4 (C-3), 108.0 (C-8), 69.0 (C-1′), 58.7 (C-3p, C-5p), 53.6 (C-5′), 49.4 (C-2p, C-6p), 29.3 (C-2′), 26.8 (C-4′), 24.8 (C-3′), 24.5 (C-10),

22.2 (C-9), 21.9 (C-7", C-8"); TOF MS ES+: [M+H]<sup>+</sup> calcd for C<sub>28</sub>H<sub>37</sub>O<sub>3</sub>N<sub>2</sub> (449.2804) found 449.2809.

5-(5-(4-(2,3-dichlorophenyl)piperazin-1-yl)pentyloxy)-4,7-dimethyl-2H-chromen-2-one (1i). Yield 62%; white solid; m.p. 162–163 °C; Rf = 0.38; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, δ, ppm): 7.16–7.14 (2H, m, H-4", H-5"), 6.97–6.94 (1H, m, H-6"), 6.74 (1H, s, H-8), 6.52 (1H, s, H-6), 6.05 (1H, s, H-3), 4.04 (2H, t, *J* = 8 Hz, H-1'), 3.09 (4H, t, br. s., H-3p, H-5p), 2.66 (4H, br. s., H-2p, H-6p), 2.59 (3H, s, H-10), 2.47 (2H, t, *J* = 8 Hz, H-5'), 2.39 (3H, s, H-9), 1.93–1.88 (2H, m, H-2'), 1.60–1.57 (4H, m, H-3', H-4'); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>, δ, ppm): 161.2 (C-2), 157.5 (C-4), 155.5 (C-5), 154.3 (C-8a, C-1"), 143.2 (C-7), 134.3 (C-3"), 127.2 (C-5"), 124.9 (C-2"), 118.8 (C-4"), 113.7 (C-6"), 110.3 (C-4a), 108.4 (C-3, C-6), 108.0 (C-8), 69.0 (C-1'), 58.6 (C-3p, C-5p), 53.5 (C-5'), 51.3 (C-2p, C-6p), 29.3 (C-2'), 26.6 (C-4'), 24.8 (C-3'), 24.5 (C-10), 22.2 (C-9); TOF MS ES+: [M+H]<sup>+</sup> calcd for C<sub>26</sub>H<sub>31</sub>O<sub>3</sub>N<sub>2</sub>Cl<sub>2</sub> (489.1712) found 489.1695.

5-(5-(4-(2-cyanophenyl)piperazin-1-yl)pentyloxy)-4,7-dimethyl-2H-chromen-2-one (1j). Yield 84%; cream solid; m.p. 148–149 °C; Rf = 0.32; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>,  $\delta$ , ppm): 7.56 (1H, d, *J* = 8 Hz, H-3"), 7.49 (1H, t, *J* = 10 Hz, H-5"), 7.02–7.00 (2H, m, H-4", H-6"), 6.47 (1H, s, H-8), 6.52 (1H, s, H-6), 6.04 (1H, s, H-3), 4.02 (2H, t, *J* = 8 Hz, H-1'), 3.25 (4H, t, *J* = 6 Hz, H-3p, H-5p), 2.68 (4H, br. s., H-2p, H-6p), 2.58 (3H, s, H-10), 2.47 (2H, t, *J* = 10 Hz, H-5'), 2.39 (3H, s, H-9), 1.93–1.88 (2H, m, H-2'), 1.64–1.55 (4H, m, H-3', H-4'); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>,  $\delta$ , ppm): 161.2 (C-2), 157.5 (C-4), 155.8 (C-5), 155.5 (C-8a), 154.3 (C-1"), 143.2 (C-7), 134.6 (C-5"), 134.0 (C-3"), 122.0 (C-7"), 118.9 (C-4"), 118.6 (C-6"), 113.6 (C-4a), 110.3 (C-6), 108.4 (C-7), 108.0 (C-3), 106.3 (C-8, C-2"), 69.0 (C-1'), 58.5 (C-3p, C-5p), 53.4 (C-5'), 51.6 (C-2p, C-6p), 29.3 (C-3'), 26.6 (C-4'), 24.5 (C-10), 22.2 (C-9); TOF MS ES+: [M+H]<sup>+</sup> calcd for C<sub>27</sub>H<sub>32</sub>O<sub>3</sub>N<sub>3</sub> (446.2444) found 446.2455.

5-(2-bromoethoxy)-4,7-dimethyl-2H-chromen-2-one (2). Yield 25%; white solid; m.p. 121–123 °C; Rf = 0.86; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>,  $\delta$ , ppm): 6.81 (1H, s, H-8), 6.50 (1H, s, H-6), 6.10 (1H, s, H-3), 4.40 (2H, t, *J* = 8 Hz, H-1'), 3.74 (2H, t, *J* = 8 Hz, H-2'), 2.66 (3H, s, H-10), 2.41 (3H, s, H-9); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>,  $\delta$ , ppm): 161.0 (C-2), 156.4 (C-4), 155.6 (C-5), 154.2 (C-8a), 143.2 (C-7), 114.1 (C-4a), 111.2 (C-6, C-3), 107.9 (C-8), 68.8 (C-1'), 29.0 (C-2'), 24.9 (C-10), 22.2 (C-9); TOF MS ES+: [M+Na]<sup>+</sup> calcd for C<sub>13</sub>H<sub>13</sub>O<sub>3</sub>Na Br (318.9946) found 318.9961.

5-(2-(4-(2-methoxyphenyl)piperazin-1-yl)ethoxy)-4,7-dimethyl-2H-chromen-2-one (2a). Yield 70%; cream solid; m.p. 146–148 °C; Rf = 0.72; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, δ, ppm): 7.04–6.86 (4H, m, H-3", H-4", H-5", H-6"), 6.76 (1H, s, H-8), 6.56 (1H, s, H-6), 6.05 (1H, s, H-3), 4.22 (2H, t, *J* = 6 Hz, H-1'), 3.87 (3H, s, H-7"), 3.13 (4H, br. s., H-3p, H-5p), 2.95 (2H, t, *J* = 10 Hz, H-2'), 2.80 (4H, br. s., H-2p, H-6p), 2.62 (3H, s, H-10), 2.39 (3H, s, H-9); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>, δ, ppm): 161.1 (C-1"), 157.2 (C-2), 155.5 (C-4), 154.4 (C-5), 152.5 (C-8a), 143.2 (C-2"), 141.6 (C-7), 123.3 (C-6"), 121.2 (H-5"), 118.4 (C-4", C-3"), 113.7 (C-4a), 111.4 (C-6), 110.6 (C-3), 108.3 (C-8), 66.8 (C-1'), 57.2 (C-3p, C-5p), 55.6 (C-2'), 53.9 (C-7"), 50.8 (C-2p, C-6p), 24.8 (C-10), 22.2 (C-9); TOF MS ES+: [M+Na]<sup>+</sup> calcd for C<sub>24</sub>H<sub>28</sub>O<sub>4</sub>N<sub>2</sub>Na (431.1947) found 431.1954.

5-(2-(4-(2-fluorophenyl)piperazin-1-yl)ethoxy)-4,7-dimethyl-2H-chromen-2-one (2b). Yield 98%; white solid; m.p. 121–123 °C; Rf = 0.82; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>,  $\delta$ , ppm): 7.09–7.01 (2H, m, H-3", H-5"), 6.99–6.90 (2H, m, H-4", H-6"), 6.74 (1H, s, H-8), 6.55 (1H, s, H-6), 6.04 (1H, s, H-3), 4.19 (2H, t, *J* = 8 Hz, H-1'), 3.22–3.20 (4H, m, H-3p, H-5p), 2.93 (2H, t, *J* = 8 Hz, H-2'), 2.77 (4H, t, *J* = 8 Hz, H-2p, H-6p), 2.61 (3H, s, H-10), 2.39 (3H, s, H-9); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>,  $\delta$ , ppm): 161.1 (C-2), 157.5 (C-2"), 157.2 (C-4), 155.4 (C-5), 154.2 (C-8a), 143.2 (C-7), 140.2 (C-1"), 124.7 (C-5"), 124.6 (C-4a), 122.8 (C-4"), 119.1 (C-3'), 116.4 (C-6"), 113.6 (C-6), 110.5 (C-3), 108.5 (C-8), 66.8 (C-1'), 57.2 (C-2'), 53.8 (C-3p, C-5p), 50.7 (C-2p, C-6p), 24.7 (C-10), 22.2 (C-9); TOF MS ES+: [M+Na]<sup>+</sup> calcd for C<sub>23</sub>H<sub>25</sub>O<sub>3</sub>N<sub>2</sub>FNa (419.1747) found 419.1729.

5-(2-(4-(3-methoxyphenyl)piperazin-1-yl)ethoxy)-4,7-dimethyl-2H-chromen-2-one (2c). Yield 89%; cream solid; m.p. 124–125 °C; Rf = 0.70; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, δ, ppm): 7.17 (1H, t, *J* = 16 Hz, H-5"), 6.75 (1H, s, H-8), 6.55–6.53 (2H, m, H-6, H-6"), 6.47–6.41 (2H, m, H-2", H-4"), 6.04 (1H, s, H-3), 4.19 (2H, t, *J* = 8 Hz, H-1'), 3.97 (3H, s, H-7"), 3.53 (4H, t,

 $\begin{aligned} J &= 6 \text{ Hz}, \text{H-3p}, \text{H-5p}, 2.91 (2\text{H}, \text{t}, J = 8 \text{ Hz}, \text{H-2'}), 2.73 (4\text{H}, \text{t}, J = 6 \text{ Hz}, \text{H-2p}, \text{H-6p}), 2.60 (3\text{H}, \text{s}, \text{H-10}), 2.39 (3\text{H}, \text{s}, \text{H-9}); {}^{13}\text{C} \text{ NMR} (75 \text{ MHz}, \text{CDCl}_3, \delta, \text{ppm}): 161.1 (C-3''), 160.8 (C-2), 157.1 (C-4), 155.5 (C-5), 154.3 (C-8a), 152.7 (C-1''), 143.2 (C-7), 129.9 (C-5''), 113.7 (C-4a), 110.6 (C-6), 109.1 (C-3), 108.6 (C-4''), 108.3 (C-8), 104.7 (C-6''), 102.8 (C-2''), 66.8 (C-1'), 57.2 (C-2'), 55.4 (C-3p, C-5p), 53.7 (C-7''), 49.3 (C-2p, C-6p), 24.8 (C-10), 22.2 (C-9); TOF MS ES+: [M+Na]^+ calcd for <math>C_{24}H_{28}O_4N_2Na$  (431.1947) found 431.1929.

5-(2-(4-(2,5-dimethylphenyl)piperazin-1-yl)ethoxy)-4,7-dimethyl-2H-chromen-2-one (2d). Yield 74%; cream solid; m.p. 119–120 °C; Rf = 0.90; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, δ, ppm): 7.05 (1H, d, *J* = 12 Hz, H-3″), 6.83–6.79 (2H, m, H-6″, H-2″), 6.74 (1H, s, H-8), 6.56 (1H, s, H-6), 6.04 (1H, s, H-3), 4.20 (2H, t, *J* = 8 Hz, H-1′), 2.96–2.91 (6H, m, H-3p, H-5p, H-2′), 2.73 (4H, br. s, H-2p, H-6p), 2.62 (3H, s, H-9), 2.39 (3H, s, H-10), 2.30 (3H, s, H-7′), 2.26 (3H, s, H-8″); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>, δ, ppm): 161.1 (C-2), 157.2 (C-4), 155.5 (C-5), 154.4 (C-8a), 151.3 (C-1″), 143.2 (C-7), 136.3 (C-5″), 131.1 (C-2″), 129.4 (H-3″), 124.0 (C-4″), 119.9 (C-4a), 113.7 (C-6″), 110.5 (C-6), 108.6 (C-3), 108.3 (C-8), 66.8 (C-1′), 57.2 (C-2′), 54.3 (C-3p, C-5p), 51.9 (C-2p, C-6p), 24.7 (C-10), 22.2 (C-9), 21.4 (C-8″), 17.6 (C-7″); TOF MS ES+: [M+Na]<sup>+</sup> calcd for C<sub>25</sub>H<sub>30</sub>O<sub>3</sub>N<sub>2</sub>Na (429.2154) found 429.2164.

5-(2-(4-(3-fluorophenyl)piperazin-1-yl)ethoxy)-4,7-dimethyl-2H-chromen-2-one (2e). Yield 90%; brown solid; m.p. 120–122 °C; Rf = 0.80; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>,  $\delta$ , ppm): 7.19 (1H, q, H-5″), 6.74 (1H, s, H-2″), 6.69–6.60 (2H, m, H-8, H-6″), 6.55–6.49 (2H, m, H-6, H-4″), 6.03 (1H, s, H-3), 4.18 (2H, t, *J* = 6 Hz, H-1′), 3.22 (4H, t, *J* = 6 Hz, H-3p, H-5p), 2.91 (2H, t, *J* = 8 Hz, H-2′), 2.72 (4H, t, *J* = 6 Hz, H-2p, H-6p), 2.60 (3H, s, H-10), 2.39 (3H, s, H-10); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>,  $\delta$ , ppm): 165.6 (C-3″), 162.4 (C-2), 161.1 (C-4), 155.5 (C-5), 154.3 (C-1″), 153.0 (C-8a), 143.2 (C-7), 130.4 (C-5″), 113.7 (C-4a), 111.3 (C-6), 110.5 (C-3), 108.5 (C-4″), 108.3 (C-6″),106.3 (C-8), 103.0 (C-2″), 66.7 (C-1′), 57.1 (C-2′), 53.5 (C-3p, C-5p), 48.8 (C-2p, C-6p), 24.7 (C-10), 22.1 (C-9); TOF MS ES+: [M+Na]<sup>+</sup> calcd for C<sub>23</sub>H<sub>25</sub>O<sub>3</sub>N<sub>2</sub>FNa (419.1747) found 419.1761.

5-(2-(4-(2-bromophenyl)piperazin-1-yl)ethoxy)-4,7-dimethyl-2H-chromen-2-one (2f). Yield 75%; yellow solid; m.p. 129–130 °C; Rf = 0.93; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, δ, ppm): 7.56 (1H, dd,  $J_1$  = 4 Hz,  $J_2$  = 12 Hz, H-3″), 7.30–7.25 (1H, m, H-5″), 7.10–7.04 (1H, m, H-4″), 6.95–6.89 (1H, m, H-6″), 6.76 (1H, s, H-8), 6.56 (1H, s, H-6), 6.06 (1H, s, H-3), 4.21 (2H, t, J = 8 Hz, H-1′), 3.10 (4H, br. s., H-3p, H-5p), 2.95 (2H, t, J = 6 Hz, H-2′), 2.79 (4H, br. s., H-2p, H-6p), 2.62 (3H, s, H-10), 2.40 (3H, s, H-9); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>, δ, ppm): 161.1 (C-2), 157.0 (C-4), 155.5 (C-5), 154.2 (C-1″), 150.4 (C-8a), 146.9 (C-7), 143.3 (C-3″), 134.1 (C-4″), 128.6 (H-5″), 124.9 (C-6″), 121.2 (C-2″), 120.1 (C-4a), 113.9 (C-6), 110.8 (C-3), 108.6 (C-8), 66.6 (C-1′), 57.1 (C-2′), 53.9 (C-3p, C-5p), 51.5 (C-2p, C-6p), 24.8 (C-10), 22.2 (C-9); TOF MS ES+: [M+Na]<sup>+</sup> calcd for C<sub>23</sub>H<sub>25</sub>O<sub>3</sub>N<sub>2</sub>BrNa (479.0946) found 479.0930.

5-(4-(4-(3-bromophenyl)piperazin-1-yl)ethoxy)-4,7-dimethyl-2H-chromen-2-one (2g). Yield 69%; cream solid; m.p. 126–127 °C; Rf = 0.78; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>,  $\delta$ , ppm): 7.13–7.07 (1H, m, H-4″), 7.07–7.02 (1H, m, H-5″), 6.97–9.94 (1H, m, H-6″), 6.84–6.81 (1H, m, H-2″), 6.74 (1H, s, H-8), 6.54 (1H, s, H-6), 6.03 (1H, s, H-3), 4.18 (2H, t, *J* = 8 Hz, H-1′), 3.21 (4H, t, *J* = 6 Hz, H-3p, H-5p), 2.90 (2H, t, *J* = 8 Hz, H-2′), 2.71 (4H, t, *J* = 6 Hz, H-2p, H-6p), 2.59 (3H, s, H-10), 2.39 (3H, s, H-9); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>,  $\delta$ , ppm): 161.1 (C-2), 157.1 (C-4), 154.5 (C-5), 154.3 (C-1″), 152.5 (C-8a), 143.2 (C-7), 130.7 (C-5″), 123.4 (C-3″), 122.5 (C-4″), 119.9 (C-4a), 118.9 (C-6), 115.6 (C-2″), 114.6 (C-6″), 110.5 (C-3), 108.3 (C-8), 66.7 (C-1′), 57.1 (C-2′), 53.5 (C-3p, C-5p), 48.9 (C-2p, C-6p), 24.7 (C-10), 22.2 (C-9); TOF MS ES+: [M+Na]<sup>+</sup> calcd for C<sub>23</sub>H<sub>25</sub>O<sub>3</sub>N<sub>2</sub>BrNa (479.0946) found 479.0956.

5-(2-(4-(3,5-dimethylphenyl)piperazin-1-yl)ethoxy)-4,7-dimethyl-2H-chromen-2-one (2h). Yield 54%; white solid; m.p. 149–150 °C; Rf = 0.90; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>,  $\delta$ , ppm): 6.78 (2H, s, H-2", H-6"), 6.47 (2H, s H-6, H-8), 6.07 (2H, s, H-4", H-3), 4.40–4.33 (6H, m, H-1', H-3p, H-5p), 3.73 (4H, t, *J* = 8 Hz, H-2p, H-6p), 3.51 (2H, t, *J* = 8 Hz, H-2'), 2.64 (6H, s, H-10, H-9), 2.39 (6H, s, H-7", H-8"); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>,  $\delta$ , ppm): 161.00 (C-2), 156.4 (C-4), 155.6 (C-5), 154.2 (C-8a), 154.0 (C-1"), 143.2 (C-7, C-3", C-5"), 113.9 (C-4"), 111.1 (C-4a), 108.5 (C-2"), 108.4 (C-6"), 108.0 (C-6, C-3), 107.9 (C-8), 69.7 (C-1'), 68.8 (C-2'), 29.1

(C-3p, C-5p), 25.2 (C-2p, C-6p), 24.9 (C-10, C-9), 22.2 (C-7", C-8"); TOF MS ES+: [M+Na]<sup>+</sup> calcd for C<sub>25</sub>H<sub>30</sub>O<sub>3</sub>N<sub>2</sub>Na (429.2154) found 429.2165.

5-(2-(4-(2,3-dichlorophenyl)piperazin-1-yl)ethoxy)-4,7-dimethyl-2H-chromen-2-one (2i). Yield 72%; ceram solid; m.p. 142–145 °C; Rf = 0.70; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>,  $\delta$ , ppm): 7.18–7.12 (2H, m, H-4″, H-3″), 6.97–6.94 (1H, m, H-2″), 6.76 (1H, s, H-8), 6.56 (1H, s, H-6), 6.05 (1H, s, H-3), 4.20 (2H, t, *J* = 8 Hz, H-1′), 3.09 (4H, t, br. s., H-3p, H-5p), 2.95 (2H, t, *J* = 8 Hz, H-2′), 2.78 (4H, br. s., H-2p, H-6p), 2.55 (3H, s, H-10), 2.39 (3H, s, H-9); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>,  $\delta$ , ppm): 161.1 (C-2), 157.2 (C-4), 155.5 (C-5), 154.3 (C-8a), 151.2 (C-1″), 143.2 (C-7), 134.3 (C-3″), 127.7 (C-5″), 124.9 (C-2″), 118.8 (C-3″, C-6″), 113.8 (C-4a), 110.6 (C-6), 108.6 (C-3), 108.3 (C-8), 66.8 (C-1′), 57.2 (C-2′), 53.8 (C-3p, C-5p), 51.5 (C-2p, C-6p), 24.8 (C-10), 22.2 (C-9); TOF MS ES+: [M+Na]<sup>+</sup> calcd for C<sub>23</sub>H<sub>24</sub>O<sub>3</sub>N<sub>2</sub>Cl<sub>2</sub>Na (469.1062) found 469.1068.

5-(2-(4-(2-cyanophenyl)piperazin-1-yl)ethoxy)-4,7-dimethyl-2H-chromen-2-one (2j). Yield 74%; cream solid; m.p. 127–129 °C; Rf = 0.32; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, δ, ppm): 7.58–7.47 (2H, m, H-3", H-5"), 7.05–7.01 (2H, m, H-4", H-6"), 6.75 (1H, s, H-8), 6.56 (1H, s, H-6), 6.05 (1H, s, H-3), 4.20 (2H, t, *J* = 8 Hz, H-1'), 3.26 (4H, t, *J* = 6 Hz, H-3p, H-5p), 2.95 (2H, t, *J* = 8 Hz, H-2'), 2.81 (4H, t, *J* = 6 Hz, H-2p, H-6p), 2.62 (3H, s, H-10), 2.40 (3H, s, H-9); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>, δ, ppm): 161.1 (C-2), 157.2 (C-4), 155.7 (C-5), 155.5 (C-8a), 154.4 (C-1"), 143.2 (C-7), 134.5 (C-5"), 134.0 (C-3"), 122.1 (C-7"), 118.9 (C-4"), 118.6 (C-6"), 113.7 (C-4a), 110.5 (C-6), 108.6 (C-3), 108.3 (C-8a), 106.3 (C-2"), 66.7 (C-1'), 57.0 (C-2'), 53.6 (C-3p, C-5p), 51.7 (C-2p, C-6p), 24.7 (C-10), 22.2 (C-9); TOF MS ES+: [M+Na]<sup>+</sup> calcd for C<sub>24</sub>H<sub>25</sub>O<sub>3</sub>N<sub>3</sub>Na (426.1794) found 426.1779.

6-acetyl-5-(5-bromopentyloxy)-4,7-dimethyl-2H-chromen-2-one (3). Yield 89%; white solid; m.p. 78–80 °C; Rf = 0.84; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, δ, ppm): 6.97 (1H, s, H-8), 6.18 (1H, s, H-3), 3.82 (2H, t, *J* = 8.8 Hz, H-1'), 3.43 (2H, t, *J* = 8.8 Hz, H-5'), 2.59 (3H, s, H-12), 2.54 (3H, s, H-10), 2.29 (3H, s, H-9), 1.96–1.86 (2H, m, H-2'), 1.83–1.73 (2H, m, H-4'), 1.62–1.52 (2H, m, H-3'); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>, δ, ppm): 204.5 (C-11), 160.0 (C-2), 154.7 (C-5), 154.2 (C-4), 152.0 (C-8a), 139.2 (C-7), 133.5 (C-6), 116.0 (C-3), 115.2 (C-8), 112.5 (C-4a), 78.0 (C-1'), 33.3 (C-5'), 32.6 (C-12), 32.3 (C-4'), 29.0 (C-2'), 24.5 (C-3'), 22.5 (C-10), 19.3 (C-9); TOF MS ES+: [M+Na]<sup>+</sup> calcd for C<sub>18</sub>H<sub>21</sub>O<sub>4</sub>BrNa (403.021) found 403.0506

6-acetyl-5-(5-(4-(2-methoxyphenyl)piperazin-1-yl)pentyloxy)-4,7-dimethyl-2H-chromen-2-one (3a). Yield 79%; oil; Rf = 0.18; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>,  $\delta$ , ppm): 7.00–6.85 (5H, m, H-3", H-4", H-5", H-6", H-8), 6.18 (1H, s, H-3), 3.87 (3H, s, H-7"), 3.82 (2H, t, *J* = 6.6 Hz, H-1'), 3.11 (4H, br. s., H-3p, H-5p), 2.67 (4H, br. s., H-2p, H-6p), 2.60 (3H, s, H-12), 2.55 (3H, s, H-10), 2.44 (2H, t, *J* = 10 Hz, H-5'), 2.29 (3H, s, H-9), 1.84–1.75 (2H, m, H-2'), 1.64–1.54 (2H, m, H-4'), 1.49–1.41 (2H, m, H-3'); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>,  $\delta$ , ppm): 204.7 (C-11), 161.2 (C-1"), 154.9 (C-2), 154.5 (C-4), 152.5 (C-5), 152.3 (C-8a), 141.4 (C-7), 139.4 (C-2"), 133.6 (C-6"), 123.2 (H-4"), 121.2 (C-5"), 118.4 (C-6), 116.1 (C-3), 115.3 (C-8), 112.7 (C-3"), 111.4 (C-4a), 78.6 (C-1'), 58.7 (C-3p, C-5p), 55.6 (C-5'), 53.7 (C-7"), 50.7 (C-2p, C-6p), 32.7 (C-12), 30.0 (C-2'), 26.7 (C-4'), 24.0 (C-10), 22.8 (C-3'), 19.5 (C-9); TOF MS ES+: [M+H]<sup>+</sup> calcd for C<sub>29</sub>H<sub>37</sub>O<sub>5</sub>N<sub>2</sub> (493.2702) found 493.2704.

6-acetyl-5-(5-(4-(2-fluorophenyl)piperazin-1-yl)pentyloxy)-4,7-dimethyl-2H-chromen-2-one (3b). Yield 76%; cream solid; m.p. 137–139 °C; Rf = 0.32; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, δ, ppm): 7.08–6.90 (5H, m, H-3", H-4", H-5", H-6", H-8), 6.18 (1H, s, H-3), 3.82 (2H, t, *J* = 8 Hz, H-1'), 3.13 (4H, t, *J* = 6 Hz, H-3p, H-5p), 2.65 (4H, t, *J* = 6 Hz, H-2p, H-6p), 2.60 (3H, s, H-12), 2.55 (3H, s, H-10), 2.43–2.40 (2H, m, H-5'), 2.29 (3H, s, H-9), 1.82–1.77 (2H, m, H-2'), 1.59–1.56 (2H, m, H-4'), 1.46–1.44 (2H, m, H-3'); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>, δ, ppm): 204.6 (C-11), 160.2 (C-2), 157.5 (C-5), 154.8 (C-4), 154.5 (C-2"), 154.3 (C-8a), 152.3 (C-7), 140.3 (C-1"), 139.4 (C-5"), 133.6 (C-4"), 124.6 (C-3"), 122.6 (C-6"), 119.1 (C-6), 116.4 (C-3), 155.3 (C-4a), 115.3 (C-8), 78.5 (C-1'), 58.6 (C-3p, C-5p), 53.5 (C-5'), 50.6 (C-2p, C-6p), 32.7 (C-12), 29.9 (C-2'), 26.7 (C-4'), 24.0 (C-3'), 22.7 (C-10), 19.5 (C-9); TOF MS ES+: [M+H]<sup>+</sup> calcd for C<sub>28</sub>H<sub>34</sub>O<sub>4</sub>N<sub>2</sub>F (481.2503) found 481.2517.

6-acetyl-5-(5-(4-(3-methoxyphenyl)piperazin-1-yl)pentyloxy)-4,7-dimethyl-2H-chromen-2-one (3c). Yield 83%; white solid; m.p. 86–88 °C; Rf = 0.28; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>,  $\delta$ ,

ppm): 7.17 (1H, t, J = 12 Hz, H-5"), 6.97 (1H, s, H-8), 6.47 (1H, d, J = 12 Hz, H-6"), 6.46–6.40 (2H, m, H-2", H-4"), 6.17 (1H, s, H-3), 3.84–3.79 (5H, m, H-7", H-1'), 3.21 (4H, t, J = 5.3 Hz, H-3p, H-5p), 2.60 (7H, br. s., H-12, H-2p, H-6p), 2.55 (3H, s, H-10), 2.41 (2H, t, J = 10 Hz, H-5'), 2.29 (3H, s, H-9), 1.84–1.75 (2H, m, H-2'), 1.64–1.54 (2H, m, H-4')1.49–1.39 (2H, m, H-3'); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>,  $\delta$ , ppm): 204.6 (C-11), 160.8 (C-3"), 160.2 (C-2), 154.8 (C-4), 154.5 (C-5), 152.8 (C-8a), 152.2 (C-1"), 139.4 (C-7), 133.6 (C-5"), 129.9 (C-6), 116.0 (C-3), 115.2 (C-8), 112.7 (C-4"), 109.0 (C-4a), 104.6 (C-6"), 102.7 (C-2"), 78.5 (C-1'), 58.6 (C-3p, C-5p), 55.4 (C-7"), 53.4 (C-5'), 49.2 (C-2p, C-6p), 32.7 (C-12), 29.9 (C-2'), 26.8 (C-4'), 23.9 (C-10), 22.7 (C-3'), 19.5 (C-9); TOF MS ES+: [M+H]<sup>+</sup> calcd for C<sub>29</sub>H<sub>37</sub>O<sub>5</sub>N<sub>2</sub> (493.2702) found 493.2713.

6-acetyl-5-(5-(4-(2,5-dimethylphenyl)piperazin-1-yl)pentyloxy)-4,7-dimethyl-2H-chromen-2-one (3d). Yield 75%; cream solid; m.p. 97–99 °C; Rf = 0.20; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>,  $\delta$ , ppm): 7.05 (1H, d, *J* = 8 Hz, H-3"), 6.97 (1H, s, H-8), 6.83–6.78 (2H, m, H-4", H-6"), 6.18 (1H, s, H-3), 3.82 (2H, t, *J* = 10 Hz, H-1'), 2.94 (4H, t, *J* = 6 Hz, H-3p, H-5p), 2.60 (7H, br. s, H-2p, H-6p, H-12), 2.55 (3H, s, H-10), 2.43 (2H, t, *J* = 10 Hz, H-5'), 2.29 (6H, s, H-9, H-7"), 2.25 (3H, s, H-8"), 1.85–1.75 (2H, m, H-2'), 1.64–1.54 (2H, m, H-4'), 1.49–1.39 (2H, m, H-3'); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>,  $\delta$ , ppm): 204.6 (C-11), 160.2 (C-2), 154.9 (C-4), 154.6 (C-5), 152.3 (C-8a), 151.5 (C-1"), 139.4 (C-7), 136.2 (C-5"), 133.6 (C-2"), 131.0 (H-3"), 129.4 (C-4"), 123.9 (C-6), 119.9 (C-6"), 116.0 (C-3), 115.3 (C-8), 112.7 (C-4a), 78.6 (C-1'), 58.7 (C-5'), 54.0 (C-3p, C-5p), 51.8 (C-2p, C-6p), 32.7 (C-12), 29.9 (C-2'), 26.8 (C-4'), 24.0 (C-9), 22.7 (C-3'), 21.4 (C-10), 19.5 (C-7"), 17.6 (C-8"); TOF MS ES+: [M+H]<sup>+</sup> calcd for C<sub>30</sub>H<sub>39</sub>O<sub>4</sub>N<sub>2</sub> (491.2910) found 491.2898.

6-acetyl-5-(5-(4-(3-fluorophenyl)piperazin-1-yl)pentyloxy)-4,7-dimethyl-2H-chromen-2-one (3e). Yield 68%; white solid; m.p. 150–152 °C; Rf = 0.27; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, δ, ppm): 7.22–7.14 (1H, m, H-5″), 6.97 (1H, s, H-8), 6.68–6.52 (3H, m, H-2″, H-4″, H-6″), 6.17 (1H, s, H-3), 3.82 (2H, t, *J* = 8 Hz, H-1′), 3.21 (4H, t, *J* = 6 Hz, H-3p, H-5p), 2.58 (7H, br. s., H-12, H-2p, H-6p), 2.55 (3H, s, H-10), 2.41 (2H, t, *J* = 10 Hz, H-5′), 2.29 (3H, s, H-9), 1.84–1.75 (2H, m, H-2′), 1.63–1.39 (4H, m, H-3′, H-4′); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>, δ, ppm): 204.6 (C-11), 165.3 (C-3″), 162.4 (C-2), 160.2 (C-5), 154.8 (C-4), 153.0 (C-1″), 152.2 (C-8a), 139.3 (C-7), 133.6 (C-5″), 116.1 (C-6), 112.7 (C-3), 111.3 (C-8), 106.3 (C-4a), 106.0 (C-6″), 103.1 (C-4″), 102.7 (C-2″), 78.5 (C-1′), 58.4 (C-3p, C-5p), 53.1 (C-5′), 48.6 (C-2p, C-6p), 32.7 (C-12), 29.9 (C-2′), 26.5 (C-4′), 23.9 (C-10), 22.7 (C-3′), 19.5 (C-9); TOF MS ES+: [M+H]<sup>+</sup> calcd for C<sub>28</sub>H<sub>34</sub>O<sub>4</sub>N<sub>2</sub>F (481.2503) found 481.2492.

6-acetyl-5-(5-(4-(2-bromophenyl)piperazin-1-yl)pentyloxy)-4,7-dimethyl-2H-chromen-2-one (3f). Yield 51.8%; cream solid; m.p. 108–109 °C; Rf = 0.31; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, δ, ppm): 7.55 (1H, d, *J* = 12 Hz, H-3"), 7.27 (1H, t, *J* = 12 Hz, H-5"), 7.06 (1H, d, *J* = 12 Hz, H-6"), 6.97 (1H, s, H-8), 6.91 (1H, t, *J* = 10 Hz, H-4"), 6.18 (1H, s, H-3), 3.82 (2H, t, *J* = 10 Hz, H-1'), 3.09 (4H, br. s., H-3p, H-5p), 2.66 (4H, br. s., H-2p, H-6p), 2.60 (3H, s, H-12), 2.55 (3H, s, H-10), 2.44 (2H, t, *J* = 10 Hz, H-5'), 2.29 (3H, s, H-9), 1.85–1.75 (2H, m, H-2'), 1.64–1.42 (4H, m, H-3', H-4'); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>, δ, ppm): 204.6 (C-11), 160.1 (C-2), 154.8 (C-4), 154.5 (C-5), 152.2 (C-8a), 150.6 (C-1"), 139.4 (C-7), 133.9 (C-3"), 133.6 (C-4"), 128.5 (H-5"), 124.7 (C-6"), 121.2 (C-2"), 120.0 (C-6), 116.0 (C-3), 115.3 (C-8), 112.7 (C-4a), 78.5 (C-1'), 58.5 (C-3p, C-5p), 53.5 (C-5'), 51.5 (C-2p, C-6p), 32.7 (C-12), 29.9 (C-2'), 26.5 (C-4'), 23.9 (C-3'), 22.7 (C-10), 19.5 (C-9); TOF MS ES+: [M+H]<sup>+</sup> calcd for C<sub>28</sub>H<sub>34</sub>O<sub>4</sub>N<sub>2</sub>Br (541.1702) found 541.1720.

6-acetyl-5-(5-(4-(3-bromophenyl)piperazin-1-yl)pentyloxy)-4,7-dimethyl-2H-chromen-2-one (3g). Yield 43%; cream solid; m.p. 100–102 °C; Rf = 0.40; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, δ, ppm): 7.13–6.94 (4H, m, H-2", H-4", H-5", H-8), 6.83 (1H, d, *J* = 6 Hz, H-6"), 6.18 (1H, s, H-3), 3.82 (2H, t, *J* = 10 Hz, H-1'), 3.21 (4H, t, *J* = 6 Hz, H-3p, H-5p), 2.60 (7H, br. s., H-12, H-2p, H-6p), 2.55 (3H, s, H-10), 2.41 (2H, t, *J* = 10 Hz, H-5'), 2.30 (3H, s, H-9), 1.85–1.75 (2H, m, H-2'), 1.64–1.42 (4H, m, H-3', H-4'); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>, δ, ppm): 204.6 (C-11), 160.2 (C-2), 154.9 (C-4), 155.5 (C-5), 152.2 (C-1", C-8a), 139.3 (C-7), 133.6 (C-5"), 130.5 (C-3"), 123.4 (C-4"), 122.6 (C-6), 118.9 (C-2"), 116.1 (C-6"),115.3 (C-3), 114.6 (C-8), 112.7 (C-4a), 78.4 (C-1'), 58.4 (C-3p, C-5p), 53.1 (C-5'), 48.6 (C-2p, C-6p), 32.7 (C-12), 29.9 (C-2'), 26.5 (C-4'), 23.9 (C-10), 22.7 (C-3'), 19.5 (C-9); TOF MS ES+: [M+H]<sup>+</sup> calcd for C<sub>28</sub>H<sub>34</sub>O<sub>4</sub>N<sub>2</sub>Br (541.1702) found 541.1701.

18 of 28

6-acetyl-5-(5-(4-(3,5-dimethylphenyl)piperazin-1-yl)pentyloxy)-4,7-dimethyl-2H-chromen-2-one (3h). Yield 83%; cream solid; m.p. 100–102 °C; Rf = 0.33; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, δ, ppm): 6.97 (1H, s, H-8), 6.56 (2H, s, H-2", H-6"), 6.52 (1H, s, H-4"), 6.18 (1H, s, H-3), 3.81 (2H, t, *J* = 10 Hz, H-1'), 3.20 (4H, t, *J* = 10 Hz, H-3p, H-5p), 2.59 (7H, br. s, H-2p, H-6p, H-12), 2.54 (3H, s, H-10), 2.41 (2H, t, *J* = 10 Hz, H-5'), 2.29 (3H, s, H-9), 2.27 (6H, s, H-7", H-8"), 1.84–1.75 (2H, m, H-2'), 1.64–1.54 (2H, m, H-4'), 1.48–1.41 (2H, m, H3'); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>, δ, ppm): 204.6 (C-11), 160.2 (C-2), 154.9 (C-5), 154.5 (C-4), 152.3 (C-8a), 151.6 (C-1"), 139.4 (C-7), 138.8 (C-5"), 133.6 (C-3"), 121.9 (C-4"), 116.1 (C-6", C-2"), 115.3 (C-6), 114.3 (C-3, C-8), 112.7 (C-4a), 78.5 (C-1'), 58.6 (C-3p, C-5p), 53.5 (C-5'), 49.4 (C-2p, C-6p), 32.7 (C-12), 29.9 (C-2'), 26.8 (C-4'), 24.0 (C-10), 22.8 (C-9), 21.8 (C-3'), 19.5 (C-7", C-8"); TOF MS ES+: [M+H]<sup>+</sup> calcd for C<sub>30</sub>H<sub>39</sub>O<sub>4</sub>N<sub>2</sub> (491.2910) found 491.2918.

6-acetyl-5-(5-(4-(2,3-dichlorophenyl)piperazin-1-yl)pentyloxy)-4,7-dimethyl-2H-chromen-2-one (3i). Yield 64%; white solid; m.p. 129–130 °C; Rf = 0.38; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, δ, ppm): 7.16–7.11 (2H, m, H-4″, H-5″), 6.97–6.95 (2H, m, H-6″, H-8), 6.18 (1H, s, H-3), 3.82 (2H, t, *J* = 8 Hz, H-1′), 3.09 (4H, t, br. s., H-3p, H-5p), 2.65 (4H, br. s., H-2p, H-6p), 2.60 (3H, s, H-12), 2.55 (3H, s, H-10), 2.44 (2H, t, *J* = 10 Hz, H-5′), 2.29 (3H, s, H-9), 1.85–1.75 (2H, m, H-2′), 1.64–1.54 (2H, m, H-4′), 1.49–1.41 (2H, m, H-3′); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>, δ, ppm): 204.7 (C-11), 160.2 (C-2), 154.9 (C-5), 154.5 (C-4), 152.3 (C-8a), 139.4 (C-1″), 134.2 (C-7), 133.6 (C-3″), 127.7 (C-5″), 124.9 (C-2″), 118.8 (C-4″), 116.1 (C-6″, C-6), 115.3 (C-3, C-8), 112.7 (C-4a), 78.5 (C-1′), 58.6 (C-3p, C-5p), 53.5 (C-5′), 51.4 (C-2p, C-6p), 32.7 (C-12), 29.9 (C-2′), 23.9 (C-4′), 22.8 (C-3′, C-10), 19.5 (C-9); TOF MS ES+: [M+H]<sup>+</sup> calcd for C<sub>28</sub>H<sub>33</sub>O<sub>4</sub>N<sub>2</sub>Cl<sub>2</sub> (531.1817) found 531.1835.

6-acetyl-5-(5-(4-(2-cyanophenyl)piperazin-1-yl)pentyloxy)-4,7-dimethyl-2H-chromen-2-one (3j). Yield 67%; brown solid; m.p. 116–118 °C; Rf = 0.38; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, δ, ppm): 7.58–7.46 (2H, m, H-3", H-5"), 7.03–6.97 (3H, m, H-8, H-4", H-6"), 6.18 (1H, s, H-3), 3.82 (2H, t, *J* = 8 Hz, H-1'), 3.26 (4H, t, *J* = 6 Hz, H-3p, H-5p), 2.69 (4H, t, *J* = 6 Hz, H-2p, H-6p), 2.60 (3H, s, H-12), 2.55 (3H, s, H-10), 2.45 (2H, t, *J* = 10 Hz, H-5'), 2.29 (3H, s, H-9), 1.85–1.75 (2H, m, H-2'), 1.64–1.54 (2H, m, H-4'), 1.49–1.39 (2H, m, H-3'); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>, δ, ppm): 204.6 (C-11), 160.2 (C-2), 155.8 (C-4), 154.8 (C-5), 154.5 (C-8a), 152.3 (C-1"), 139.4 (C-7), 134.5 (C-5"), 134.0 (C-3"), 133.6 (C-7"), 121.9 (C-4"), 118.8 (C-6"), 118.6 (C-6), 116.1 (C-3), 115.3 (C-8), 112.7 (C-4a), 106.2 (C-2"), 78.5 (C-1'), 58.4 (C-3p, C-5p), 53.9 (C-5'), 51.6 (C-2p, C-6p), 32.7 (C-12), 29.9 (C-2'), 26.7 (C-4'), 23.9 (C-10), 22.8 (C-3'), 21.5 (C-9); TOF MS ES+: [M+H]<sup>+</sup> calcd for C<sub>29</sub>H<sub>34</sub>O<sub>4</sub>N<sub>3</sub> (488.2549) found 488.2537.

6-acetyl-5-(2-bromoethoxy)-4,7-dimethyl-2H-chromen-2-one (4). Yield 50%; white solid; m.p. 168–169 °C; Rf = 0.85; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, δ, ppm): 7.26 (1H, s, H-8), 6.20 (1H, s, H-3), 4.15 (2H, t, *J* = 8 Hz, H-1'), 3.57 (2H, t, *J* = 8 Hz, H-2'), 2.62 (3H, s, H-12), 2.58 (3H, s, H-10), 2.30 (3H, s, H-9); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>, δ, ppm): 204.7 (C-11), 160.0 (C-2), 154.7 (C-5), 153.0 (C-3), 151.8 (C-8a), 139.4 (C-7), 133.7 (C-6), 116.5 (C-3), 115.9 (C-8), 112.7 (C-4a), 77.4 (C-1'), 33.1 (C-12), 28.9 (C-2'), 22.9 (C-10), 19.5 (C-9); TOF MS ES+: [M+Na]<sup>+</sup> calcd for C<sub>15</sub>H<sub>15</sub>O<sub>4</sub>BrNa (361.0051) found 361.0038.

6-acetyl-5-(2-(4-(2-methoxyphenyl)piperazin-1-yl)ethoxy)-4,7-dimethyl-2H-chromen-2-one (4a). Yield 69%; cream solid; m.p. 132–134 °C; Rf = 0.56; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, δ, ppm): 7.04–6.85 (5H, m, H-3", H-4", H-5", H-6", H-8), 6.18 (1H, s, H-3), 3.96 (2H, t, *J* = 8 Hz, H-1'), 3.88 (3H, s, H-7"), 3.10 (4H, br. s., H-3p, H-5p), 2.76 (2H, t, *J* = 8 Hz, H-2'), 2.70 (4H, br. s., H-2p, H-6p), 2.66 (3H, s, H-12), 2.59 (3H, s, H-10), 2.30 (3H, s, H-9); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>, δ, ppm): 204.9 (C-11), 160.1 (C-1"), 154.9 (C-2, C-5), 152.4 (C-4, C-8a), 139.4 (C-7), 133.6 (C-1"), 123.4 (H-6"), 121.2 (C-4"), 118.5 (C-5"), 116.2 (C-6), 115.6 (C-3"), 112.8 (C-3), 111.5 (C-8a, C-4a), 77.6 (C-1'), 57.7 (C-2', C-7"), 55.6 (C-3p, C-5p), 54.0 (C-2p, C-6p), 32.9 (C-12), 22.9 (C-10), 19.6 (C-9); TOF MS ES+: [M+Na]<sup>+</sup> calcd for C<sub>26</sub>H<sub>30</sub>O<sub>5</sub>N<sub>2</sub>Na (473.2052) found 473.2059.

6-acetyl-5-(2-(4-(2-fluorophenyl)piperazin-1-yl)ethoxy)-4,7-dimethyl-2H-chromen-2-one (4b). Yield 68%; cream solid; m.p. 118–119 °C; Rf = 0.84; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, δ, ppm): 7.10–6.91 (5H, m, H-3", H-4", H-5", H-6", H-8), 6.19 (1H, s, H-3), 3.97 (2H, br. s, H-1'), 3.13 (4H, br. s, H-3p, H-5p), 2.78 (6H, br. s, H-2', H-2p, H-6p), 2.71–2.65 (3H, br. s,

H-12), 2.61 (3H, s, H-10), 2.30 (3H, s, H-9);  $^{13}$ C NMR (75 MHz, CDCl<sub>3</sub>, δ, ppm): 204.9 (C-11), 160.8 (C-2), 160.1 (C-5), 154.8 (C-2"), 154.2 (C-4), 152.6 (C-8a), 152.3 (C-7), 139.4 (C-1"), 133.6 (C-5"), 130.0 (C-4"), 116.1 (C-3"), 115.5 (C-6"), 112.7 (C-6), 109.0 (C-3), 104.8 (C-4a), 102.7 (C-8), 75.0 (C-1'), 57.6 (C-2'), 55.4 (C-3p, C-5p), 53.8 (C-2p, C-6p), 32.9 (C-12), 22.8 (C-10), 19.6 (C-9); TOF MS ES+: [M+Na]<sup>+</sup> calcd for C<sub>25</sub>H<sub>27</sub>O<sub>4</sub>N<sub>2</sub>FNa (461.1853) found 461.1872.

6-acetyl-5-(2-(4-(3-methoxyphenyl)piperazin-1-yl)ethoxy)-4,7-dimethyl-2H-chromen-2-one (4c). Yield 73%; cream solid; m.p. 75–76 °C; Rf = 0.70; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, δ, ppm): 7.18 (1H, t, *J* = 10 Hz, H-5″), 6.98 (1H, s, H-8), 6.55 (1H, d, *J* = 12 Hz, H-6″), 6.48–6.41 (2H, m, H-2″, H-4″), 6.18 (1H, s, H-3), 3.96 (2H, t, *J* = 6 Hz, H-1′), 3.80 (3H, s, H-7″), 3.21 (4H, t, *J* = 8 Hz, H-3p, H-5p), 2.75 (2H, t, *J* = 6 Hz, H-2′), 2.65–2.64 (7H, m., H-12, H-2p, H-6p), 2.60 (3H, s, H-10), 2.30 (3H, s, H-9); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>, δ, ppm): 204.9 (C-11), 160.1 (C-3″), 157.5 (C-2), 154.9 (C-5), 154.3 (C-4), 152.4 (C-8a), 152.3 (C-1″), 139.4 (C-7), 133.6 (C-5″), 124.7 (C-6), 119.2 (C-3), 116.5 (C-8), 116.2 (C-4″), 115.6 (C-4a), 115.5 (C-6″), 112.8 (C-2″), 76.8 (C-1′), 57.7 (C-2′), 53.9 (C-3p, C-5p), 50.5 (C-7″), 50.4 (C-2p, C-6p), 32.9 (C-12), 22.9 (C-10), 19.6 (C-9); TOF MS ES+: [M+Na]<sup>+</sup> calcd for C<sub>26</sub>H<sub>30</sub>O<sub>5</sub>N<sub>2</sub>Na (473.2052) found 473.2067.

6-acetyl-5-(2-(4-(2,5-dimethylphenyl)piperazin-1-yl)ethoxy)-4,7-dimethyl-2H-chromen-2one (4d). Yield 75%; cream solid; m.p. 97–99 °C; Rf = 0.20; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, δ, ppm): 7.05 (1H, d, *J* = 8 Hz, H-3"), 6.97 (1H, s, H-8), 6.83–6.78 (2H, m, H-4", H-6"), 6.18 (1H, s, H-3), 3.82 (2H, t, *J* = 10 Hz, H-1'), 2.94 (4H, t, *J* = 6 Hz, H-3p, H-5p), 2.60 (7H, br. s, H-2p, H-6p, H-12), 2.55 (3H, s, H-10), 2.43 (2H, t, *J* = 10 Hz, H-5'), 2.29 (6H, s, H-9, H-7"), 2.25 (3H, s, H-8"), 1.85–1.75 (2H, m, H-2'), 1.64–1.54 (2H, m, H-4'), 1.49–1.39 (2H, m, H-3'); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>, δ, ppm): 204.6 (C-11), 160.2 (C-2), 154.9 (C-4), 154.6 (C-5), 152.3 (C-8a), 151.5 (C-1"), 139.4 (C-7), 136.2 (C-5"), 133.6 (C-2"), 131.0 (H-3"), 129.4 (C-4"), 123.9 (C-6), 119.9 (C-6"), 116.0 (C-3), 115.3 (C-8), 112.7 (C-4a), 78.6 (C-1'), 58.7 (C-5'), 54.0 (C-3p, C-5p), 51.8 (C-2p, C-6p), 32.7 (C-12), 29.9 (C-2'), 26.8 (C-4', 24.0 (C-9), 22.7 (C-3'), 21.4 (C-10), 19.5 (C-7"), 17.6 (C-8"); TOF MS ES+: [M+H]<sup>+</sup> calcd for C<sub>30</sub>H<sub>39</sub>O<sub>4</sub>N<sub>2</sub> (491.2910) found 491.2898.

6-acetyl-5-(2-(4-(3-fluorophenyl)piperazin-1-yl)ethoxy)-4,7-dimethyl-2H-chromen-2-one (4e). Yield 93%; cream solid; m.p. 135–136 °C; Rf = 0.70; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, δ, ppm): 7.23–7.15 (1H, m, H-5″), 6.98 (1H, s, H-8), 6.69–6.65 (1H, m, H-2″), 6.62–6.50 (2H, m, H-4″, H-6″), 6.18 (1H, s, H-3), 3.96 (2H, t, *J* = 8 Hz, H-1′), 3.22 (4H, t, *J* = 8 Hz, H-3p, H-5p), 2.75 (2H, t, *J* = 8 Hz, H-2′), 2.67 (7H, br. s., H-12, H-2p, H-6p), 2.60 (3H, s, H-10), 2.30 (3H, s, H-9); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>, δ, ppm): 204.9 (C-11), 165.6 (C-3″), 162.4 (C-2), 160.1 (C-5), 154.8 (C-4), 154.2 (C-1″), 152.9 (C-8a), 139.5 (C-7), 133.6 (C-5″), 116.2 (C-6), 114.5 (C-4″), 112.7 (C-3), 111.3 (C-8), 111.2 (C-6″), 106.3 (C-4a), 103.0 (C-2″), 75.2 (C-1′), 57.7 (C-2′), 53.7 (C-3p, C-5p), 48.7 (C-2p, C-6p), 32.9 (C-12), 22.8 (C-10), 19.6 (C-9); TOF MS ES+: [M+Na]<sup>+</sup> calcd for C<sub>25</sub>H<sub>27</sub>O<sub>4</sub>N<sub>2</sub>FNa (461.1853) found 461.1845.

6-acetyl-5-(2-(4-(2-bromophenyl)piperazin-1-yl)ethoxy)-4,7-dimethyl-2H-chromen-2-one (4f). Yield 70%; ceram solid; m.p. 83–85 °C; Rf = 0.38; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, δ, ppm): 7.50 (1H, dd,  $J_1$  = 8 Hz,  $J_2$  = 4 Hz H-3″), 7.23–7.17 (1H, m, H-5″), 6.98 (1H, dd,  $J_1$  = 8 Hz,  $J_2$  = 4 Hz H-4″), 6.91 (1H, s, H-8), 6.87–6.81 (1H, m, H-6″), 6.11 (1H, s, H-3), 3.90 (2H, t, J = 8 Hz, H-1′), 2.99 (4H, br. s., H-3p, H-5p), 2.71 (2H, t, J = 8 Hz, H-2′), 2.63 (4H, br. s., H-2p, H-6p), 2.59 (3H, s, H-12), 2.54 (3H, s, H-10), 2.23 (3H, s, H-9); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>, δ, ppm): 204.8 (C-11), 160.2 (C-2), 154.8 (C-4), 154.4 (C-5), 152.4 (C-8a), 150.6 (C-1″), 139.5 (C-7), 134.0 (C-3″), 133.5 (C-4″), 128.5 (H-5″), 124.6 (C-6″), 121.0 (C-2″), 120.0 (C-6), 116.1 (C-3), 115.4 (C-8), 112.8 (C-4a), 75.3 (C-1′), 57.8 (C-2′), 54.0 (C-3p, C-5p), 51.7 (C-2p, C-6p), 32.9 (C-12), 22.9 (C-10), 19.6 (C-9); TOF MS ES+: [M+Na]<sup>+</sup> calcd for C<sub>25</sub>H<sub>27</sub>O<sub>4</sub>N<sub>2</sub>BrNa (521.1052) found 521.1048.

6-acetyl-5-(2-(4-(2-bromophenyl)piperazin-1-yl)ethgoxy)-4,7-dimethyl-2H-chromen-2one (4g). Yield 62.4%; ceram solid; m.p. 127–128 °C; Rf = 0.31; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, δ, ppm): 7.10 (1H, t, *J* = 10 Hz, H-4″), 7.03 (1H, t, *J* = 4 Hz, H-5″), 6.98–6.94 (2H, m, H-6″, H-8), 6.84–6.81 (1H, m, H-2″), 6.17 (1H, s, H-3), 3.95 (2H, t, *J* = 8 Hz, H-1′), 3.20 (4H, t, *J* = 6 Hz, H-3p, H-5p), 2.74 (2H, t, *J* = 8 Hz, H-2′), 2.65–2.62 (7H, m, H-2p, H-6p, H-12), 2.60 (3H, s, H-10), 2.30 (3H, s, H-9); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>, δ, ppm): 204.9 (C-11), 160.1 (C-2), 154.8 (C-4), 154.1 (C-5), 152.4 (C-8a), 152.2 (C-1"), 139.4 (C-7), 133.6 (C-3"), 130.5 (C-5"), 123.4 (H-4"), 122.6 (C-6"), 118.9 (C-2"), 116.2 (C-6), 116.5 (C-3), 114.6 (C-8), 112.7 (C-4a), 74.9 (C-1'), 57.6 (C-2'), 53.6 (C-3p, C-5p), 48.6 (C-2p, C-6p), 32.9 (C-12), 22.9 (C-10), 19.5 (C-9); TOF MS ES+:  $[M+Na]^+$  calcd for  $C_{25}H_{27}O_4N_2$ BrNa (521.1052) found 521.1066.

6-acetyl-5-(2-(4-(3,5-dimethylphenyl)piperazin-1-yl)ethoxy)-4,7-dimethyl-2H-chromen-2one (4h). Yield 59%; oil; Rf = 0.42; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, δ, ppm): 6.91 (1H, s, H-8), 6.47 (2H, s, H-2", H-6"), 6.46 (1H, s, H-4"), 6.11 (1H, s, H-3), 3.88 (2H, t, *J* = 6 Hz, H-1'), 3.12 (4H, t, *J* = 6 Hz, H-3p, H-5p), 2.67 (2H, t, *J* = 8 Hz, H-2'), 2.58 (7H, s, H-2p, H-6p, H-12), 2.52 (3H, s, H-10), 2.21 (6H, s, H-7", H-8"), 2.22 (3H, s, H-9); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>, δ, ppm): 204.9 (C-11), 160.1 (C-2), 154.9 (C-5), 154.3 (C-4), 152.4 (C-8a), 151.4 (C-1"), 139.5 (C-7), 138.9 (C-5"), 133.6 (C-3"), 122.0 (C-4"), 116.1 (C-2"), 115.5 (C-6, C-6"), 114.9 (C-3), 114.2 (C-8), 112.8 (C-4a), 75.1 (C-1'), 57.6 (C-2'), 53.9 (C-3p, C-5p), 49.3 (C-2p, C-6p), 32.9 (C-12), 22.9 (C-10), 21.8 (C-9), 19.6 (C-7", C-8"); TOF MS ES+: [M+Na]<sup>+</sup> calcd for C<sub>27</sub>H<sub>32</sub>O<sub>4</sub>N<sub>2</sub>Na (471.2260) found 471.2251.

6-acetyl-5-(2-(4-(2,3-dichlorophenyl)piperazin-1-yl)ethoxy)-4,7-dimethyl-2H-chromen-2-one (4i). Yield 72%; yellow solid; m.p. 162–163 °C; Rf = 0.46; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, δ, ppm): 7.19–7.15 (2H, m, H-4", H-5"), 6.99–6.92 (3H, m, H-6", H-6, H-8), 6.19 (1H, s, H-3), 3.96 (2H, t, *J* = 8 Hz, H-1'), 3.06 (4H, t, br. s., H-3p, H-5p), 2.78 (2H, t, *J* = 8 Hz, H-2'), 2.70–2.66 (10H, m, H-2p, H-6p, H-12, H-10), 2.30 (3H, s, H-9); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>, δ, ppm): 204.8 (C-11), 160.1 (C-2), 154.8 (C-5), 154.2 (C-4), 152.3 (C-8a), 151.1 (C-1"), 139.4 (C-7), 134.3 (C-3"), 133.5 (C-5"), 127.7 (C-2"), 124.9 (C-4"), 118.8 (C-6"), 116.2 (C-6), 115.5 (C-3, C-8), 112.7 (C-4a), 76.8 (C-1'), 57.6 (C-3p, C-5p), 53.9 (C-2p, C-6p), 51.1 (C-2'), 32.9 (C-12), 22.9 (C-10), 19.6 (C-9); TOF MS ES+: [M+Na]<sup>+</sup> calcd for C<sub>25</sub>H<sub>26</sub>O<sub>4</sub>N<sub>2</sub>Cl<sub>2</sub>Na (511.1167) found 511.1147.

6-acetyl-5-(2-(4-(2-cyanophenyl)piperazin-1-yl)ethoxy)-4,7-dimethyl-2H-chromen-2-one (4j). Yield 70.5%; white solid; m.p. 153–155 °C; Rf = 0.37; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, δ, ppm): 7.59–7.47 (2H, m, H-3", H-5"), 7.05–6.99 (3H, m, H-8, H-4", H-6"), 6.19 (1H, s, H-3), 3.98 (2H, t, *J* = 6 Hz, H-1'), 3.25 (4H, br. s, H-3p, H-5p), 2.80–2.75 (6H, m, H-2p, H-6p, H-2), 2.66 (3H, s, H-12), 2.61 (3H, s, H-10), 2.31 (3H, s, H-9); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>, δ, ppm): 204.9 (C-11), 160.1 (C-2), 154.9 (C-4, C-5), 152.2 (C-8a, C-1"), 139.4 (C-7), 134.5 (C-5"), 134.1 (C-3"), 133.6 (C-7"), 118.9 (C-4"), 118.5 (C-6"), 116.2 (C-6, C-3), 115.6 (C-8), 112.7 (C-4a), 102.5 (C-2"), 76.8 (C-1'), 57.5 (C-2'), 53.7 (C-3p, C-5p), 51.4 (C-2p, C-6p), 32.9 (C-12), 22.9 (C-10), 19.6 (C-9); TOF MS ES+: [M+Na]<sup>+</sup> calcd for C<sub>26</sub>H<sub>27</sub>O<sub>4</sub>N<sub>3</sub>Na (468.1899) found 468.1913

8-acetyl-7-(5-bromopenthoxy)-4-methylchromen-2-one (5). Yield 89%; white solid; m.p.: 101–103 °C; Rf = 0.84; <sup>1</sup>H NMR (400 MHz, CHCl<sub>3</sub>) δ ppm: 7.55 (1H, d, *J* = 9 Hz, H-5), 6.86 (1H, d, *J* = 9.0 Hz, H-6), 6.14 (1H, s, H-3), 4.09 (2H, t, *J* = 6.2 Hz, H-1'), 3.43 (2H, t, *J* = 6.6 Hz, H-5'), 2.59 (3H, s, H-11), 2.39 (3H, s, H-9), 1.89 (4H, m, H-2', H-4'), 1.63 (2H, m, H-3'); <sup>13</sup>C NMR (75 MHz, CHCl<sub>3</sub>) δ ppm: 199.4 (C-10), 160.1 (C-2), 158.0 (C-7), 152.2 (C-8a), 150.9 (C-4), 126.5 (C-5), 119.9 (C-8), 114.2 (C-6), 112.8 (C-3), 108.5 (C-4a), 69.0 (C-1'), 33.6 (C-5'), 32.6 (C-11), 32.4 (C-4'), 28.3 (C-2'), 24.8 (C-3'), 18.9 (C-9); TOF MS ES+: [M + Na]<sup>+</sup> calcd for C<sub>17</sub>H<sub>19</sub>O<sub>4</sub>BrNa: 389.0364 found 389.0375.

8-acetyl-7-(5-[4-(2-methoxyphenyl)piperazin-1-yl]penthoxy)-4-methylchromen-2-one (5a). Yield 83%; brown solid; m.p.: 126–128 °C; Rf = 0.22; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  ppm: 7.56 (1H, d, *J* = 8.7 Hz, H-5), 6.94 (5H, m, H-6, H-3", H-4", H-5", H-6"), 6.14 (1H, s, H-3), 4.09 (2H, t, *J* = 8.6 Hz, H-1'), 3.86 (3H, s, H-7"), 3.14 (4H, br. s, H-3p, H-5p), 2.71 (4H, br. s, H-2p, H-6p), 2.59 (3H, s, H-11), 2.48 (2H, t, *J* = 7.5 Hz, H-5'), 2.39 (3H, s, H-9), 1.85 (2H, m, H-2'), 1.63 (2H, m, H-4'), 1.51 (2H, m, H-3'); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  ppm: 199.5 (C-10), 160.1 (C-1"), 158.1 (C-2), 152.4 (C-7), 152.3 (C-8a), 150.8 (C-4), 141.0 (C-2"), 126.5 (C-5), 123.3 (C-6"), 121.2 (C-5'), 119.8 (C-4"), 118.5 (C-8), 114.1 (C-6), 112.7 (C-3"), 111.4 (C-4), 108.5 (C-4a), 69.1 (C-1'), 58.5 (C-3p, C-5p), 55.5 (C-5'), 53.5 (C-2p), 50.2 (C-6p), 32.6 (C-11), 28.9 (C-2', C-7"), 26.0 (C-4'), 23.9 (C-3'), 18.9 (C-9); TOF MS ES + [M + Na]<sup>+</sup> calcd for C<sub>28</sub>H<sub>34</sub>O<sub>5</sub>N<sub>2</sub>Na 501.2365, found 501.2345.

8-acetyl-7-(5-[4-(2-fluorophenyl)piperazin-1-yl]penthoxy)-4-methylchromen-2-one (5b). Yield 79.6%; white solid; m.p.: 95–97 °C; Rf = 0.20; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  ppm: 7.54 (1H, d, *J* = 8.7 Hz, H-5), 6.94 (5H, m, H-6, H-3", H-4", H-5", H-6"), 6.13 (1H, s, H-3), 4.08 (2H, t, *J* = 6.3 Hz, H-1'), 3.14 (4H, br. s, H-3p, H-5p), 2.66 (4H, br. s, H-2p, H-6p), 2.58 (3H, s, H-11), 2.54 (2H, t, *J* = 7.5 Hz, H-5'), 2.39 (3H, s, H-9), 1.84 (2H, m, H-2'), 1.64 (2H, m, H-4'), 1.49 (2H, m, H-3'); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  ppm: 199.5 (C-10), 160.1 (C-2), 158.1 (C-7), 154.2 (C-2"), 152.2 (C-8a), 150.8 (C-4), 140.0 (C-1"), 126.5 (C-5), 124.7 (C-5"), 124.6 (C-4"), 122.8 (C-3"), 119.8 (C-6"), 119.2 (C-8), 116.1 (C-6), 112.7 (C-3), 108.5 (C-4a), 69.1 (C-1'), 58.4 (C-5'), 53.3 (C-3p, C-5p), 50.2 (C-2p, C-6p), 32.6 (C-11), 28.9 (C-2'), 26.2 (C-4'), 24.0 (C-3'), 18.9 (C-9); TOF MS ES+: [M + Na]<sup>+</sup> calcd for C<sub>27</sub>H<sub>31</sub>O<sub>4</sub>N<sub>2</sub>FNa 489.2166, found 489.2182.

8-acetyl-7-(5-[4-(3-methoxyphenyl)piperazin-1-yl]penthoxy)-4-methylchromen-2-one (5c). Yield 69%; white solid; m.p.: 76–78 °C; Rf = 0.24; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  ppm: 7.54 (1H, d, *J* = 8.7 Hz, H-5), 7.16 (1H, t, *J* = 8 Hz, H-5″), 6.86 (1H, d, *J* = 9 Hz, H-6), 6.55 (1H, d, *J* = 9 Hz, H-6″), 6.45 (1H, s, H-2″), 6.44 (1H, d, *J* = 8Hz, H-4″), 6.13 (1H, s, H-3), 4.09 (2H, t, *J* = 6.3 Hz, H-1′), 3.78 (3H, s, H-7″), 3.22 (4H, m, H-3p, H-5p), 2.63 (4H, m, H-2p, H-6p), 2.59 (3H, s, H-11), 2.44 (2H, t, *J* = 7.5 Hz, H-5′), 2.39 (3H, s, H-9), 1.84 (2H, m, H-2′), 1.64 (2H, m, H-4′), 1.49 (2H, m, H-3′); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  ppm: 199.5 (C-10), 160.7 (C-3″), 160.1 (C-2), 158.1 (C-7), 152.6 (C-8a), 152.3 (C-4), 150.8 (C-1″), 126.9 (C-5), 126.5 (C-5″), 118.8 (C-8), 114.1 (C-6), 112.7 (C-3), 109.1 (C-4a), 108.5 (C-4″), 104.8 (C-6″), 102.8 (C-2″), 69.1 (C-1′), 58.4 (C-5′), 55.4 (C-3p, C-5p), 53.2 (C-7″), 48.9 (C-2p, C-6p), 32.6 (C-11), 28.9 (C-2′), 26.2 (C-4′), 24.0 (C-3′), 18.9 (C-9); TOF MS ES+: [M + Na]<sup>+</sup> calcd for C<sub>28</sub>H<sub>34</sub>O<sub>5</sub>N<sub>2</sub>Na 501.2365, found 501.2373.

8-acetyl-7-(5-[4-(2, 5-dimethylphenyl)piperazin-1-yl]penthoxy)-4-methylchromen-2one (5d). Yield 54%; white solid; m.p.: 92–94 °C; Rf = 0.17; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) δ ppm: 7.55 (1H, d, *J* = 9 Hz, H-5), 7.05 (1H, d, *J* = 6 Hz, H-6), 6.84 (3H, m, H-3", H-4", H-6"), 6.13 (1H, s, H-3), 4.09 (2H, t, *J* = 6 Hz, H-1'), 2.94 (4H, m, H-3p, H-5p), 2.59 (7H, m, H-2p, H-6p, H-11), 2.39 (5H, m, H-9, H-5'), 2.30 (3H, s, H-8"), 2.25 (3H, s, H-7"), 1.84 (2H, m, H-2'), 1.54 (4H, m, H-4', H-3'); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>) δ ppm: 199.4 (C-10), 160.1 (C-2), 158.2 (C-7), 152.2 (C-8a), 151.4 (C-4), 150.8 (C-1"), 136.2 (C-5"), 131.0 (C-2"), 129.4 (C-3"), 126.5 (C-5), 123.9 (C-4"), 119.9 (C-8), 119.8 (C-6), 114.1 (C-6"), 112.7 (C-2), 108.5 (C-4a), 69.2 (C-1'), 58.7 (C-5'), 53.9 (C-3p, C-5p), 51.8 (C-2p, C-6p), 32.6 (C-11), 29.1 (C-2'), 26.7 (C-4'), 24.1 (C-3'), 21.4 (C-8"), 18.9 (C-9), 17.6 (C-7"); TOF MS ES+: [M + Na]<sup>+</sup> calcd for C<sub>29</sub>H<sub>36</sub>O<sub>4</sub>N<sub>2</sub>Na 499.2573, found 499.2560.

8-acetyl-7-(5-[4-(3-fluorophenyl)piperazin-1-yl]penthoxy)-4-methylchromen-2-one (5e). Yield 47%; white solid; m.p.: 117–119 °C; Rf = 0.24; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) δ ppm: 7.55 (1H, d, *J* = 9 Hz, H-5), 7.17 (1H, m, H-5″), 6.86 (1H, d, *J* = 9 Hz, H-6), 6.60 (3H, m, H-2″, H-4″), 6.13 (1H, s, H-3), 4.09 (2H, t, *J* = 7.5 Hz, H-1′), 3.20 (4H, t, *J* = 6 Hz, H-3p, H-5p), 2.57 (7H, m, H-2p, H-6p, H-11), 2.39 (5H, m, H-5′, H-9), 1.84 (2H, m, H-2′), 1.54 (4H, m, H-4′, H-3′); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>) δ ppm: 199.4 (C-10), 165.6 (C-3″), 160.2 (C-2), 160.1 (C-7), 158.1 (C-8a), 153.2 (C-4), 150.8 (C-1″), 130.3 (C-5), 126.5 (C-5″), 119.8 (C-8), 114.1 (C-6), 112.7 (C-2), 112.2 (C-4a), 108.4 (C-4″), 105.8 (C-6″), 102.6 (C-2″), 69.2 (C-1′), 58.5 (C-5′), 53.3 (C-3p, C-5p), 48.8 (C-2p, C-6p), 32.6 (C-11), 29.1 (C-2′), 26.7 (C-4′), 24.1 (C-3′), 18.9 (C-9); TOF MS ES+:  $[M + H]^+$  calcd for C<sub>27</sub>H<sub>32</sub>O<sub>4</sub>N<sub>2</sub>F 467.2346, found 467.2332.

8-acetyl-7-(5-[4-(2-bromophenyl)piperazin-1-yl]penthoxy)-4-methylchromen-2-one (5f). Yield 85%; cream solid; m.p.: 102–103 °C; Rf = 0.22; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) δ ppm: 7.55 (2H, d, *J* = 9 Hz, H-5, H-3″), 7.27 (2H, m, H-6, H-5″), 7.07 (1H, d, *J* = 9 Hz, H-4), 6.90 (1H, m, H-6″), 6.13 (1H, s, H-3), 4.09 (2H, t, *J* = 12 Hz, H-1′), 3.08 (4H, br. s, H-3p, H-5p), 2.56 (4H, br. s, H-2p, H-6p), 2.47 (3H, s, H-11), 2.45 (2H, m, H-5′), 2.42 (3H, s, H-9), 1.84 (2H, m, H-2′), 1.55 (4H, m, H-4′, H-3′); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>) δ ppm: 199.4 (C-10), 160.2 (C-2), 158.2 (C-7), 152.2 (C-4), 150.8 (C-8a), 150.8 (C-1″), 133.9 (C-3″), 128.5 (C-5), 126.5 (C-4″), 124.5 (C-5″), 121.1 (C-6″), 120.0 (C-2″), 119.8 (C-8), 114.1 (C-6), 112.7 (C-2), 104.4 (C-4a), 69.2 (C-1′), 58.6 (C-5′), 53.6 (C-3p, C-5p), 51.8 (C-2p, C-6p), 32.6 (C-11), 29.1 (C-2′), 26.7 (C-4′), 24.1 (C-3′), 18.9 (C-9); TOF MS ES+: [M + H]<sup>+</sup> calcd for C<sub>27</sub>H<sub>32</sub>O<sub>4</sub>N<sub>2</sub>Br 527.1545, found 527.1537.

8-acetyl-7-(5-[4-(3-bromohenyl)piperazin-1-yl]penthoxy)-4-methylchromen-2-one (5g). Yield 64%; white solid; m.p.: 119–121 °C; Rf = 0.19; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) δ ppm: 7.54 (1H, d, *J* = 9 Hz, H-5), 7.09 (1H, m, H-4"), 7.02 (1H, m, H-5"), 6.94 (1H, d, *J* = 6 Hz, H-6), 6.88 (1H, s, H-2"), 6.83 (1H, m, H-6"), 6.14 (1H, s, H-3), 4.09 (2H, t, *J* = 7.5 Hz, H-1'), 3.20 (4H, m, H-3p, H-5p), 2.56 (7H, m, H-2p, H-6p, H-11), 2.39 (5H, m, H-5', H-9), 1.85 (2H, m, H-2'), 1.56 (4H, m, H-4', H-3'); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>) δ ppm: 199.4 (C-10), 160.2 (C-2), 158.2 (C-7), 152.7 (C-8a), 152.2 (C-4), 150.9 (C-1"), 130.5 (C-5), 126.5 (C-5"), 123.4 (C-3"), 122.4 (C-4"), 119.8 (C-8), 118.8 (C-6), 114.5 (C-2"), 114.1 (C-6"), 112.8 (C-3), 108.5 (C-4a), 69.2 (C-1'), 58.5 (C-5'), 53.3 (C-3p, C-5p), 48.8 (C-2p, C-6p), 32.6 (C-11), 29.1 (C-2'), 26.7 (C-4'), 24.1 (C-3'), 18.9 (C-9); TOF MS ES+: [M + Na]<sup>+</sup> calcd for C<sub>27</sub>H<sub>31</sub>O<sub>4</sub>N<sub>2</sub>BrNa 549.1365, found 549.1378.

8-acetyl-7-(5-[4-(3, 5-dimethylphenyl)piperazin-1-yl]penthoxy)-4-methylchromen-2one (5h). Yield 87%; white solid; m.p.: 113–115 °C; Rf = 0.22; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) δ ppm: 7.54 (1H, d, *J* = 9 Hz, H-6), 6.87 (1H, d, *J* = 9 Hz, H-5), 6.54 (3H, d, *J* = 12 Hz, H-2", H-4", H-6"), 6.14 (1H, s, H-3), 4.08 (2H, t, *J* = 7.5 Hz, H-1'), 3.18 (4H, t, *J* = 4.5 Hz, H-3p, H-5p), 2.59 (7H, m, H-2p, H-6p, H-11), 2.39 (5H, m, H-9, H-5'), 2.27 (6H, s, H-7", H-8"), 1.84 (2H, m, H-2'), 1.55 (4H, m, H-4', H-3'); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>) δ ppm: 199.4 (C-10), 160.2 (C-2), 158.2 (C-7), 152.2 (C-8a), 151.6 (C-4), 150.9 (C-1"), 138.8 (C-5", C-3"), 126.5 (C-5), 121.9 (C-4"), 119.8 (C-8), 114.2 (C-6), 114.1 (C-2", C-6"), 112.8 (C-3), 108.5 (C-4a), 69.2 (C-1'), 58.7 (C-5'), 53.6 (C-3p, C-5p), 48.4 (C-2p, C-6p), 32.6 (C-11), 29.1 (C-2'), 26.7 (C-4'), 24.1 (C-3'), 21.9 (C-8"), 19.6 (C-7"), 18.9 (C-9); TOF MS ES+: [M + H]<sup>+</sup> calcd for C<sub>29</sub>H<sub>37</sub>O<sub>4</sub>N<sub>2</sub> 477.2753, found 477.2735

8-acetyl-7-(5-[4-(2, 3-dichlorophenyl)piperazin-1-yl]penthoxy)-4-methylchromen-2one (5i). Yield 68%; white solid; m.p.: 137–139 °C; Rf = 0.17; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  ppm: 7.55 (1H, d, *J* = 8.7 Hz, H-5), 7.14 (2H, m, H-6, H-4"), 6.96 (1H, m, H-5"), 6.86 (1H, d, *J* = 9 Hz, H-6"), 6.13 (1H, s, H-3), 4.09 (2H, t, *J* = 6.3 Hz, H-1'), 3.11 (4H, br. s, H-3p, H-5p), 2.70 (4H, br. s, H-2p, H-6p), 2.59 (3H, s, H-11), 2.49 (2H, t, *J* = 7.3 Hz, H-5'), 2.39 (3H, s, H-9), 1.84 (2H, m, H-2'), 1.64 (2H, m, H-4'), 1.50 (2H, m, H-3'); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  ppm: 199.5 (C-10), 160.1 (C-2), 158.1 (C-7), 152.2 (C-8a, C-4), 150.9 (C-1"), 134.2 (C-3"), 127.7 (C-6), 126.5 (C-5"), 125.1 (C-2"), 119.8 (C-4"), 118.9 (C-6"), 114.1 (C-8, C-6), 112.8 (C-2), 108.5 (C-4a), 69.1 (C-1'), 58.3 (C-5'), 53.3 (C-3p, C-5p), 50.8 (C-2p, C-6p), 32.6 (C-11), 28.9 (C-2'), 25.9 (C-4'), 23.9 (C-3'), 18.9 (C-9); TOF MS ES+: [M + Na]<sup>+</sup> calcd for C<sub>27</sub>H<sub>30</sub>O<sub>4</sub>N<sub>2</sub>Cl<sub>2</sub>Na 539.1480, found 539.1464.

8-acetyl-7-(5-[4-(2-cyanophenyl)piperazin-1-yl]penthoxy)-4-methylchromen-2-one (5j). Yield 69.6%; white solid; m.p.: 59–61 °C; Rf = 0.29; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) δ ppm: 7.48 (3H, m, H-5, H-3", H-5"), 7.00 (2H, m, H-6", H-4"), 6.86 (1H, d, *J* = 8.7 Hz, H-6), 6.13 (1H, s, H-3), 4.09 (2H, t, *J* = 6.3 Hz, H-1'), 3.27 (4H, br. s, H-3p, H-5p), 2.72 (4H, br. s, H-2p, H-6p), 2.51 (3H, s, H-11), 2.49 (2H, t, *J* = 7.3 Hz, H-5'), 2.39 (3H, s, H-9), 1.83 (2H, m, H-2'), 1.62 (2H, m, H-4'), 1.49 (2H, m, H-3'); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>) δ ppm: 199.3 (C-10), 159.9 (C-2), 157.9 (C-7), 155.3 (C-8a), 152.1 (C-4), 150.7 (C-1"), 134.3 (C-5), 133.9 (C-3"), 126.3 (C-5"), 122.1 (C-7"), 119.6 (C-4"), 118.8 (C-6"), 118.3 (C-8), 113.9 (C-6), 112.6 (C-3), 108.3 (C-4a), 106.2 (C-2"), 68.9 (C-1'), 58.0 (C-5'), 52.9 (C-3p, C-5p), 50.9 (C-2p, C-6p), 32.5 (C-11), 28.7 (C-2'), 25.7 (C-4'), 23.7 (C-3'), 18.8 (C-9); TOF MS ES+: [M + Na]<sup>+</sup> calcd for C<sub>28</sub>H<sub>31</sub>O<sub>4</sub>N<sub>3</sub>Na 496.2212, found 496.2226.

8-acetyl-7-(2-bromoethoxy)-4-methylchromen-2-one (6). Yield 80.4 %; yellow solid; m.p.: 140–142 °C; Rf = 0.81; <sup>1</sup>H NMR (400 MHz, CHCl<sub>3</sub>) δ ppm: 7.57 (1H, d, *J* = 8 Hz, H-5), 6.86 (1H, d, *J* = 12 Hz, H-6), 6.17 (1H, s, H-3), 4.40 (2H, t, *J* = 8 Hz, H-1'), 3.65 (2H, t, *J* = 8 Hz, H-2'), 2.63 (3H, s, H-11), 2.41 (3H, s, H-9); <sup>13</sup>C NMR (75 MHz, CHCl<sub>3</sub>) δ ppm: 199.2 (C-10), 159.9 (C-2), 156.9 (C-7), 152.1 (C-8a), 150.9 (C-4), 126.6 (C-5), 120.3 (C-8), 114.9 (C-6), 113.3 (C-3), 108.6 (C-4a), 69.1 (C-1'), 32.8 (C-11), 28.6 (C-2') 18.9 (C-9); TOF MS ES+:  $[M + H]^+$ calcd for C<sub>14</sub>H<sub>14</sub>O<sub>4</sub>Br: 325.0075 found 325.0064.

8-acetyl-7-(2-[4-(2-methoxyphenyl)piperazin-1-yl]ethoxy)-4-methylchromen-2-one (6a). Yield 76%; white solid; m.p.: 157–159 °C; Rf = 0.23; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) δ ppm: 7.56 (1H, d, J = 12 Hz, H-5), 6.93 (5H, m, H-6, H-3", H-4", H-5", H-6"), 6.15 (1H, s, H-3), 4.26

(2H, t, *J* = 6 Hz, H-1'), 3.87 (3H, s, H-7"), 3.11 (4H, br. s, H-3p, H-5p), 2.90 (2H, t, *J* = 6 Hz, H-2'), 2.79 (4H, t, *J* = 6 Hz, H-2p, H-6p), 2.61 (3H, s, H-11), 2.40 (3H, s, H-9); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  ppm: 199.3 (C-10), 160.0 (C-1"), 157.4 (C-2), 152.4 (C-7), 152.2 (C-8a), 150.9 (C-4), 140.7 (C-2"), 126.7 (C-5), 123.6 (C-6"), 121.2 (C-5'), 119.9 (C-4"), 118.6 (C-8), 114.6 (C-6), 113.1 (C-3"), 111.5 (C-3), 108.7 (C-4a), 56.8 (C-1', C-2'), 55.6 (C-3p, C-5p), 53.9 (C-7"), 50.0 (C-2p, C-6p), 32.7 (C-11), 18.9 (C-9); TOF MS ES+: [M + H]<sup>+</sup> calcd for C<sub>25</sub>H<sub>29</sub>O<sub>5</sub>N<sub>2</sub> 437.2076, found 437.2059.

8-acetyl-7-(2-[4-(2-fluorophenyl)piperazin-1-yl]ethoxy)-4-methylchromen-2-one (6b). Yield 53%; cream solid; m.p.: 137–139 °C; Rf = 0.15; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) δ ppm: 7.56 (1H, d, *J* = 12 Hz, H-5), 6.97 (5H, m, H-6, H-3", H-4", H-5", H-6"), 6.15 (1H, s, H-3), 4.25 (2H, t, *J* = 6 Hz, H-1'), 3.12 (4H, t, *J* = 6 Hz, H-3p, H-5p), 2.89 (2H, t, *J* = 8 Hz, H-2'), 2.75 (4H, t, *J* = 6 Hz, H-2p, H-6p), 2.61 (3H, s, H-11), 2.40 (3H, s, H-9); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>) δ ppm: 199.3 (C-10), 160.0 (C-2), 157.7 (C-7), 154.2 (C-2"), 152.2 (C-8a), 150.9 (C-4), 140.1 (C-1"), 126.6 (C-5), 124.7 (C-5'), 124.6 (C-4"), 119.9 (C-3"), 119.2 (C-6"), 116.4 (C-8), 116.2 (C-6), 112.9 (C-3), 108.6 (C-4a), 67.4 (C-1'), 56.9 (C-2'), 53.9 (C-3p, C-5p), 50.5 (C-2p, C-6p), 32.7 (C-11), 18.9 (C-9); TOF MS ES+: [M + H]<sup>+</sup> calcd for C<sub>24</sub>H<sub>25</sub>O<sub>4</sub>N<sub>2</sub>FNa 447.1696, found 447.1713.

8-acetyl-7-(2-[4-(3-methoxyphenyl)piperazin-1-yl]ethoxy)-4-methylchromen-2-one (6c). Yield 93%; brown solid; m.p.: 122–124 °C; Rf = 0.33; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) δ ppm: 7.56 (1H, d, *J* = 12 Hz, H-5), 7.17 (1H, t, *J* = 6 Hz, H-5"), 6.90 (1H, d, *J* = 12 Hz, H-6), 6.52 (1H, m, H-6"), 6.43 (2H, m, H-3", H-4"), 6.14 (1H, s, H-3), 4.25 (2H, t, *J* = 8 Hz, H-1'), 3.78 (3H, s, H-7"), 3.20 (4H, t, *J* = 6 Hz, H-3p, H-5p), 2.87 (2H, t, *J* = 8 Hz, H-2'), 2.71 (4H, t, *J* = 6 Hz, H-2p, H-6p), 2.61 (3H, s, H-11), 2.39 (3H, s, H-9); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>) δ ppm: 199.4 (C-10), 160.8 (C-3"), 160.1 (C-2), 157.7 (C-7), 152.6 (C-8a), 152.2 (C-4), 150.9 (C-4"), 130.0 (C-5), 126.6 (C-5"), 119.9 (C-8), 114.4 (C-6), 112.9 (C-3), 109.1 (C-4a), 108.6 (C-4"), 104.9 (C-6"), 102.8 (C-2"), 67.6 (C-1'), 56.9 (C-2'), 55.4 (C-3p, C-5p), 53.8 (C-2p, C-6p), 49.1 (C-7"), 32.7 (C-11), 18.9 (C-9); TOF MS ES+: [M + Na]<sup>+</sup> calcd for C<sub>25</sub>H<sub>28</sub>O<sub>5</sub>N<sub>2</sub>Na 459.1896, found 459.1911.

8-acetyl-7-(2-[4-(2,5-dimethylphenyl)piperazin-1-yl]ethoxy)-4-methylchromen-2-one (6d). Yield 93%; cream solid; m.p.: 96–98 °C; Rf = 0.21; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) δ ppm: 7.56 (1H, d, *J* = 12 Hz, H-5), 7.05 (1H, d, *J* = 8 Hz, H-6), 6.91 (1H, d, *J* = 12 Hz H-3"), 6.79 (2H, m, H-4", H-6"), 6.14 (1H, s, H-3), 4.26 (2H, t, *J* = 8 Hz, H-1'), 2.91 (6H, m, H-3p, H-5p, H-2'), 2.72 (4H, br. s, H-2p, H-6p), 2.62 (3H, s, H-11), 2.40 (3H, s, H-9), 2.30 (3H, s, H-8"), 2.25 (3H, s, H-7"); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>) δ ppm: 199.4 (C-10), 160.0 (C-2), 157.7 (C-7), 152.2 (C-8a), 151.2 (C-4), 150.9 (C-1"), 136.3 (C-5"), 131.1 (C-3", C-5), 129.4 (C-2"), 126.6 (C-4), 124.1 (C-8), 119.9 (C-6), 114.3 (C-6"), 112.9 (C-3), 108.6 (C-4a), 67.5 (C-1'), 56.9 (C-2'), 54.3 (C-3p, C-5p), 51.7 (C-2p, C-6p), 32.6 (C-11), 21.4 (C-9), 18.9 (C-8"), 17.6 (C-7"),); TOF MS ES+: [M + Na]<sup>+</sup> calcd for C<sub>26</sub>H<sub>30</sub>O<sub>4</sub>N<sub>2</sub>Na 457.2103, found 457.2116.

8-acetyl-7-(2-[4-(3-fluorophenyl)piperazin-1-yl]ethoxy)-4-methylchromen-2-one (6e). Yield 62%; brown solid; m.p.: 86–88 °C; Rf = 0.16; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) δ ppm: 7.56 (1H, d, *J* = 12 Hz, H-5), 7.20 (1H, q, *J* = 8 Hz, H-5"), 6.90 (1H, d, *J* = 12 Hz, H-6), 6.60 (3H, m, H-6", H-4", H-2"), 6.15 (1H, s, H-3), 4.26 (2H, t, *J* = 8 Hz, H-1'), 3.21 (4H, t, *J* = 6 Hz, H-3p, H-5p), 2.87 (2H, t, *J* = 8 Hz, H-2'), 2.72 (4H, t, *J* = 6 Hz, H-2p, H-6p), 2.61 (3H, s, H-11), 2.40 (3H, s, H-9); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>) δ ppm: 199.4 (C-10), 165.6 (C-3"), 162.4 (C-2), 160.0 (C-7), 157.5 (C-8a), 152.7 (C-4), 150.9 (C-1"), 130.5 (C-5), 126.7 (C-5"), 119.9 (C-8), 114.5 (C-6), 113.1 (C-3), 111.5 (C-4a), 108.7 (C-4"), 106.6 (C-6"), 102.9 (C-2"), 67.3 (C-1'), 56.8 (C-2'), 55.5 (C-3p, C-5p), 48.5 (C-2p, C-6p), 32.7 (C-11), 18.9 (C-9); TOF MS ES+: [M + Na]<sup>+</sup> calcd for C<sub>24</sub>H<sub>25</sub>O<sub>4</sub>N<sub>2</sub>FNa 447.1696, found 447.1689.

8-acetyl-7-(2-[4-(2-bromophenyl)piperazin-1-yl]ethoxy)-4-methylchromen-2-one (6f). Yield 72%; white solid; m.p.: 145–147 °C; Rf = 0.17; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) δ ppm: 7.55 (2H, m, H-5, H-3″), 7.27 (1H, m, H-6), 7.05 (1H, H-5″), 6.91 (2H, m, H-4″, H-6″), 6.15 (1H, s, H-3), 4.26 (2H, t, J = 8 Hz, H-1′), 3.07 (4H, t, J = 4 Hz, H-3p, H-5p), 2.90 (2H, t, J = 8 Hz, H-2′), 2.76 (4H, t, J = 6 Hz, H-2p, H-6p), 2.62 (3H, s, H-11), 2.40 (3H, s, H-9); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>) δ ppm: 199.3 (C-10), 160.0 (C-2), 157.7 (C-7), 152.2 (C-8a), 150.9 (C-4), 150.5

(C-1"), 134.0 (C-3"), 128.5 (C-5), 126.6 (C-4"), 124.7 (C-5"), 121.1 (C-6"), 120.0 (C-2"), 119.9 (C-8), 114.4 (C-6), 112.9 (C-3), 108.6 (C-4a), 67.4 (C-1'), 56.8 (C-2'), 53.9 (C-3p, C-5p), 51.6 (C-2p, C-6p), 32.7 (C-11), 18.9 (C-9); TOF MS ES+:  $[M + Na]^+$  calcd for  $C_{24}H_{25}O_4N_2BrNa$  507.0895, found 507.0876.

8-acetyl-7-(2-[4-(3-bromohenyl)piperazin-1-yl]ethoxy)-4-methylchromen-2-one (6g). Yield 77%; yellow solid; m.p.: 110–112 °C; Rf = 0.15; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) δ ppm: 7.56 (1H, d, *J* = 6 Hz, H-5), 6.97 (5H, m, H-6, H-2", H-4", H-5", H-6"), 6.15 (1H, s, H-3), 4.26 (2H, t, *J* = 6 Hz, H-1'), 3.20 (4H, t, *J* = 6 Hz, H-3p, H-5p), 2.87 (2H, t, *J* = 8 Hz, H-2'), 2.71 (4H, t, *J* = 6 Hz, H-2p, H-6p), 2.61 (3H, s, H-11), 2.40 (3H, s, H-9); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>) δ ppm: 199.4 (C-10), 160.0 (C-2), 157.6 (C-7), 152.4 (C-8a), 152.2 (C-4), 150.9 (C-1"), 130.6 (C-5), 126.6 (C-5"), 123.4 (C-3"), 122.7 (C-4"), 119.9 (C-8), 119.0 (C-6), 114.7 (C-2"), 114.5 (C-6"), 113.0 (C-3), 108.6 (C-4a), 67.4 (C-1'), 56.8 (C-2'), 53.6 (C-3p, C-5p), 48.6 (C-2p, C-6p), 32.7 (C-11), 18.9 (C-9); TOF MS ES+: [M + Na]<sup>+</sup> calcd for C<sub>24</sub>H<sub>25</sub>O<sub>4</sub>N<sub>2</sub>BrNa 507.0895, found 507.0909.

8-acetyl-7-(2-[4-(3,5-dimethylphenyl)piperazin-1-yl]ethoxy)-4-methylchromen-2-one (6h). Yield 97%; brown solid; m.p.: 120–121 °C; Rf = 0.33; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) δ ppm: 7.56 (1H, d, *J* = 12 Hz, H-6), 6.90 (1H, d, *J* = 12 Hz, H-5), 6.53 (3H, d, *J* = 12 Hz, H-2", H-4", H-6"), 6.14 (1H, s, H-3), 4.25 (2H, t, *J* = 6 Hz, H-1'), 3.18 (4H, t, *J* = 8 Hz, H-3p, H-5p), 2.87 (2H, t, *J* = 6 Hz, H-2'), 2.71 (4H, t, *J* = 6 Hz, H-2p, H-6p), 2.61 (3H, s, H-11), 2.40 (3H, s, H-9), 2.27 (6H, s, H-7", H-8"); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>) δ ppm: 199.4 (C-10), 160.0 (C-2), 157.7 (C-7), 152.2 (C-8a), 151.3 (C-4), 150.9 (C-1"), 138.8 (C-5", C-3"), 126.6 (C-5), 122.1 (C-4"), 119.9 (C-8), 114.4 (C-2", C-6"), 114.3 (C-6), 112.9 (C-3), 108.6 (C-4a), 67.5 (C-1'), 56.9 (C-2'), 53.9 (C-3p, C-5p), 49.3 (C-2p, C-6p), 32.7 (C-11), 21.9 (C-8", C-7"), 18.9 (C-9); TOF MS ES+:  $[M + Na]^+$  calcd for C<sub>26</sub>H<sub>30</sub>O<sub>4</sub>N<sub>2</sub>Na 457.2103, found 457.2086.

8-acetyl-7-(2-[4-(2,3-dichlorophenyl)piperazin-1-yl]ethoxy)-4-methylchromen-2-one (6i). Yield 85%; white solid; m.p.: 159–161 °C; Rf = 0.23; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) δ ppm: 7.57 (1H, d, *J* = 12 Hz, H-5), 7.14 (2H, m, H-6, H-4"), 6.94 (2H, m, H-5", H-6"), 6.14 (1H, s, H-3), 4.26 (2H, t, *J* = 6 Hz, H-1'), 3.07 (4H, br. s, H-3p, H-5p), 2.90 (2H, t, *J* = 8 Hz, H-2'), 2.76 (4H, br. s, H-2p, H-6p), 2.61 (3H, s, H-11), 2.40 (3H, s, H-9; <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>) δ ppm: 199.3 (C-10), 160.0 (C-2), 157.7 (C-7), 152.2 (C-8a), 151.1 (C-4), 150.9 (C-1"), 134.2 (C-3"), 127.7 (C-5), 126.6 (C-5"), 124.9 (C-2"), 119.9 (C-4"), 118.8 (C-6", C-8), 114.4 (C-6), 112.9 (C-3), 108.6 (C-4a), 67.4 (C-1'), 56.8 (C-2'), 53.8 (C-3p, C-5p), 51.2 (C-2p, C-6p), 32.7 (C-11), 18.9 (C-9); TOF MS ES+: [M + Na]<sup>+</sup> calcd for C<sub>24</sub>H<sub>24</sub>O<sub>4</sub>N<sub>2</sub>Cl<sub>2</sub>Na 497.1011, found 497.1026.

8-acetyl-7-(2-[4-(2-cyanophenyl)piperazin-1-yl]ethoxy)-4-methylchromen-2-one (6j). Yield 96%; cream solid; m.p.: 155–157 °C; Rf = 0.14; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) δ ppm: 7.54 (3H, m, H-5, H-3", H-5"), 7.01 (2H, m, H-6", H-4"), 6.91 (1H, d, *J* = 12 Hz, H-6), 6.15 (1H, s, H-3), 4.26 (2H, t, *J* = 8 Hz, H-1'), 3.24 (4H, t, *J* = 6 Hz, H-3p, H-5p), 2.91 (2H, t, *J* = 8 Hz, H-2'), 2.79 (4H, t, *J* = 6 Hz, H-2p, H-6p), 2.62 (3H, s, H-11), 2.41 (3H, s, H-9); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>) δ ppm: 199.3 (C-10), 160.0 (C-2), 157.6 (C-7), 155.5 (C-8a), 152.2 (C-4), 150.9 (C-1"), 134.5 (C-5"), 134.0 (C-3"), 126.6 (C-5), 122.2 (C-7"), 119.9 (C-4"), 118.9 (C-6"), 118.5 (C-8), 114.4 (C-6), 112.9 (C-3), 108.7 (C-4a), 106.3 (C-2"), 67.2 (C-1'), 56.7 (C-2'), 53.7 (C-3p, C-5p), 51.4 (C-2p, C-6p), 32.7 (C-11), 18.9 (C-9); TOF MS ES+: [M + Na]<sup>+</sup> calcd for C<sub>25</sub>H<sub>25</sub>O<sub>4</sub>N<sub>3</sub>Na 454.1743, found 454.1744.

## 3.2. Docking Studies

In the computational part of this study we used a protocol similar to our previous investigation on this topic [20,21,24]. In short, the 3D models of  $5HT_{1A/2A}$  receptors were prepared using homology modelling based on the crystal structures of dopamine D3 receptor (PBD code: 3PBL) and  $\beta$ 1 adrenergic receptor (PDB code: 2Y00), respectively [34,35]. We used flexible docking algorithm as implemented in Autodock 4.2 [36] with the ligand and the following residues described in a flexible manner: D116, V117, W358, F361, F362, N386, and Y390 for  $5HT_{1A}$  receptor and D155, V156, S159, W336, F339, F340, N363, and Y370 for  $5HT_{2A}$  receptor. We used a  $48 \times 52 \times 40$  Å <sup>3</sup> box and  $60 \times 54 \times 50$  Å<sup>3</sup> box for  $5HT_{2A}$  receptor, centered in both cases on the binding site. We also used standard Autodock

4.2 parameters for the Lamarckian genetic algorithm, but with 100 runs for each ligandreceptor pair for a total of 132 separate runs. Schematic figures of the ligand binding sites have been prepared using the Ligand Interaction Diagram (Schrödinger Release 2020–4: Maestro, Schrödinger, LLC, New York, NY, USA, 2020).

#### 3.3. Biological Evaluation

## 3.3.1. Membrane Preparation

Male Sprague–Dawley rats were decapitated, their brains removed, and placed on ice. Hippocampi were dissected and homogenized with a glass homogenizer in 30 vol. ice-cold TED buffer (50 mM Tris-HCl, 1 mM EDTA, 1mM dithiotheritol, pH 7.4). Next, the homogenate was centrifuged at  $21,000 \times g$  for 30 min at 4 °C. The pellet was suspended in 30 vol TED buffer (pH 7.4) and incubated in a water bath for 10 min at 37 °C to remove endogenous serotonin. The suspension was centrifuged again at  $21,000 \times g$  for 30 min at 4 °C. The pellet was resuspended in 30 vol. TED buffer (pH 7.4) and the centrifugation step was repeated. The final pellet was suspended in 10 vol 50 mM Tris-HCl (pH 7.4) and stored at -80 °C until use.

## 3.3.2. Antagonist Activity for the 5-HT<sub>1A</sub> Receptor

Compounds were dissolved in 9.5% DMSO and 0.5% Kolliphor<sup>®</sup> EL (Sigma Aldrich, Taufkirchen, Germany). Serial dilutions of the compounds tested  $(10^{-10}-10^{-5} \text{ M})$  were incubated in triplicate with 0.8 nM [ $^{35}$ S]GTP $\gamma$ S in assay buffer (50 mM Tris-HCl, pH = 7.4, 1 mM EGTA, 3 mM MgCl<sub>2</sub>, 100 mM NaCl, 30 µM GDP) and 8-OH-DPAT (final concentration  $1.4 \times 10^{-7}$  M) in the final assay volume of 250 µL. Hippocampal homogenates (15 µg/mL) were added to each tube as the 5-HT<sub>1A</sub> receptor source. The final DMSO and Kolliphor<sup>®</sup> EL concentrations were 0.95% and 0.05%, respectively. Non-specific binding was determined with 10  $\mu$ M of unlabeled GTP $\gamma$ S. The reaction mixture was incubated for 90 min at 37  $^{\circ}$ C in a volume of 250 µL. Next, 96-well Unifilter® Plates (Perkin Elmer, Waltham, MA, USA) were presoaked for 1 h with 50 mM Tris-HCl (pH = 7.4) before harvesting. The reaction was terminated by vacuum filtration onto filter plates with the FilterMate Harvester® (Perkin Elmer, Waltham, MA, USA). The samples were then rapidly washed with 2 mL of 50 mM Tris-HCl (pH = 7.4) buffer. Filter plates were dried for 2 h at 50 °C. After drying, 45  $\mu$ L of EcoScint-20 scintillant (Perkin Elmer) was added to every well. Radioactivity was counted in a Trilux MicroBeta<sup>2</sup> counter (Perkin Elmer). Data were analyzed with GraphPad Prism 5.0 software (GraphPad Software, San Diego, CA, USA, www.graphpad.com (accessed on 27 December 2020)). Curves were fitted with a one-site non-linear regression model. Efficacy (Emax) and half maximal inhibitory concentration (IC50) were calculated from the Cheng–Prusoff equation and expressed as means  $\pm$  SEM.

#### 3.3.3. Membrane Preparation for the 5-HT<sub>2A</sub> Receptor Binding

Male SD rats were decapitated and their brains removed and placed on ice. Frontal cortices were homogenized with a glass homogenizer in 30 vol ice-cold homogenization buffer (50 mM Tris-HCl. 1 mM EDTA. 5 mM MgCl<sub>2</sub>. pH 7.4). Next, the homogenate was centrifuged at 20,000 × *g* for 15 min at 4 °C. The pellet was suspended in 30 vol 50 mM Tris-HCl (pH 7.4) and incubated in a water bath for 15 min at 37 °C to remove endogenous serotonin. The suspension was again centrifuged at 20,000 × *g* for 15 min at 4 °C. The pellet was resuspended in 10 vol. 50 mM Tris-HCl (pH 7.4) and the centrifugation step was repeated. The final pellet was suspended in 10 vol 50 mM Tris-HCl (pH 7.4) and stored at -80 °C.

#### 3.3.4. 5-HT<sub>2A</sub> Competition Binding Assay

For the 5-HT<sub>2A</sub> assay frontal cortex homogenates (160  $\mu$ g protein/mL) were incubated in triplicate with 1 nM [<sup>3</sup>H]ketanserin for 60 min at 36 °C in a 50 mM Tris-HCl (pH 7.4) buffer containing 0.1% ascorbate (3 mM CaCl<sub>2</sub> and 10  $\mu$ M pargyline) and increasing the concentrations (10<sup>-9</sup>-10<sup>-5</sup> M) of the compound of interest. Non-specific binding was determined in the presence of 10  $\mu$ M mianserin. After incubation, the reaction mixture was deposited onto UniFilter-96 GF/B plates with the aid of a FilterMate-96 Harvester. Filter plates were presoaked beforehand with 0.4% PEI for 1 h. Next, each filter well was washed with 1.75 mL of 50 mM Tris-HCl (pH 7.4) and left to dry on a heating block set to 50 °C for 2 h. Then 45  $\mu$ L of Microscint-20 scintillation fluid was added to each filter well and left to equilibrate overnight. Filter-bound radioactivity was counted in a MicroBeta<sup>2</sup> Microplate Counter. Binding curves were fitted with one site non-linear regression. Affinity was presented as the inhibitory constant (pK<sub>i</sub>  $\pm$  SEM and K<sub>i</sub>  $\pm$  SEM) from two or three separate experiments.

## 4. Conclusions

Sixty new aryl-piperazinyl derivatives of 5-hydroxy-4,7-dimethylchromen-2-one (A), 6acetyl-5-hydroxy-4,7-dimethylchromen-2-one (B) and 8-acetyl-7-hydroxy-4-methylchromen-2-one (C) were designed, synthesized, and evaluated in silico and experimentally for their 5-HT<sub>1A</sub> and 5-HT<sub>2A</sub> receptor-binding affinities. Figure 3 present summary of the results for the most active compounds. Five compounds showed high antagonistic activities against the 5-HT<sub>1A</sub> receptor (**1***a*, **3***a*, **4***a*, **5***a*, and **5***b*), though lower than WAY-100635, the reference  $5HT_{1A}$  antagonist, while three compounds showed moderate affinity for 5-HT<sub>2A</sub> receptors (5i, 1j, and 5g) with respect to ketanserin. The designed derivatives had two- or five-carbon alkyl linkers between coumarin and arylpiperazinyl moiety. The studies showed that the new compounds showed less profound binding for the tested serotonin receptors than the derivatives containing three- or four-carbon linkers, which we described in our previous works. While the differences in  $5HT_{1A}$  activities between the three-carbon or four-carbon linker derivatives were minimal, further shortening or lengthening of the linker quite significantly lowered the potency of coumarin derivative to bind to this receptor. Overall, the results for the series of 5- and 7-hydroxycoumarin derivatives obtained in this and our previous investigations on this topic provide an exhaustive structure-activity relationship database, which can be used in future search for novel agents acting on serotonin receptors, either based on coumarin derivatives or other organic scaffolds.



1a, 3a, 4a, 1j



| Compound                                                                      | 5-HT1A Ki[nM]<br>(comp.) | EC50 (nM<br>± SEM)<br>(exp.) | 5-HT2A Ki[nM]<br>(comp.) | 5-HT2A<br>Ki[nM]<br>(exp.) |
|-------------------------------------------------------------------------------|--------------------------|------------------------------|--------------------------|----------------------------|
| <b>1a:</b> R = H, R <sub>1</sub> = OCH <sub>3</sub> , n = 5                   | 0.4                      | $29.4\pm7.3$                 | 9.64                     | $776 \pm 187$              |
| <b>3a</b> : R = COCH <sub>3</sub> , R <sub>1</sub> = OCH <sub>3</sub> , n = 5 | 35.5                     | $39.4\pm3.63$                | 33.6                     | $641 \pm 128$              |
| <b>4a</b> : R = COCH <sub>3</sub> , R <sub>1</sub> = OCH <sub>3</sub> , n = 2 | 1.4                      | $91.6 \pm 13.3$              | 20.8                     | $5214 \pm 1246$            |
| <b>5a:</b> $R_2 = OCH_3$ , $R_3 = H$                                          | 3.5                      | $30.5 \pm 2.56$              | 16.1                     | $343 \pm 86$               |
| <b>5b:</b> $R_2 = F$ , $R_3 = H$                                              | 25.7                     | $82 \pm 13.4$                | 27.2                     | $122 \pm 43$               |
| <b>5i:</b> $R_2 = R_3 = C1$                                                   | 20.4                     | $55920 \pm 4987$             | 5.2                      | $51 \pm 8.3$               |
| 5g: $R_2 = H_r R_3 = Br$                                                      | 4.7                      | $21520\pm2347$               | 2.9                      | $81 \pm 19$                |
| <b>1j:</b> $R = H$ , $R_1 = CN$ , $n = 5$                                     | 10.0                     | $74720 \pm 23990$            | ) 1.1                    | $79 \pm 18$                |

Figure 3. Summary of the results for the most active compounds.

**Supplementary Materials:** The following are available online at https://www.mdpi.com/1424-824 7/14/3/179/s1.

**Author Contributions:** Conceptualization, K.O.; methodology, K.O., Z.C., J.C., A.L., B.T., M.B.-Z.; computational modelling, B.T.; formal analysis, K.O.; resources, K.O., M.B.-Z., B.T.; data curation, K.O., B.T., A.L.; writing—original draft preparation, K.O., B.T., A.L.; writing—review and editing, M.B.-Z.; supervision, K.O.; funding acquisition, K.O. All authors have read and agreed to the published version of the manuscript.

**Funding:** This research was supported by the Medical University of Warsaw, Faculty of Pharmacy, project FW24/F/MG1/N/20 and FW24/F/PW2/N/20.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data is contained within the article.

Conflicts of Interest: The authors declare no conflict of interest.

#### References

- Michalska, K.; Chang, C.; Maltseva, N.I.; Jedrzejczak, R.; Robertson, G.T.; Gusosvky, F.; McCarren, P.; Schreiber, S.L.; Nag, P.P.; Joachimiak, A. Allosteric inhibitors of Mycobacterium tuberculosis tryptophan synthase. *Protein Sci.* 2020, 29, 779–788. [CrossRef] [PubMed]
- Hirst, D.J.; Brandt, M.; Bruton, G.; Chrisotodoulu, E.; Cutler, L.; Deeks, N.; Goodacre, J.D.; Jack, T.; Lindon, M.; Miah, A.; et al. Structure-based optimisation of orally active & reversible MetAP-2 inhibitors maintaining a tight 'molecular budget'. *Bioorg. Med. Chem. Lett.* 2020, *30*, 127533.
- Fritsche, T.R.; Biedenbach, D.J.; Jones, R.N. Antimicrobial Activity of Prulifloxacin Tested against a Worldwide Collection of Gastroenteritis-Producing Pathogens, Including Those Causing Traveler's Diarrhea. *Antimicrob. Agents Chemother.* 2009, 53, 1221–1224. [CrossRef]
- 4. Maj, J.; Chojnacka-Wójcik, E.; Kłodzińska, A.; Dereń, A.; Moryl, E. Hypothermia induced by m-trifluoromethylphenylpiperazine or m-chlorophenylpiperazine: An effect mediated by 5-HT1B receptors? *J. Neural Transm.* **1988**, *73*, 43–55. [CrossRef]
- Marcinkowska, M.; Kotańska, M.; Zagórska, A.; Śniecikowska, J.; Kubacka, M.; Siwek, A.; Bucki, A.; Pawłowski, M.; Bednarski, M.; Sapa, J.; et al. Synthesis and biological evaluation of N-arylpiperazine derivatives of 4,4-dimethylisoquinoline-1,3(2H,4H)-dione as potential antiplatelet agents. *J. Enzyme Inhib. Med.* 2018, 33, 536–545. [CrossRef] [PubMed]
- 6. Boess, F.G.; Martin, I.L. Molecular biology of 5-HT receptors. *Neuropharmacology* **1994**, 33, 275–317. [CrossRef]
- 7. Ostrowska, K. Coumarin-piperazine derivatives as biologically active compounds. Saudi Pharm. J. 2020, 28, 220–232. [CrossRef]
- 8. Asarch, K.B.; Ransom, R.W.; Shih, J.C. 5-HT-la and 5-HT-lb selectivity of two phenylpiperazine derivatives: Evidence for 5-HT-lb heterogeneity. *Life Sci.* **1985**, *36*, 1265–1273. [CrossRef]
- Sylte, I.; Chilmończyk, Z.; Dahl, S.G.; Cybulski, J.; Edvardsen, O. The Ligand-binding Site of Buspirone Analogues at the 5-HT1A Receptor. J. Pharm. Pharmacol. 1997, 49, 698–705. [CrossRef]
- 10. Rowan, M.J.; Anwyl, R. Neurophysiological effects of buspirone and isapirone in the hippocampus: Comparison with 5hydroxytryptamine. *Eur. J. Pharmacol.* **1986**, *132*, 93–96. [CrossRef]
- 11. Gamman, R.E.; Mayol, R.F.; Labudde, J.A. Metabolism and disposition of buspirone. Am. J. Med. 1986, 80, 41–51. [CrossRef]
- Chilmończyk, Z.; Leś, A.; Woźniakowska, A.; Cybulski, J.; Kozioł, A.E.; Gdaniec, M. Buspirone Analogs as Ligands of the 5-HT1A Receptor. 1. The Molecular Structure of Buspirone and Its Two Analogs. J. Med. Chem. 1995, 38, 1701–1710.
- 13. Nichols, D.E.; Nichols, C.D. Serotonin Receptors. Chem. Rev. 2008, 108, 1614–1641. [CrossRef]
- Amidfar, M.; Colic, L.; Walter, M.; Kim, Y.K. Biomarkers of Major Depression Related to Serotonin Receptors. *Curr. Psychiatry Rev.* 2018, 14, 239–244. [CrossRef]
- 15. Corvino, A.; Fiorino, F.; Severino, B.; Saccone, I.; Frecentese, F.; Perissutti, E.; Di Vaio, P.; Santagada, V.; Caliendo, G.; Magli, E. The Role of 5-HT1A Receptor in Cancer as a New Opportunity in Medicinal Chemistry. *Curr. Med. Chem.* **2018**, *25*, 3214–3227.
- 16. Rojas, P.; Fiedler, J.L. What Do We Really Know About 5-HT1A Receptor Signaling in Neuronal Cells? *Front. Cell. Neurosci.* **2016**, 10, 1–8. [CrossRef]
- 17. Chen, Y.; Lan, Y.; Wang, S.; Zhang, H.; Xu, X.; Liu, X.; Yu, M.; Liu, B.-F.; Zhang, G. Synthesis and evaluation of new coumarin derivatives as potential atypical antipsychotics. *Eur. J. Med. Chem.* **2014**, *74*, 427–439. [CrossRef]
- Chen, Y.; Wang, S.; Xu, X.; Liu, X.; Yu, M.; Zhao, S.; Liu, S.; Qiu, Y.; Zhang, T.; Liu, B.-F.; et al. Synthesis and Biological Investigation of Coumarin Piperazine (Piperidine) Derivatives as Potential Multireceptor Atypical Antipsychotics. *J. Med. Chem.* 2013, 56, 4671–4690. [CrossRef] [PubMed]
- Ostrowska, K.; Młodzikowska, K.; Głuch-Lutwin, M.; Gryboś, A.; Siwek, A. Synthesis of a new series of aryl/heteroarylpiperazinyl derivatives of 8-acetyl-7-hydroxy-4-methylcoumarin with low nanomolar 5-HT1A affinities. *Eur. J. Med. Chem.* 2017, 137, 108–116. [CrossRef]

- Ostrowska, K.; Grzeszczuk, D.; Głuch-Lutwin, M.; Gryboś, A.; Siwek, A.; Leśniak, A.; Sacharczuk, M.; Trzaskowski, B. 5-HT1A and 5-HT2A receptors affinity, docking studies and pharmacological evaluation of a series of 8-acetyl-7-hydroxy-4-methylcoumarin derivatives. *Bioorg. Med. Chem.* 2018, 26, 527–535. [CrossRef]
- Ostrowska, K.; Grzeszczuk, D.; Głuch-Lutwin, M.; Gryboś, A.; Siwek, A.; Dobrzycki, Ł.; Trzaskowski, B. Development of selective agents targeting serotonin 5HT1A receptors with subnanomolar activities based on a coumarin core. *MedChemComm* 2017, *8*, 1690–1696. [CrossRef] [PubMed]
- 22. Żołek, T.; Enyedy, E.A.; Ostrowska, K.; Posa, V.; Maciejewsja, D. Drug likeness prediction of 5-hydroxy-substituted coumarins with high affinity to 5-HT1A and 5-HT2A receptors. *Eur. J. Pharm. Sci.* **2018**, *115*, 25–36. [CrossRef]
- Żołek, T.; Domotor, O.; Ostrowska, K.; Enyedy, E.A.; Maciejewska, D. Evaluation of blood-brain barrier penetration and examination of binding to human serum albumin of 7-O-arylpiperazinylcoumarins as potential antipsychotic agents. *Bioorg. Chem.* 2019, 84, 211–225. [CrossRef] [PubMed]
- Ostrowska, K.; Leśniak, A.; Karczyńska, U.; Jeleniewicz, P.; Głuch-Lutwin, M.; Mordyl, B.; Siwek, A.; Trzaskowski, B.; Sacharczuk, M.; Bujalska-Zadrożny, M. 6-Acetyl-5-hydroxy-4,7-dimethylcoumarin derivatives: Design, synthesis, modeling studies, 5-HT1A, 5-HT2A and D2 receptors affinity. *Bioorg. Chem.* 2020, 100, 103912. [CrossRef]
- Zawadowski, T.; Pfeffer, J.; Chęciński, M. Synthesis of 3,4,9-trimethyl-7H-furo(2,3-F)-1-benzypyran-7-on-2- carboxylic acids and its aminoesters. *Pol. J. Chem.* 1980, 54, 1049–1053.
- 26. Trykowska Konc, J.; Hejchman, E.; Kruszewska, H.; Wolska, I.; Maciejewska, D. Synthesis and pharmacological activity of O-aminoalkyl derivatives of 7-hydroxycoumarin. *Eur. J. Med. Chem.* **2011**, *46*, 2252–2263. [CrossRef]
- Ruf, J.; Paganelli, F.; Bonello, L.; Kipson, N.; Mottola, G.; Fromonot, J.; Condo, J.; Boussuges, A.; Bruzzese, L.; Kerbaul, F.; et al. Spare Adenosine A2a Receptors Are Associated With Positive Exercise Stress Test In Coronary Artery Disease. *Mol. Med.* 2016, 22, 530–536. [CrossRef] [PubMed]
- Newman-Tancredi, A. Biased agonism at serotonin 5-HT<sub>1A</sub> receptors: Preferential postsynaptic activity for improved therapy of CNS disorders. *Neuropsychiatry* 2018, 1, 149–164. [CrossRef]
- Wang, Z.; Sun, H.; Yao, X.; Li, D.; Xu, L.; Li, Y.; Tian, S.; Hou, T. Comprehensive evaluation of ten docking programs on a diverse set of protein–ligand complexes: The prediction accuracy of sampling power and scoring power. *Phys. Chem. Chem. Phys.* 2016, 18, 12964–12975. [CrossRef] [PubMed]
- 30. Mobarec, J.C.; Sanchez, R.; Filizola, M. Modern Homology Modeling of G-Protein Coupled Receptors: Which Structural Template to Use? *J. Med. Chem.* 2009, *52*, 5207–5216. [CrossRef]
- 31. Bray, J.K.; Abrol, R.; Goddard, W.A.; Trzaskowski, B.; Scott, C.E. SuperBiHelix method for predicting the pleiotropic ensemble of G-protein–coupled receptor conformations. *Proc. Nat. Acad. Sci. USA* **2014**, *111*, E72–E78. [CrossRef]
- Abrol, R.; Trzaskowski, B.; Goddard, W.A.; Nesterov, A.; Olave, I.; Irons, C. Ligand- and mutation-induced conformational selection in the CCR5 chemokine G protein-coupled receptor. *Proc. Nat. Acad. Sci. USA* 2014, *111*, 13040–13045. [CrossRef] [PubMed]
- Ostrowska, K.; Grzeszczuk, D.; Maciejewska, D.; Młynarczuk-Biały, I.; Czajkowska, A.; Sztokfisz, A.; Dobrzycki, L.; Kruszewska, H. Synthesis and biological screening of a new series of 5-[4-(4-aryl-1-piperazinyl)butoxy]coumarins. *Monats. Chem.* 2016, 147, 1615–1627.
- Chien, E.Y.T.; Liu, W.; Zhao, Q.; Katritch, V.; Han, G.W.; Hanson, M.A.; Shi, L.; Newman, A.H.; Javitch, J.A.; Cherezov, V.; et al. Structure of the Human Dopamine D3 Receptor in Complex with a D2/D3 Selective Antagonist. *Science* 2010, 33, 1091–1095. [CrossRef]
- 35. Warne, T.; Moukhametzianov, R.; Baker, J.G.; Nehme, R.; Edwards, P.C.; Leslie, A.G.W.; Schertler, G.F.X.; Tate, C.G. The structural basis for agonist and partial agonist action on a ß1-adrenergic receptor. *Nature* **2011**, *469*, 241–244. [CrossRef]
- 36. Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. Autodock4 and AutoDockTools4: Automated docking with selective receptor flexibility. *J. Comput. Chem.* **2009**, *16*, 2785–2791. [CrossRef] [PubMed]