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Abstract

Symptoms of schizophrenia may arise from a failure of cortical circuits to filter-out irrelevant

inputs. Schizophrenia has also been linked to disruptions in cortical inhibitory interneurons,

consistent with the possibility that in the normally functioning brain, these cells are in some

part responsible for determining which sensory inputs are relevant versus irrelevant. Here,

we develop a neural network model that demonstrates how the cortex may learn to ignore

irrelevant inputs through plasticity processes affecting inhibition. The model is based on the

proposal that the amount of excitatory output from a cortical circuit encodes the expected

magnitude of reward or punishment (“relevance”), which can be trained using a temporal dif-

ference learning mechanism acting on feedforward inputs to inhibitory interneurons. In the

model, irrelevant and blocked stimuli drive lower levels of excitatory activity compared with

novel and relevant stimuli, and this difference in activity levels is lost following disruptions to

inhibitory units. When excitatory units are connected to a competitive-learning output layer

with a threshold, the relevance code can be shown to “gate” both learning and behavioral

responses to irrelevant stimuli. Accordingly, the combined network is capable of recapitulat-

ing published experimental data linking inhibition in frontal cortex with fear learning and

expression. Finally, the model demonstrates how relevance learning can take place in paral-

lel with other types of learning, through plasticity rules involving inhibitory and excitatory

components, respectively. Altogether, this work offers a theory of how the cortex learns to

selectively inhibit inputs, providing insight into how relevance-assignment problems may

emerge in schizophrenia.

Author summary

Individuals with schizophrenia have difficulty ignoring ideas and experiences that most

people would treat as unimportant. There is evidence that this may be due to changes in

neuronal inhibition, suggesting that inhibitory neurons may be involved in learning to

ignore irrelevant inputs. By developing a computational model that learns relevance and

irrelevance through changes in the strength of feedforward inhibition, we are able to
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simulate many specific effects of inhibitory neuron dysfunction on behavior. We also

show two computational advantages to this mechanism: (1) if relevance is signaled by the

level of excitatory activity, then downstream circuits can easily avoid learning from irrele-

vant stimuli, (2) relevance learning can occur simultaneously with other types of learning.

The model therefore offers insight into the relationships between neural inhibition and

behavior, including symptoms of schizophrenia.

Introduction

Many symptoms of schizophrenia can be understood as an inability of the brain to appropri-

ately assign relevance to environmental stimuli and internal representations. Schizophrenic

patients exhibit difficulties filtering-out, or gating, irrelevant external stimuli [1, 2, 3, 4, 5, 6, 7],

and delusions may also be the product of misattributing relevance (or “salience”) to certain

types of internally-generated representations [8]. While many neural explanations have been

proposed, convergent evidence points to dysfunction in inhibitory processes within the neo-

cortex. This idea dates back at least to Johnson (1985) [9], who hypothesized that schizophre-

nia symptoms arise from a failure of feedforward inhibition—i.e. activation of inhibition by a

system’s inputs. Circuits for cortical feedforward inhibition are now relatively well defined,

and may principally involve fast-spiking, parvalbumin-expressing (PV+) inhibitory interneu-

rons [10, 11, 12, 13]. It is also now well established that PV+ interneurons are compromised in

schizophrenia (reviewed by [14, 15, 16, 17, 18]).

Computational models have helped to articulate the link between inhibitory dysfunction

and schizophrenia [19, 20, 21]. An important example is work by Vogels & Abott (2007, 2009)

[19, 20], which demonstrated how inhibition may serve to selectively gate some representa-

tions but not others. A theme of these models is the importance of balanced excitation and

inhibition (EI balance) within the network. EI balance has been extensively studied across a

range of cortical regions (e.g., auditory cortex [22, 23, 24], somatosensory cortex [25, 26, 27,

28], olfactory cortex [29], visual cortex [30, 31], and frontal cortex [32]). Importantly, EI bal-

ance can fluctuate dynamically, and can reflect the expectation of rewards or punishments

[33, 34, 35, 36, 37]. Therefore, a better understanding of the relationship between cortical

inhibition, reinforcement signals, and relevance coding may be critical to understand

schizophrenia.

The goal of the present study is to improve our understanding of how disruptions in neural

inhibition could compromise the brain’s ability to ignore irrelevant inputs, as observed in

schizophrenia. Three main questions are addressed. First, how might inhibitory neurons learn

the relevance of specific input patterns, as defined by the patterns’ ability to predict reward or

punishment? Second, how might this learning, and corresponding fluctuations in EI balance,

help explain experimentally observed relationships between cortical inhibition and behavior?

Third, how might relevance learning in inhibitory neurons fit with other learning mechanisms

in cortex, such as category learning? Answering these questions will help explain how inhibi-

tory neurons contribute to the “gating” of inputs, potentially lending insight into how neural

dysfunction may result in some symptoms found in schizophrenia.

To answer the three questions above, we have developed a neural network model that can

learn to ignore specific inputs, but not if inhibition is disrupted. The fundamental proposal in

the model is that the overall level of excitation in a cortical circuit signals the temporally dis-

counted expectation of rewards and/or punishments (Fig 1A; [38]). According to this formula-

tion, deviations in EI balance come to represent the network’s estimate of the magnitude of the
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value signal used in reinforcement learning [39]. By representing relevance using the magni-

tude of excitatory activity across the population, it is easy for a downstream circuit with a

threshold to ignore irrelevant stimuli. Furthermore, this formulation also enables a “multi-

plexed” code, where the population-level activity represents relevance, while the specific pat-

tern of activity can represent other pieces of information (e.g. stimulus category).

Three sets of simulations are used to demonstrate the explanatory power of the model. The

first set of simulations demonstrate the model’s capacity to learn about input relevance/irrele-

vance, and that, paralleling symptoms of schizophrenia (e.g., [40, 41, 42]), relevance processing

is disrupted by impaired inhibition. The second set of simulations use an extended model to

show how the proposed relevance code can be used by a downstream circuit to prevent behav-

ioral adaptation to irrelevant stimuli, which we use to reproduce the effects of manipulating

inhibition in rodent frontal cortex [43, 44]. The final set of simulations show how relevance

Fig 1. Overview of the proposed relevance code and network model. (A) Schematic illustrating the hypothesis that

relevance (prediction of reward or punishment) is coded by levels of excitatory neuron output from a network, which

is controlled by feedforward inhibition. (B) Basic structure of the network model. Left side shows feedforward

connections from “Sensory” inputs, through inhibitory (I(t)) and excitatory (E(t)) “Cortex” units, with E(t) units

feeding onto an output layer. Right-side shows how the salience signal (S(t)), computed from the overall level of

excitatory unit activity, is combined with signals about environmental unconditioned stimuli (u(t)) to generate a

prediction error that supervises the plasticity of connection weights between Sensory and Cortex layers.

https://doi.org/10.1371/journal.pcbi.1006315.g001
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learning could occur concurrently with other types of learning, e.g. categorization of input pat-

terns, thereby providing a mechanism to multiplex information about stimulus-relevance and

stimulus-identity. Importantly, this model is not meant to provide a comprehensive theory of

relevance learning, nor the etiology of schizophrenia, but to offer a computational proof-of-

concept for how circuit dysfunction may result in certain, observed behavioral pathologies.

Results

Network summary

Our first goal was to develop a simplified neural network model in which feedforward inhibi-

tory processes are involved in learning to ignore a stimulus. We take as an assumption that

cortical brain networks, as a default, are relatively more responsive to novel input patterns.

We therefore define “learning to ignore” as the process by which a network learns to be less

responsive to those stimuli that are not predictive of rewards/punishments. Behaviorally,

repeated presentations of a stimulus lead to subjects taking longer to associate that stimulus

with a second, valued stimulus—a phenomenon known as latent inhibition [45]. Latent inhibi-

tion is known to be impaired in schizophrenia [46, 47, 48, 49]. While we ultimately develop

the model into one that exhibits latent inhibition (see “Effect of relevance learning on down-

stream circuitry”, below), the first step was to build a network that could maintain a high level

of responding to a stimulus that predicts the arrival of an unconditioned stimulus (US), while

responding less to stimuli that do not make predictions about an US.

The basic structure of the model is illustrated in Fig 1B and described in detail in Methods.

Briefly, the input, ‘Sensory’ layer of the network, x(t) = [x1(t), . . ., xn(t)] (n = 1000), drives

activity in the ‘Cortex’ layer excitatory units, E(t) = [e1(t), . . ., em(t)] (m = 800), through a set of

positive connection weights, Wx!E. (For notation purposes, we use bold symbols for all vec-

tors and matrices). The Sensory layer also drives activity in the Cortex inhibitory population

unit, I(t), through positive connection weights Wx!I. The inhibitory unit divides Cortex excit-

atory activity through the weight matrix WI!E. The inhibitory unit is intended to loosely

model the population of cortical fast-spiking inhibitory interneurons, which evidence suggests

provide a divisive “blanket” of feedforward inhibition that is synchronized by gap-junctions

[50, 51, 52, 53]. Any US (positive or negative) is represented by the variable u(t) 2 {0, 1}, which

is set to 0 if no reinforcement is present, and 1 if reinforcement is present. Hence, u(t) is an

unsigned reinforcement signal, which simply indicates the presence or absence of a US. Fig 1B

also shows Cortical excitatory units acting on a layer of ‘Output’ units. The Output layer was

not necessary for the initial simulations of relevance learning, but became essential for recapit-

ulating empirical data and demonstrating multiplexing, as described below.

In order to derive analytical results, we initially relied on a deterministic, rate-based model,

i.e. we treated x(t), E(t), and I(t) as rates-of-fire (see Methods). However, in our simulations,

we sampled the number of spikes generated by each neuron at each time-step from a Poisson

distribution, which introduced stochasticity and, given the short time-steps used, meant that

neurons fired only zero or one spike per bin, effectively introducing a threshold non-linearity.

Empirically, we found that the behavior which our analytical derivations predicted still applied

when Poisson spiking was used in the simulations.

At its core, the ability of the model to learn stimulus relevance or irrelevance depends on

feedback from a signaling pathway depicted on the right side (gray boxes) of Fig 1B. The total

level of Cortex excitatory unit activity (measured by the norm of E(t)) is compared against a

baseline, homeostatic level (H) to compute relevance, or the ‘Salience’ signal (S(t)):

SðtÞ ¼ kEðtÞk2 � H ð1Þ

Irrelevance by inhibition
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The goal of learning in our model is to have S(t) accurately represent the expected future

magnitude of unconditioned stimuli, as predicted by current sensory inputs. This would

mean that S(t) would be high for stimuli that predict reward/punishment, and close to zero for

stimuli that do not. Put another way, the goal of learning in the model is to have S(t) come to

represent the variable U(t), which is an unsigned version of the value function from reinforce-

ment learning [39]:

UðtÞ ¼ h
X1

i¼1

gi� 1uðt þ iÞi ð2Þ

where 0< γ< 1 is a temporal discounting term and h�i indicates the expected value. The for-

mal goal of relevance learning in our model is to have S(t) be equal to a scaled version of U(t),
i.e. to have S(t) = AU(t), where A is a scaling variable set to achieve physiologically realistic lev-

els of cortical activity (see Methods). If we can achieve this goal, then the overall level of excita-

tion in the Cortical layer encodes an estimate of how relevant a set of sensory inputs are for

predicting reward/punishment. In such a case, stimuli that are predictive of an US will drive

higher overall levels of excitatory activity than stimuli that are uninformative regarding an US.

A downstream circuit could then use this S(t) value implicitly or explicitly to drive learning or

gate behavioral reactions (we touch on this more below). We note, though, that any down-

stream circuit that utilized the explicit value of S(t) itself would require some form of non-lin-

ear calculation to compute the vector norm.

From a practical perspective, one way to ensure that S(t) = AU(t) is to perform stochastic

gradient descent on the squared difference between S(t) and AU(t). More precisely, we can

update the synaptic weight, Wx!I
j , from unit j in the Sensory layer onto the inhibitory unit

using the following learning rule:

Wx!I
j  Wx!I

j þ aDWx!I
j

DWx!I
j ¼ �

@ðSðtÞ � AU ðtÞÞ2

@Wx!I
j

ð3Þ

where α is the learning rate. Based on the equations given in the Methods, we derive the fol-

lowing:

@ðSðtÞ � AU ðtÞÞ2

@Wx!I
j

/ bðtÞxjðtÞ ð4Þ

where β(t) is a prediction error term:

bðtÞ ¼ AuðtÞ þ gSðtÞ � Sðt � 1Þ ð5Þ

This prediction error term corresponds to an unsigned version of the δ prediction error

term that is common in reinforcement learning [39]. Indeed, this learning update is equivalent

to an unsigned version of the temporal difference learning algorithm [39]. It can be shown

that the learning algorithm defined by Eq 3 converges when the following condition holds:

kEðtÞk2 ¼ H þ AU ðtÞ ð6Þ

When taken together with the definition of S(t) given in Eq 1, we know that if Eq 6 is true,

then the goal of having S(t) = AU(t) is met.

For most simulations, we updated the Sensory-to-Inhibitory synapses (Wx!I), as specified

in Eq 3. However, the same method of stochastic gradient descent can be applied to any
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synapses in the network. Therefore, to explore other possible mechanisms for relevance learn-

ing, in two other sets of simulations (see Relevance Learning in Methods and Learning to

ignore and blocking below) we examined how relevance learning operates when a similar gra-

dient descent rule is applied to Sensory-to-Excitatory (Wx!E) or Inhibitory-to-Excitatory

(WI!E) synapses. The equations for these learning updates are provided in Methods.

It should be noted that the model is highly abstract, and makes a number of simplifications

for the sake of mathematical tractability. For example, we omit feedback connections between

excitatory units in the Cortex layer to focus the present investigation on the hypothesis that

plasticity in feedforward inhibition can support relevance learning (discussed in more detail in

Discussion). Additionally, we generally steer away from being overly specific in identifying

brain regions (or networks of regions) and neurotransmitters with the specific computational

processes that are modeled. For readability, and general conceptualization, we offer the follow-

ing approximate mapping between modules in the model and the brain, and discuss the impli-

cations of this in more detail in Discussion: “Cortex” is inspired by work in anterior cingulate

cortex (in rodents, the medial prefrontal cortex, or mPFC); “Sensory” therefore represents

afferents to the anterior cingulate/mPFC; “Output” is modeled in some simulations as the

amygdala (detailed below), and in another simulation represents a downstream region of cor-

tex that categorizes stimuli presented to the “Sensory” layer; finally, we think of the salience

signal and prediction error as a combination of neuromodulatory inputs and intrinsic homeo-

static processes that could, in principle, also engage loops between cortex and sub-cortical

systems. A model at this level of abstraction captures only a minor set of the physiological

features present in these brain regions, so these interpretations should be judged as semi-

agnostic.

Given this framework, and with the ultimate goal of simulating function and dysfunction of

behavioral phenomena like latent inhibition, our first goal was to demonstrate whether the

model could indeed learn to use S(t) to represent the relevance of the Sensory inputs for pre-

dicting a US.

“Learning to ignore” can occur with inhibitory interneuron plasticity

The first set of simulations tested whether the model was capable of learning to ignore specific

stimuli after repeated presentations. The principle idea is that all novel stimuli are treated as

intrinsically salient (high S(t)), but if a stimulus is not predictive of other valued experiences

then the network will learn to reduce its estimate of salience to the level that would be observed

if no stimulus were present. The simulation was run using a time step (dt) of 20 ms, which was

chosen because it approximates the estimated cortical pyramidal neuron membrane time con-

stant [54, 55, 56] and the inter-spike-intervals of fast-spiking basket neurons (and, relatedly,

the period of the gamma oscillation). This timestep is also still large enough to prevent Poisson

noise from having an undue effect on the gradient calculations. Each unit of the Sensory layer

was assigned a baseline activity level to simulate the layer’s response to contextual variables. At

the beginning of the simulations, a 60 s adaptation period without stimulus presentations was

run, which allowed the synaptic weights to adjust to this baseline.

Following the adaptation period, two different 200 ms long stimuli were presented to

the network using independent, inter-trial-intervals of US presentation between 20 and 30 sec-

onds (based on classical conditioning protocols, as in [57, 58]). The stimuli were simulated

as increases in the firing rates (20 Hz) of a pre-determined set of Sensory units (10% of the

total population). One of the two stimuli, CS+, was consistently paired with a US (by setting

u(t) = 1). The onset of the CS+ preceded the onset of the US by 100 ms, though learning

could proceed with different delays between the CS+ and US, if the hyperparameters in the

Irrelevance by inhibition
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simulation were altered (S1 Fig). In general, the goal of the model was not to capture temporal

delay effects, so we did not focus on selecting hyperparameters that reproduced experimental

findings on CS-US delay periods. Moreover, as a model with no recurrent dynamics, any abil-

ity to account for more interesting temporal phenomena is limited. The other stimulus, CS0,

was random in time with respect to the US. The set of Sensory units representing the CS+ was

non-overlapping with the set of units representing the irrelevant stimulus, CS0 (Fig 2A).

Explanations for the parameters used for connection weights and firing rates are provided in

Fig 2. Impaired learning to ignore following disruption to inhibition. (A) Illustration of the “learning to ignore”

training paradigm. CS+ inputs (green bars) were paired with the US (grey bars), while CS0 inputs (orange bars) were

random with respect to the US. (B) Average Cortex excitatory unit activity (lower plots) and inhibitory unit activity

(upper plots) at simulated, 20 ms time steps in response to unlearned stimuli (left side) compared with the end of a

series of repeated presentations (right side). Excitatory responses were initially high to both stimuli, but after learning

they increased only in response to the CS+, demonstrating the network has learned to ignore the CS0. (C) Averaged

excitatory unit (left) and inhibitory unit (right) responses to the CS+ (green) and CS0 (orange) across presentations, as

compared with non-stimulus periods (black line). Learning took place over the first 20 trials, after which excitatory

responses to the CS0 plateaued to the same level as was observed with no inputs. This was due to increased inhibitory

responses to the CS0. (D) Salience responses (S(t)) to the CS+ relative to the CS0 during final presentations are plotted

for both control conditions and in simulations of inhibitory dysfunction (means ± STD across 30 model runs).

Learning to ignore was impaired with inhibitory neuron disruption only in the inhibitory neuron plasticity model

(Wx!I).

https://doi.org/10.1371/journal.pcbi.1006315.g002
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Methods. In general, all firing rate parameters were based on observations made from Ref

[38].

During the initial presentations of the CS+ and CS0, the network responded with increased

levels of Cortex inhibitory unit activity (Fig 2B, top left panels above colored boxes) and excit-

atory unit activity (Fig 2B, bottom-left panels). This was due to the increased input from the

Sensory layer, x(t), associated with presentation of either stimulus. As the number of presenta-

tions accumulated, there was a selective reduction in the degree to which excitatory units

responded to the CS0, to the point that the CS0 was treated as being equivalent to an absence

of a stimulus, from the perspective of overall levels of excitation. But, there was no reduction

in the degree to which the network responded to the CS+ (Fig 2B, right). Thus, the network

learned to “ignore” the CS0 (treat it like an absence of stimuli) and not the CS+. Fig 2C illus-

trates the gradual decrease in excitatory unit population responses to the CS0 (left) and the cor-

responding increases in the Cortex inhibitory unit (I(t)) response (right). S2 Fig shows the

distribution of excitatory unit firing-rates across the simulation and the final distribution of

the trained synaptic weights.

The increased responsiveness of the Cortex inhibitory unit to the CS0 over presentations

was due to the gradually increased connection weights between the units of the Sensory layer

and the Cortex-inhibitory unit (Wx!I), caused by the learning rule. We next examined

whether the same patterns could be observed using other model versions, in which synapses

either between Sensory and Cortex-excitatory units (Wx!E), or between Cortex-inhibitory

and excitatory units (WI!E) were modified. This comparison allowed us to assess how each

model responds to disrupted inhibition (see Methods): if current theories of impaired inhibi-

tion in schizophrenia are correct [17], then disrupting inhibition in our model should produce

impairments in the ability to learn to ignore irrelevant stimuli, as is observed in schizophrenic

patients [46, 47, 48, 49].

The results of these tests are described in Fig 2D. Both Wx!I plasticity and Wx!E plasticity

models exhibited much better learning of relevant versus irrelevant stimuli, indicated by the

salience signal (S(t)) during the CS+ relative to CS0, compared with the WI!E plasticity

model. Disrupted inhibition only eliminated the ability to learn to ignore in the Wx!I plastic-

ity model. Differences in how the model types responded to disrupted inhibition could be

assessed statistically: even ten repetitions of the simulation was more than sufficient to demon-

strate an interaction effect between model type and inhibitory manipulation (two-way

ANOVA, type × manipulation: F(2, 54) = 23.97, p = 3.6 × 10−8; one-way ANOVA comparing

the disrupted inhibition conditions: F(2, 27) = 14.87, p = 4.4 × 10−5, multiple comparisons

between all groups significantly different using a Bonferroni correction).

The use of a single unit to simulate all feedforward inhibition is obviously not biologically

realistic, and evidence suggests that models with a single inhibitory input cannot capture the

true complexity of disruptions to EI balance that occur in some neurological disorders [59].

Moreover, the effects of manipulating inhibition may depend on detailed excitatory-inhibitory

interactions [60]. Hence, one potential concern is that our results would not be reproduced

with a more realistic inhibitory network, or even with multiple inhibitory interneurons. How-

ever, because our model does not include recurrent excitation and feedback inhibition, we

effectively have a built-in level of excitatory stability, so the use of a single inhibitory unit may

be inconsequential for our specific study. Indeed, analytically, we find that similar results hold

when I(t) is treated as a population (I(t) = [i1(t), . . ., ik(t)], k = 500). To confirm this, we also

ran simulations with a more realistic population of inhibitory neurons, rather than a single

unit, and we found the same pattern of learning to ignore as occurred with a single inhibitory

unit (S3 Fig). Thus, for our particular study, the use of a single inhibitory unit did not affect

the results. More detailed models are likely to be very important for understanding cortical
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dynamics and EI balance [59, 60], but they are not required to understand or examine the

basic relevance learning mechanism that we propose here.

These simulations on “learning to ignore” offer a first step toward a more complete

model that links behavioral symptoms in schizophrenia, such as latent inhibition, with inhibi-

tory neuron dysfunction. Given the model’s specific set of assumptions and simplifications, a

Wx!I plasticity model offers the best fit to make this link. This is not to suggest that plasticity

of synapses onto inhibitory neurons is impaired in schizophrenia. Rather, it suggests that if

real cortical networks rely on plasticity in feedforward inhibitory synapses for learning to

ignore stimuli, then the causal link between inhibitory neuron dysfunction and irrelevance

learning impairments in schizophrenia can be explained. Hence, if we take inhibitory

impairment to be a part of schizophrenia, then our results predict that relevance learning in

the cortex may be mediated by plasticity of synapses onto inhibitory neurons. The next step

was to examine whether other known impairments in relevance learning in schizophrenia

could be captured by our model.

Inhibitory interneuron plasticity can explain blocking data

Another well-established relevance learning phenomenon is “blocking”, in which one stimulus

that has been previously reinforced can occlude learning for another reinforced stimulus [61].

Blocking is also known to be affected in schizophrenia [40, 41, 42]. To examine whether the

model exhibited blocking, a standard blocking protocol was simulated, as illustrated in Fig 3A.

Two different conditioned stimuli (CS) were presented to the network, CS-A (non-blocked)

and CS-B (blocked). As with the previous simulation, each stimulus was simulated as an

increase in firing rate of a non-overlapping set of Sensory units (10% of the population). The

difference between the non-blocked, CS-A, stimulus and the blocked, CS-B, stimulus is that

CS-A was conditioned alone with the US (following habituation pre-exposures) while CS-B

was conditioned only when paired with CS-A (following pre-exposures and CS-A condition-

ing). When this type of protocol is used in either rodent (e.g., [61, 62]) or human (reviewed by

[63]) experiments, it leads to CS-A being recognized as relevant for reward/punishment, but

CS-B being judged irrelevant. The blocking effect was measured in the model by comparing

the response of the excitatory unit population to CS-A and CS-B during the final test sessions

(Fig 3B, also Fig 3C inset). As predicted, the model exhibited the basic blocking effect seen in

people and animals, with CS-A generating a large excitatory response and CS-B generating a

small one (Fig 3C, left inset). Because learning was supported by inhibitory neuron plasticity

(in this case, the Wx!I plasticity model), changes in population responses to both CS-A and

CS-B over stimulus presentations paralleled changes in inhibitory neuron responses (Fig 3C,

right inset). Notably, a strong increase in inhibitory neuron activity was observed during the

“blocking” phase of conditioning, reflecting feedforward inhibition compensating for both

stimuli being presented simultaneously (Fig 3C, presentations 0-50). We note that this is also

consistent with observations of increased fast-spiking neuron activity during stimulus presen-

tations and movement [38].

As with the “learning to ignore” simulation, blocking and the effect of inhibitory disrup-

tions were tested in different versions of the models, defined by which synapses (Wx!I,

Wx!E, WE!I) were plastic. Consistent with our predictions, the blocking effect was eliminated

in the Wx!I plasticity model, following even a 10% disruption of inhibition (Fig 3D, left bars).
Blocking was also observed in the Wx!E model; however, in this model version an unexpected

“reverse blocking” effect was observed following inhibitory disruptions (Fig 3D, middle bars).
This was likely due to the learning mechanism becoming over-active following inhibitory dis-

ruptions, leading to a reduction in synaptic weights corresponding with CS-A presentations
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(regardless of it being paired with the US). No blocking effects could be obtained in the WI!E

model (Fig 3D, right bars). Once again, these results could be judged statistically, with 10 repe-

titions more than sufficient to reveal an interaction between model type and manipulation

(two-way ANOVA, F(2,54) = 44.08, p = 10−12, one-way ANOVA of disrupted inhibition condi-

tion: F(2,27) = 12.3, p = 2.0 × 10−4, with multiple comparisons test with Bonferroni correction

showing a significant difference between Wx!I and Wx!E models).

Similar to the results from the “learning to ignore” simulations, these simulations demon-

strate that there is potentially a relatively straightforward link between impaired blocking

effects in schizophrenia and inhibitory neuron dysfunction when relevance is mediated by

plasticity of synapses onto inhibitory interneurons. Both sets of simulations were built on the

empirically-based assumption that “relevance” is coded by increased excitatory neuron activity

Fig 3. Demonstration of blocking and its impairment following inhibitory disruptions. (A) Illustration of the

blocking paradigm: the model was first habituated to two stimuli (CS-A, CS-B; Pre-exposure), the CS-A and a US were

then repeatedly presented at partially overlapping times (Conditioning), both CS-A and CS-B were then presented

with the US (Blocking), followed by independent presentations of CS-A and CS-B (Testing). (B) Excitatory (lower

plots) and inhibitory (upper plots) unit activity over 20 ms bins show the networks response to CS-A (left) and CS-B

(right) at the end of the blocking paradigm. In spite of CS-B being paired with the US, the “blocked” stimulus did not

elicit increased activity among excitatory units. (C) Excitatory (left) and inhibitory (right) unit responses to CS-A and

CS-B over trials. Test epochs are expanded in insets. (D) Excitatory responses to CS-A relative to CS-B at the end of the

test epoch are plotted in control simulations and simulations with dysfunctional inhibition (means ± STD across 30

model runs). The inhibitory neuron plasticity model (Wx!I) showed a loss of the blocking effect when inhibition was

disrupted; unexpectedly, the excitatory neuron plasticity model (Wx!E) exhibited a reversal of the blocking effect; i.e.,

CS-B was learned more strongly than CS-A.

https://doi.org/10.1371/journal.pcbi.1006315.g003
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in the network. The next step was to expand the model to examine whether this code for rele-

vance could be used by downstream circuits, to recapitulate experimental effects of manipulat-

ing inhibition in cortex.

Effect of relevance learning on downstream circuitry

In order to simulate behavior, it was necessary to demonstrate how the output of the Cortex

layer, and in particular the relevance signal, S(t), might be used by an efferent region that

directly controls behavioral output. A downstream circuit should be able to use S(t) to differ-

entially respond to relevant versus irrelevant stimuli, in that relevant stimuli should drive

more learning and be associated with increased behavioral responses. A simple way to imple-

ment this is by use of a threshold mechanism, such that only activity patterns with sufficiently

high levels of excitatory activity can drive a behavioral output. Based on our interest in simulat-

ing phenomena like latent inhibition, in which relevance impacts not only behavior, but also

learning, we hypothesized that a threshold could be used not only to drive activity in an effer-

ent network, but also to drive learning. Our next step was to provide a proof-of-concept for

this idea. Since many of the rodent studies in learned irrelevance and latent inhibition use fear

conditioning, our efferent Output layer was designed to loosely represent the mammalian

amygdala, and the levels of ‘Amygdala’ unit activity were equated with fear expression.

The Amygdala output layer activities, y(t) = [y1(t), . . ., yℓ(t)] (Fig 1B, top layer), were mod-

eled as a competitive network [64] with ℓ = 10 units receiving inputs z(t) = [z1(t), . . ., zℓ(t)]
that were driven by Cortex excitatory activity via an ℓ × m synaptic weight matrix, WE!y:

ziðtÞ ¼
X

j

WE!y
ij ejðtÞ � y

yiðtÞ ¼

(
ziðtÞ þ 0:5uðtÞ if ziðtÞ > zjðtÞ; 8j 6¼ i and ðziðtÞ � 0 or uðtÞ > 0Þ

0 otherwise

ð7Þ

where θ = H/4 is a threshold variable.

What Eq 7 says is: (i) the Amygdala layer is silent unless at least one neuron’s input passes

the threshold defined by θ or an US is present, and (ii) only one unit in the Amygdala layer can

be active at any point in time, i.e. it is a “winner-takes-all” circuit. We use this “winner-takes-

all” formulation due to experimental evidence for competitive coding in the Amygdala [65,

66], and because it allows us to derive an analytical guarantee regarding the behavior of the

Amygdala layer (see below).

In-line with standard competitive learning methods [64], we update the synapses onto the

Amygdala units with the following update rule:

WE!y
ij  WE!y

ij þ ay
uðtÞyiðtÞ
kEðtÞk2

DWE!y
ij

DWE!y
ij ¼

ejðtÞ
kEðtÞk2

� WE!y
ij

ð8Þ

where αy is the learning rate. Note also that the weights WE!y
ij are rescaled after every update

such that
P

jW
E!y
ij ¼ 1 (see Methods).

Importantly, we can use the formulation of DWE!y
ij to analytically demonstrate that there is

a θ for which the Amygdala will only respond to a given sensory input if that input is, or has

been, paired with an US. First, we note that according to Eq 8, the Amygdala does not learn if
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there are no units that pass threshold (i.e. if yi(t) = 0 8i) and no US (i.e. u(t) = 0). Second, the

strength of input to a given Amygdala neuron, i, is determined by the dot product WE!y
i � EðtÞ,

where WE!y
i is the set of synapses onto Amygdala neuron i. Finally, when a given neuron in

the Amygdala, i, always “wins” (zi(t)> zj(t) 8j 6¼ i) in response to excitatory population vectors

sampled from the set EiðtÞ ¼ ½ei
1
ðtÞ; :::; eimðtÞ� 2 E i

, then the update rule in Eq 8 will push the

synaptic weights for i to meet the following condition:

WE!y
ij ¼ h

eijðtÞ
kEiðtÞk2

iEi ð9Þ

where h�iEi denotes expectation over elements of E i
. In other words, competitive learning in

the Amygdala will encourage the synaptic weight vector for unit i, WE!y
i , to be a normalized

version of the mean of the set of excitatory activity vectors that it “wins”, E i
. As the unit’s syn-

apses are pushed in this direction, the dot product WE!y
i � EiðtÞ will generally increase. Hence,

we can assume that inputs to the Amygdala units are initially small, but increase over learning.

Moreover, thanks to the relevance learning that is occurring in the Cortical excitatory pop-

ulation, we can make a more explicit guarantee about Amygdala responses. Consider the case

where unit i “wins” for a given excitatory input pattern E0 ¼ ½e0
1
; :::; e0m� 2 E i

. After Amygdala

learning has converged, Eqs (7) and (9) tell us that in the absence of an US (u(t) = 0), the input

to unit i in response to E0 is given by:

ziðtÞ ¼
X

j

h
eij

kEiðtÞk2

iEi e0j � y

�
X

j

e0j
2

kE0k2

� y

¼kE0k2 � y

ð10Þ

Eq 10 tells us that when no US is present, then zi(t) is bounded by kE0k2 − θ. When we con-

sider that relevance learning in the Cortex layer will scale kE0k2 to be close to H for irrelevant

sensory inputs, and close to H + A for relevant sensory inputs, we know that:

ziðtÞ �

(
H � y if irrelevant

ðH þ AÞ � y if relevant
ð11Þ

thus, we know there exists a threshold H< θ< (H + A) for which the Amygdala can respond

only to relevant stimuli. In practice, we find that the zi(t) are much lower than H for most sti-

muli, including relevant stimuli, since the weights rarely converge to perfect alignment with a

given stimulus pattern. From searching the hyperparameter space we found that a threshold of

θ = H/4 was best for distinguishing relevant and irrelevant stimuli, and this value was used in

our simulations.

To summarize the importance of this result: if no US is present and no training has

occurred, then it will be likely that yi(t) = 0 8i, and learning will not occur (Fig 4A). If an US is

paired with E0, then learning will occur (Fig 4B), particularly if the inputs are novel or already

learned to be relevant, because the competitive learning algorithm will make WE!y
i more simi-

lar to E0. If inputs are not novel or learned to be relevant, then fear learning will take place

more slowly, with the competitive learning algorithm taking hold as relevance learning

increases the norm kE0k2 to be closer to H + A. The increased norm in one layer, and
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competitive learning changes taking place in the next, increase the dot product WE!y
i � E0, mak-

ing it more likely that 9i such that yi(t)> 0, even when no US is present (Fig 4C). In this way,

we can guarantee that the Amygdala layer only learns and responds to stimuli that are cur-

rently being paired with an US or were previously paired with an US.

To put this result in more general terms, we have provided a proof-of-concept for the claim

that if stimulus relevance is encoded using the overall level of excitatory activity in a population,
then it is possible for an efferent region to react and learn only in response to relevant stimuli. We

demonstrated this using a simulation implementing a “learned irrelevance” paradigm. This

Fig 4. Illustration of interaction between relevance learning and competitive learning. (A) Abstract depiction of a

network after it is familiarized with stimuli but before it has been reinforced. Left plot depicts a state space with two

sets of vectors: red arrows represent a set of activity patterns in the excitatory units, E i
, blue arrow represents the

synaptic weight matrix between these units and an “output” unit i in the Amygdala, WE!y
i . The dark red arrow

represents a prototypical or average state vector E0 2 E i
. Right bar plot shows the input level of unit i, which is

computed as the dot product of the the weight matrix and activity vector of the input units: WE!y
i � E0. In this case the

stimuli are not novel, so all of the associated state vectors in the input units have norms close to the homeostatic

constant H (lengths of red arrows are approximately H). Also, since the weights WE!y
i are not yet trained, they are

poorly aligned with E0 2 E i
, resulting in activity of i being lower than threshold θ. (B) The same plots as in A during

learning. When E0 is paired with reinforcement (u(t) = 1), both relevance learning and competitive learning occur.

Competitive learning pushes the weight vector WE!y
i in the direction of the mean of input vectors, E i

(blue dotted

arrow). Meanwhile, relevance learning increases the norm kE0k2 towards H+ A (red dotted arrow). Although not

shown here, the strength of competitive learning depends on the length of the activity state vector; i.e., learning will be

stronger for novel or already-salient stimuli. (C) As previous, following combined competitive learning and relevance

learning. The dot product, WE!y
i � E0 now exceeds threshold θ. This is thanks to both the alignment of the vectors from

competitive learning and the increase in the length of E0 by relevance learning. Now i will become active in response to

E0 even without an US. (D) The same state space is plotted with a vector depicting a different activity state (green

arrow) evoked by a stimulus that has been familiarized but not reinforced. The poorer alignment between this new

state and the weight matrix coupled with the shorter length for the input vector will yield a lower WE!y
i � E0 that does

not exceed threshold, and thus fails to evoke a response.

https://doi.org/10.1371/journal.pcbi.1006315.g004

Irrelevance by inhibition

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006315 August 1, 2018 13 / 37

https://doi.org/10.1371/journal.pcbi.1006315.g004
https://doi.org/10.1371/journal.pcbi.1006315


showed that associative learning is slower if a stimulus has previously been learned as being

irrelevant than if it has not (S5 Fig).

Although we haven’t explored the use of alternatives to the competitive learning algorithm

implemented here, the same principle should apply to any mechanism that uses a threshold

and some form of learning that aligns input vectors and synaptic weight vectors. As such, we

consider this to be a general, novel insight from the model: not only can relevance learning be

implemented using feedforward inhibition to control the overall level of excitatory activity,

such an implementation makes it natural for downstream circuits to ignore irrelevant stimuli.

In this way, we can gain new insight as to why manipulations of inhibition in cortical afferent

regions to the Amygdala can alter animal behavior in fear learning tasks.

Inhibitory relevance-learning network with amygdala module recapitulates

effect of pharmacological manipulations on latent inhibition

To determine how relevance learning and our Amygdala circuit interact to produce behavior

we simulated experimental studies that link EI balance in cortex to relevance learning and fear

conditioning [43, 44]. Our first set of simulations with the Amygdala layer examined the find-

ings of Piantadosi & Floresco (2014) [43]. Their study showed that a GABA-A receptor antago-

nist, applied to the medial prefrontal cortex (mPFC), can have different effects on latent

inhibition when applied at different phases of the learning protocol. As stated previously: latent

inhibition refers to the phenomenon wherein it is harder to associate a stimulus with a rein-

forcer if a subject has previously been exposed to that stimulus. In the study by Piantadosi &

Floresco (2014), animals were separated into two groups: those that received pre-exposures to

a CS and those that had no pre-exposure. When the CS was subsequently paired with a foot-

shock, the pre-exposure group was less likely to learn the fear association compared with the

no pre-exposure group (i.e. the animals exhibited latent inhibition). Importantly, the authors

found that blocking GABA-A receptors had different effects if done during the conditioning

period or during the test: GABA-A antagonists infused during conditioning amplified latent

inhibition, whereas infusions during testing disrupted latent inhibition (Fig 5A). We examined

whether our model would exhibit a similar pattern of responses. To determine this, the experi-

ments were simulated using a 20% reduction in inhibition to mimic blockade of GABA-A

receptors (see Methods).

As with previous simulations, stimulus presentation was modeled as an increase in baseline

firing rate to 20 Hz across a pre-determined set of Sensory units (10% of all units; i.e., 100

units), the timestep used was 20 ms, and 1000 Sensory, 800 Cortex, and 10 Amygdala units

were used.

The model showed a similar pattern of results as observed by Piantadosi & Floresco (2014),

with simulated GABA-A blockade increasing the latent inhibition effect if applied during con-

ditioning, and eliminating latent inhibition if applied during testing [43] (Fig 5B). The link

between the salience signal (S(t), determined by levels of excitatory unit activity) and Amyg-

dala activity can be better understood by examining how each changed from one trial to the

next (Fig 5C and 5D). As illustrated by the downward slope of activity among Cortex excit-

atory units over pre-exposure trials, the network receiving pre-exposures learned to treat the

CS as irrelevant (Fig 5C). As a result, during the conditioning period (gray shaded area in

Fig 5C and 5D), Cortex activity was too low to push the Amygdala past threshold, making it

less likely for learning to occur in the Amygdala in the pre-exposure condition (gray dotted

line in Fig 5C and 5D). In contrast, the excitatory activity during conditioning for the non pre-

exposure condition was high due to relevance learning, which resulted in a sufficiently strong

Amygdala response to the CS to induce fear association learning (gray solid line in Fig 5C and
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5D). When inhibitory signaling was experimentally reduced during conditioning (red lines in

Fig 5C and 5D), both Cortex activity and Amygdala learning were amplified. However, this

learning led to greater than normal inhibition during the test phase, so that in the pre-exposure

condition the network remained relatively inactive during testing (red dotted line in Fig 5C

and 5D; compare to control pre-exposure condition, grey dotted line). In contrast, when

inhibitory signaling was reduced during testing, many Cortex units become active in both the

pre-exposure and no pre-exposure conditions (blue lines in Fig 5C). The key to our competi-

tive learning algorithm, though, is that the Amygdala weights align to the excitatory inputs

(Fig 4). Thus, the over-activity of the Cortex units actually made it slightly harder for the

Amygdala to pass threshold during testing (blue lines in Fig 5D). Hence, our model qualita-

tively recapitulated the results of Piantadosi & Floresco (2014) thanks to the interaction

between relevance learning and the threshold effects in our Amygdala output layer. These data

provide a new interpretation of the Piantadosi & Floresco (2014) experiments. Specifically,

Fig 5. Simulation of experimental data on rodent latent inhibition. (A) Fear expression in rats in a latent inhibition

paradigm in which animals were either pre-exposed (black bars) or not pre-exposed (white bars) to the conditioned

stimulus, and treated with either saline, a GABA-A antagonist during conditioning, or a GABA-A antagonist during

testing (reproduced by hand from [43]). (B) Data from the model simulation of the same latent inhibition paradigm.

Bars show median activity across 30 model runs (errorbars are 90% CI generated by bootstrapping 5-sample medians),

of the average Amygdala layer activity during the final (test) stimulus presentations. (C) Cortex excitatory unit activity

in response to stimuli across trials in an example run of the model. The downward curve during the first 30

presentations shows that the network learned to ignore the CS in all simulations with CS pre-exposures. The activity

during conditioning and test periods shows the combined impact of relevance learning and impaired inhibition. (D)

Amygdala activity levels in an example run of the model over trials with Conditioning and Testing epochs (as in the

right-side panel of part C). Test period activity shows a pre-exposure effect in the control condition (solid versus

dashed gray lines). This is amplified when inhibition is disrupted during conditioning (solid versus dashed red lines)

but was lost when inhibition was disrupted during test (solid versus dashed blue lines).

https://doi.org/10.1371/journal.pcbi.1006315.g005
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they suggest that by manipulating the inhibition in cortex, Piantadosi & Floresco (2014) may

have been altering the encoding of stimulus relevance, and thereby, affecting the behavior of a

downstream circuit, such as the amygdala, that may respond/learn from relevant stimuli using

a threshold mechanism.

Inhibitory relevance-learning network with amygdala module recapitulates

effect of optogenetic manipulations on fear behavior

The second simulation of experimental results we conducted addressed work by Courtin et al.

(2014) [44], which examined how the activity of PV+ interneurons in the mPFC controls fear

expression. As mentioned above, PV+ interneurons are the cells that we intended to model

using the Cortex inhibitory unit, I(t). We simulated the experiments of Courtin et al. (2014)

using the same network and parameters as used to simulate latent inhibition above (see Meth-

ods). The original study by Courtin et al. (2014) demonstrated that optogenetic stimulation of

PV+ interneurons in the mPFC results in increased fear responses in mice, both before condi-

tioning and, even more prominently, when stimulation was paired with a CS following extinc-

tion [44] (Fig 6A, left). When we applied the same protocol to our model, using a reduction in

inhibitory inputs to mimic optogenetic silencing (see Methods), the same pattern of activity

was observed in the Amygdala layer (Fig 6B, left). The original experiments also showed that

activation of mPFC PV+ interneurons decreased freezing to a conditioned CS (Fig 6A, right).
This was consistent with activity patterns in the model in a subsequent set of simulations

(Fig 6B, right). As with the latent inhibition tests above, our results here provide a novel inter-

pretation for the Courtin et al. (2014) study. Specifically, our data suggest that the effects of

silencing or activating PV+ inhibitory interneurons in the mPFC may be explained by the

interaction between a relevance code mediated by feedforward, divisive inhibition, and a

threshold mechanism in the amygdala. They also offer evidence that the present model, in

spite of its simplicity, may capture an essential relationship between the role of inhibition in

the mPFC region and the competitive network in the amygdala [65, 66].

Fig 6. Simulation of experimental data on role of feedforward inhibition in freezing behavior. (A) Experimental data illustrating

the effects of optogenetic inhibition (“ArchT”) or excitation (“ChR2”) of medial prefrontal cortex PV+ inhibitory neurons

(reproduced by hand from [44]). Inhibitory neuron inhibition was performed both before conditioning (“Base”) and following

conditioning and extinction (CS+ & light). As well, inhibitory neuron excitation was performed following conditioning (right side,

CS+ & light). (B) Replication of general patterns of inhbitory neuron manipulations in the model, substituting -20% inhibition for

“ArchT” and +10% excitation (i.e., increased WI!E weights by 10%) for “ChR2”.

https://doi.org/10.1371/journal.pcbi.1006315.g006
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Relevance learning can be multiplexed with input classification

A final set of simulations was used to investigate a key computational advantage to using the

overall level of excitation for signaling relevance. If the overall level of excitatory activity

encodes relevance (via S(t)), and this is controlled by feedforward inhibition, then the excit-

atory synapses in the network should still be free to control the specific pattern of E(t) to

encode other information. This can be described mathematically by viewing the excitatory

Cortex activity patterns E(t) as vectors, where the norm (length) of the vector is a signal of rele-

vance (S(t)), but the position that the vector points in encodes other aspects of a stimulus, such

as orientation, frequency, or category.

To test this idea, the network was trained to categorize 10 different stimulus classes, with

only one of these paired with a reward. The prediction was that the network could learn infor-

mation about relevance and also learn to respond with output patterns specific to the correct

stimulus category. To train the network to categorize stimuli, we employed a softmax Output

layer (see Methods) and trained the excitatory pathway in the network with backpropagation-

of-error [67] (Fig 7A). It is worth noting that although backpropagation-of-error is not a

biologically realistic learning algorithm, there is evidence that it could be approximated with

biologically realistic mechanisms [68, 69, 70, 71]. Furthermore, independent of the specific

Fig 7. Multiplexed stimulus category and relevance codes via simultaneous excitatory and inhibitory learning. (A)

Diagram illustrating modified model that included both the mechanisms described above for relevance learning (on

Wx!I synapses) in addition to mechanisms learning an output vector that matches categories presented as input

(backpropagation algorithm applied to the WE!y and Wx!E synapses). As illustrated by bottom boxes, one of ten

stimuli presented to the network was rewarded. (B) Average excitatory unit responses to the one rewarded (green) and

nine unrewarded stimuli (orange) over time. The network quickly learns to respond more strongly to the rewarded

stimuli. (C) Performance of the model on input classification. Over the same time that the network learns to

discriminate rewarded and unrewarded stimuli, it also becomes capable of matching the output vector to the input.

The gray trace shows the percent of presentations that stimuli are correctly classified, which increases quickly before

reaching a plateau. The blue trace shows the cross-entropy, an information measure (in natural units of information)

based on the output activity distribution that is inversely related to the success of input classification.

https://doi.org/10.1371/journal.pcbi.1006315.g007
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algorithm used, the goal of the simulation was simply to offer a proof of the multiplexing

concept.

Training of the excitatory pathway with backpropagation was done concurrently with train-

ing of the feedforward inhibition pathway using the relevance learning algorithm (as described

in Methods). Over the course of training, the network learned to dissociate the rewarded stim-

ulus category from the unrewarded ones, via the relevance signal, S(t) (Fig 7B). Importantly,

S(t) did not differentiate between the unrewarded categories (Fig 7B, orange lines), demon-

strating that it was not encoding the categories, per se, but only their relevance for predicting

reward. At the same time, the set of ‘Category’ output units did learn to differentiate all 10 cate-

gories of stimuli. A cross-entropy loss function was used to evaluate the success of categoriza-

tion, with lower values indicating a higher degree of separation between the categories. Over

the course of 20 simulated seconds of training, this measure dropped to almost zero and the

output layer was achieving roughly 95% accuracy on average (Fig 7C). We found similar

results when we rewarded three of the stimuli, rather than only one (S4 Fig). Importantly, rele-

vance learning and category learning were operating simultaneously in these simulations. The

results demonstrate the potential for multiplexing relevance signals with other stimulus infor-

mation by using the overall level of excitatory activity as a code for value.

Discussion

The simulations presented here explored how disruptions in feed-forward, neural inhibition

could compromise the brain’s ability to ignore irrelevant inputs, as observed in schizophrenia.

The model was structured as simply as was necessary to examine this connection, incorporat-

ing three core mechanisms. First, relevance was coded as the overall excitatory activity in the

‘Cortex’ layer. Specifically, the norm (length) of the excitatory units’ activity vector was treated

as a reinforcement learning value function, though “unsigned” in that it treated positive

(reward) and negative (punishment) values equivalently (Fig 1). Second, the model used feed-

forward inhibition—i.e., the connections from the ‘Sensory’ input layer to Cortex inhibitory

units—to control the overall level of Cortex excitatory activity. When paired with the first

mechanism, the result was that disruptions to inhibition led to failures in normal relevance

attribution (Figs 2 & 3). Third, the model used a form of an established reinforcement learning

algorithm, temporal difference learning, to train the feedforward inhibitory connections and

thereby learn to differentiate relevant versus irrelevant stimuli. When these mechanisms were

further connected in sequence with an output (the ‘Amygdala’) that used a threshold and a

competitive learning mechanism (Fig 4), they offered specific predictions about how disrup-

tions to inhibition alter fear behavior (Figs 5 and 6).

These three mechanisms are highly consistent with previous empirical work. The idea that

overall levels of excitation in “Cortex” may provide a code for unsigned value was inspired by

work on the medial prefrontal cortex (mPFC), a region that has been implicated in schizophre-

nia and many other disorders [72]. Recent data has demonstrated the importance of mPFC

disinhibition for coding relevant situations [33, 44, 73, 74, 75], including the observation that

net levels of activity in putative pyramidal neurons increase near reward sites [38]. The second

mechanism, assigning control of this relevance code to feedforward inhibition, matches empir-

ical findings on the importance of inhibition for behaviors like latent inhibition (e.g. [43]).

It also matches decades of work linking relevance impairments in schizophrenia [1, 2, 3, 4, 5,

8, 9] with evidence that inhibitory neurons, and in particular, classes of inhibitory neurons

supporting feedforward inhibition, may be differentially compromised in the disease [14, 15,

16, 17, 18, 76]. Finally, the third mechanism, wherein inhibitory interneuron plasticity is the

means for learning to differentiate relevant versus irrelevant stimuli, is consistent with findings
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that the neural connections supporting feedforward inhibition are plastic [77, 78, 79], in some

cases requiring NMDA receptors with a well established importance for associative plasticity

[80, 81, 82]. These three mechanisms together comprise a more general theory of cortical cod-

ing: plasticity involving inhibitory neurons may act in parallel with excitatory neuron plasticity

to accomplish different learning functions. While excitatory plasticity may provide a mecha-

nism for carrying information about stimulus specifics, plasticity involving inhibitory neurons

may be important for relevance learning (Fig 7). This suggests a multiplexing of learning func-

tions in the neocortex, and links a large literature on inhibitory plasticity with theories about

the importance of these neurons for maintaining EI balance.

As this was an abstract neural network model, many features of the real brain were absent.

The most notable was the absence of feedback connections within Cortex. By excluding these

connections, the mathematical complexity of calculating synaptic balances and their experi-

ence-dependent changes could be minimized, and it became possible to isolate the learning

algorithms that explain the behavioral phenomena of interest. The results demonstrate that

plasticity in the synapses connecting inputs to inhibitory neurons is sufficient to support rele-

vance learning. Such a mechanism also causes relevance learning to be dysfunctional following

disrupted inhibition. In contrast with our model, which lacks feedback excitatory connections,

Murray and colleagues used a more detailed circuit model that included these connections to

show how inhibition helps maintain intact memory representations, and how this could be

disrupted in schizophrenia [21]. The aim of this previous study was very different from the

present investigation; the findings, however, are not inconsistent. It would be beneficial in the

future to examine the interrelationships between functions and algorithms of feedforward ver-

sus feedback excitation, including the dependencies that may exist between working memory

and stimulus gating.

Another feature missing from the present model was the absence of different types of inhib-

itory neurons. Recent work by Yang et al. [83] tackled the question of how the inhibitory sys-

tem regulates signal propagation (“gating”) using functionally distinct types of inhibitory

neurons. They were able to show how signal propagation may require parallel signaling

between disinhibitory and excitatory inputs onto the same neurons. This model highlights

some key features that distinguish the present work from other research in the area ([20, 83]).

Most obviously, our model does not adhere to the requirement that EI balance must be strictly

maintained: regulation of signal propagation takes place at the population level by allowing for

dynamic EI balance (discussed above). Relatedly, no signals are completely gated within the

cortex: “relevant” versus “irrelevant” information is differentially represented with relatively

subtle, average firing rate differences across the population of all neurons. It is only when Cor-

tex signals reach an efferent region (in our case, the competitive-learning Amygdala) that

information related to particular input patterns is prevented from propagating forward.

Indeed, in our multiplexing experiments the category information of irrelevant stimuli was

maintained (Fig 7). These two distinctions, the population-level regulation of signal propaga-

tion and the graded way in which it is implemented, provide the basis for multiplexing of

learning functions, by allowing inhibitory and excitatory plasticity processes to follow inde-

pendent learning rules (discussed below). The population-level approach is also intuitively

consistent with the necessarily high-dimensionality of single-neuron coding in regions like

prefrontal cortex (e.g., [84]). Moreover, recent computational work suggests that ensemble

activity in cortical pyramidal neurons can itself multiplex feedforward and feedback signals

[85]. Such a mechanism, paired with our results, could provide a means of simultaneously

encoding relevance, stimulus identity, and top-down information (e.g. feedback or attention)

in the same cortical microcircuits.
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While the abstract nature of the model offers only a proof-of-concept for certain elements

of true cortical computation, it also raises potentially fundamental questions about how certain

processes may be implemented in the brain. Particularly compelling is the question of where

the computed salience signal (S(t)) and corresponding prediction error (β(t)) come from. We

consider two non-exclusive possibilities. In one scenario, the salience signal is explicitly read-

out by cells in neuromodulatory nuclei, as has been described within the dopaminergic system

[86], which is then used to compute a prediction error signal that feeds back to the cortical

afferent, modifying local plasticity accordingly [87]. In the second scenario, the prediction

error calculation responsible for maintaining EI balance is carried out by circuits that are local

to the cortex, and may take place, for example, by intrinsic signaling processes within the

inhibitory neurons (see also [88, 89]). In this case, either the salience signal itself (the excitatory

input onto inhibitory neurons) or a set of intrinsic, cellular processes that compute the differ-

ence between inputs and “desired” output levels (the prediction error signals), are modified by

neuromodulatory signals carrying information about current rewards/punishments.

However the prediction error signal is implemented, the plasticity processes involved must

be intertwined with local mechanisms for maintaining EI balance; otherwise, EI balance main-

tenance would be constantly working to compensate for changes associated with relevance

learning. As described in Introduction, the ability of local cortical circuits to maintain EI bal-

ance is well established [22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 90]. The process by which net-

works maintain this balance, while not fully known, has been proposed to be supported by

plasticity at inhibitory synapses in response to feedback excitatory signals [88, 89]. Recent

work has demonstrated local changes in synaptic scaling at both inhibitory and excitatory syn-

apses following local changes in excitation [91]. One possibility is that while the local network

is capable of maintaining EI balance, its set-point can be adjusted by signals from extrinsic

neuromodulators. Dopamine has received much attention in signaling salience, but acetylcho-

line has also come under the spotlight (e.g. [36, 92, 93, 94]). Disinhibition may also involve a

class of inhibitory neurons that contain vasoactive intestinal polypeptide (VIP+ interneurons

[33]). To accurately capture the mechanisms of the supervisory process, it will likely be neces-

sary to increase the complexity of the model by including feedback connections between excit-

atory neurons, and connections from excitatory to inhibitory neurons.

One detail that was critical in the present model, and a primary prediction of the present

work, is that relevance learning not only involves inhibitory changes, but specifically may

involve plasticity on the feedforward, input-to-inhibitory neuron synapses in cortical circuits.

This prediction is consistent with recent data showing that the number of excitatory synapses

onto parvalbumin-expressing inhibitory neurons is reduced in schizophrenia [95]. It also adds

to a growing literature on the functions of inhibitory neuron plasticity [96, 97, 98]. One

recently proposed idea is that during memory encoding, patterns of inhibitory modifications

mirror excitatory modifications. This would ensure that EI balance can be appropriately main-

tained and thereby reduce inappropriate recall [96]. The present model fits with this proposal.

Inhibitory synapses in the model learned to match any increases in excitatory synapses in

order to keep the “Cortex” output at the homeostatic set-point. Only when the prediction

error signal indicated that an input was relevant was this mirrored inhibition relaxed to allow

the excitatory activity to increase.

The simulations also addressed how the proposed code for relevance might impact learning

and activity in a post-synaptic region. With the aim of simulating experimental fear-learning

data, the post-synaptic region chosen was the amygdala, which was modeled as a competitive

learning network [64]. Use of a competitive network is consistent with known properties of

the mammalian amygdala [65, 99]. Additionally, projections to the amygdala can be found

throughout the mPFC (e.g. [100]) and these projections are known to excite principle neurons
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in that region (e.g. [101]). By combining our proposed relevance code at one layer of the

model with a competitive learning rule with a threshold at the next, the model was capable of

responding selectively to only those specific stimuli that had been paired with reinforcement

signals in the past (Fig 4). The model thereby became capable of replicating behavioral patterns

from both pharmacological [43] and optogenetic [44] manipulations to mPFC inhibitory neu-

rons (Figs 5 and 6).

Our model shows how changes in inhibitory gain control can determine how excitatory

activity is involved in representing distinct stimuli and, in the Amygdala simulations, how this

can drive behavior and learning. It is important to emphasize that this idea in itself is not

novel. Another notable model in which plasticity is modulated by stimulus-regulated gain con-

trol has been described by Harris and Livesey [102, 103]. This particular example uses a very

different structure from our own network, and is aimed at a very different question: how asso-

ciative learning can take place for stimulus combinations, even when the representations of

such stimuli are “elemental” (see also [104]). It is also capable of replicating many classical con-

ditioning phenomena that our own simulations do not address, and further work would be

required to identify which features of the two models are compatible. What is perhaps most

interesting, however, is not so much the differences between models, but the apparent utility

and versatility of gain control regulation for network computation. The present work specifi-

cally focuses on how inhibitory plasticity may support some of these functions.

One novel contribution of the model is the mechanism it proposes for the multiplexing of

different learning functions in cortical networks. By allowing inhibitory plasticity to rely on an

entirely independent learning rule from excitatory neuron plasticity, we allow the network to

perform associative learning on both relevant and irrelevant input patterns (Fig 7). The ability

of the network to learn even in the absence of novelty or relevance could be thought of as a

kind of implicit learning, in which knowledge of the environment—including its statistical

structure—is extracted from experience in the absence of reinforcement, attention or con-

sciousness [105, 106]. This differs from many other models, including those cited above, in

which inhibitory plasticity is closely tied to excitatory plasticity (e.g., [83]). In the future it will

be useful to examine the specific roles of inhibitory neuron plasticity in more detail, and to see

whether the differences in approaches may be reconciled through different inhibitory neuron

types, cortical layers, or other factors.

There are a number of behavioral phenomena, well reported in the classical conditioning lit-

erature, that fall outside of the scope of our simulations. One that has been observed since

some of the earliest experiments by Pavlov and Konorski is the phenomenon where a stimulus

not associated with an US can become a “conditioned inhibitor”—i.e., it can become salient in

its own right, inhibiting responses normally associated with the US [107]. An example of this is

if the pre-exposed CS in the latent inhibition paradigm comes to be perceived as a salient

“safety cue”. The extent to which behaviors like latent inhibition are determined by the CS

becoming a conditioned inhibitor is unclear, and likely depends on the specific protocol used.

An interesting possibility is that different cortical areas make use of a similar scalar code for rel-

evance, but apply them to different—and sometimes opposing—functions. Within the mPFC

the infralimbic cortex seems to be involved in signaling safety, important for fear extinction,

while the slightly more dorsal, ventral prelimbic cortex may instead signal danger, important

for fear learning (e.g., [108, 109]). If a punisher is assumed by default given past history and

context, then the absence of the punisher may effectively act as an US, suppressing inhibitory

neuron activity. In the mPFC this may engage the infralimbic cortex to promote the signaling

and learning of safety. If a punisher is not assumed, then, according to our framework, the only

effect of its absence following a CS0 would be plasticity processes on inhibitory neurons to

maintain excitatory-inhibitory balance, resulting in loss of attention to the CS0 and retardation
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of learning a subsequent CS-US pairing (see S5 Fig). Explorations of the differences between

learning the relevance of a stimulus for safety, punishment, or reward in different circuits were

outside of the scope of the current study, but should be explored in future work.

Another area that was not explored in the current set of experiments was the increasingly

apparent link between pathologies of EI balance and deficits in social behavior and motivation

[110, 111, 112]. It seems likely, however, that some of the more basic results from the present

investigations could offer understanding for why some individuals have more difficulty filtering

or dynamically processing social information. Tackling these complex problems will require a

convergence of multiple experimental and theoretical approaches, and mathematically tractable

network models that include excitatory-inhibitory interactions will be an essential tool.

Altogether, our theoretical investigations provide a potential explanation for why behaviors

such as gating and relevance learning could depend on feedforward inhibition, and therefore,

how pathologies of inhibition may underlie neuropsychiatric conditions such as schizophre-

nia. In many ways the ideas reformulate a long existing hypothesis that schizophrenia is a dis-

ruption of feedforward inhibition [9]. But the model offers a computational description of the

process with defined links between several functional elements. Furthermore, it offers valuable

predictions about the importance of plasticity in both excitatory and inhibitory neurons, lend-

ing insights into the normally functioning brain.

Methods

Network summary

The core of the model is a two-layer feedforward neural network composed of different types

of units. Stimuli are encoded by a set of input units, x(t) = [x1(t), . . ., xn(t)], the ‘Sensory’ layer.

In our analysis of the network, we treat x(t) as a vector of firing rates. In our simulations, this

layer is a set of excitatory Poisson units with firing rates ϕxðtÞ ¼ ½�x
1
ðtÞ; . . . ; �

x
nðtÞ�. Changes in

the Sensory layer take place when stimuli are presented, as described in more detail below.

Sensory units feed into a middle layer, ‘Cortex’, that is comprised of two populations: an excit-

atory population, E(t) = [e1(t), . . ., em(t)], and an inhibitory population modeled as a single

unit I(t) that acts divisively on the excitatory units. As with the sensory inputs, we treat E(t) as

a vector of firing-rates when conducting our analyses, but simulate it as a vector of Poisson

units with rates ϕEðtÞ ¼ ½�E
1
ðtÞ; . . . ; �

E
mðtÞ�. The receptive fields of Cortex units have no tempo-

ral dimension, so the activity at any point only reflects the current inputs to the network.

The connections from input units to the excitatory cortex units are contained in an m × n
synaptic weight matrix, Wx!E, the connections from input units to the inhibitory Cortex unit

are contained in the n-dimensional vector of synaptic weights, Wx!I, and the connections

from the inhibitory unit to the excitatory units are contained in an m-dimensional vector of

synaptic weights, WI!E.

Altogether, this set-up gives the following equations which describe the activity of the

model in the simulations:

xðtÞ � PoissonðdtϕxðtÞÞ

IðtÞ ¼Wx!I � xðtÞ þ bI

ϕEðtÞ ¼ ðWx!E � xðtÞ þ bEÞ � ðWI!EIðtÞ þ IfloorÞ

EðtÞ � PoissonðdtϕEðtÞÞ

ð12Þ

where� represents element-wise division of a vector/matrix, dt is the time-step, which is

20 ms for most simulations, bE and bI are bias terms, and Ifloor = 0.1 prevents division by zero.
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We note that here we have indicated I(t) as a scalar, since it was in most simulations, but it can

be formulated as a vector with no change to the results (see S3 Fig). As well, we note that for

our mathematical analyses and gradient calculations we simply set x(t) = ϕx(t) and E(t) = ϕE(t).
One additional component that is not included in the above equations, but which contrib-

utes to relevance learning (see Relevance Learning, below), is a signal communicating the

unsigned magnitude of reward or punishment, i.e. the unconditioned stimulus (US). In the

present simulations the value of the US at a given time (u(t)) is either 1 or 0, though in princi-

ple it could as easily be a graded value.

In some simulations, we add an additional output layer of units with activity y(t) =

[y1(t), . . ., yℓ(t)] that receives inputs from the excitatory cortical units via an ℓ × m synaptic

weight matrix, WE!y. In those simulations which address previous experimental findings

(Figs 5 and 6), the output layer is intended to represent an amygdala (‘Amygdala’) and imple-

ments a competitive learning algorithm (according to the framework of [64]). In the competi-

tive learning module, a maximum of only one unit may be active at any given time (it is

possible for no units to be active). Whether a unit, i, is active depends on two conditions: (1)

the unit is receiving stronger input than any of the other units, (2) the unit’s input,

WE!y
i � EðtÞ, is greater than a threshold, θ. Amygdala units also receive signals from the US,

such that u(t) can help to increase output, yi(t). Based on all of this, the activities of the Amyg-

dala units are governed by the following equations:

ziðtÞ ¼
X

j

WE!y
ij ejðtÞ � y

yiðtÞ ¼

(
ziðtÞ þ 0:5uðtÞ if ziðtÞ > zjðtÞ; 8j 6¼ i and ðziðtÞ � 0 or uðtÞ > 0Þ

0 otherwise

ð13Þ

Note that the activities yi(t) are rescaled after every weight update (see below) such that

yiðtÞ  
yiðtÞP
i
ziðtÞ

and
P

jW
E!y
ij ¼ 1. This rescaling provided an important normalization of the

Amygdala activity, keeping it in a reasonable range without impacting learning.

The threshold, θ, determines when the Amygdala layer can have any active units. An expla-

nation for how θ was selected is given in the results in ‘Effect of relevance learning on down-

stream circuitry’.

Although having a single neuron firing is undoubtedly not what occurs in the mammalian

amygdala, there is evidence for a competitive “winner-takes-all” mechanism [65, 66], such that

a single ensemble of neurons is active and all others are silent. Therefore, the active unit in our

model ‘Amygdala’ could be taken to represent an ensemble of “winning” neurons. Since indi-

vidual units in this case were representative of larger ensembles, the winning unit’s firing rate

was kept as a continuous “activation level” value rather than Poisson-distributed spike counts.

The output layer takes on a different form in those simulations that demonstrate how our

model can multiplex relevance signals and stimulus identity. In this case, the output units rep-

resent some efferent, such as a second area of cortex, that is responsible for categorizing input

activity. For simplicity, we refer to this layer in the simulations as the ‘Category’ layer. The Cat-

egory layer is a set of softmax, linear-non-linear-Poisson units with rates ϕy(t) governed by:

�
y
i ðtÞ ¼ k

P
jW

E!y
ij ejðtÞ

P
k

P
jW

E!y
kj ejðtÞ

yiðtÞ � Poissonðdt�y
i ðtÞÞ

ð14Þ
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where κ = 20 Hz scales the firing-rates such that the activity of the units is proportional to the

probability of each of the ℓ possible categories for the current stimulus, with a rate-of-fire of

20 Hz corresponds to a probability of 1.

Stimuli

Sensory (input) units are divided into sets of stimulus-coding and non-coding units. Each

stimulus is capable of activating one tenth of the Sensory units. In the case of the learning to

ignore simulations, for example (see Learning to ignore and blocking, below), one tenth of the

units are activated by the stimulus, “CS+” that is paired in time with the US, one tenth of the

units are activated by another stimulus, “CS0”, that are random in time relative to the US, and

the rest are activated by neither CS+ nor CS0. Importantly, Sensory units fire both when acti-

vated by a stimulus and not, just at different rates. An active sensory unit generates spikes with

a Poisson process at a rate of ϕon = 20 Hz, while an inactive sensory unit generates spikes with

a Poisson process at a rate selected randomly based on a gamma distribution that peaks at

0.6 Hz and has a variance of 3 Hz2. These rates were selected based on baseline firing charac-

teristics among putative excitatory neurons recorded from the rat medial prefrontal cortex

[38]. Hence, for example, if the CS+ is presented to the network, then the ten percent of the

units activated by CS+ will be firing at a rate of 20 Hz, while other units will continue firing at

their typically low (0-2 Hz) but occasionally high (10 or 20 Hz) baseline rate. In those simula-

tions that use the Category output layer, Sensory units are divided into ten sets, with each set

activated differentially by a particular category (in these simulations, baseline rates were also

simplified to be homogeneously 2 Hz, as variance was found to not impact the results).

Weight initialization

Initialization of the three sets of connection weights in the first layers—Sensory to Cortex

excitatory units (Wx!E), Sensory to Cortex inhibitory unit (Wx!I), and Cortex inhibitory to

excitatory units (WI!E)—took into account three issues. First, when novel stimuli were first

presented to the network, the evoked activity in Cortex excitatory units needed to be higher

than baseline levels, but ideally not much higher than levels associated with “relevant” stimuli

(described below in Relevance learning). Second, baseline activity of the cortex inhibitory

unit had to be high enough that reducing Wx!I had an impact on Cortex excitatory units.

Third, that Wx!I were balanced with Wx!E, such that small changes in Wx!I could not dra-

matically alter population activity. These three constraints were additionally considered

alongside the targeted, average firing rates associated with “relevant” and “irrelevant” input

vectors. Based on data from Insel and Barnes [38], these corresponded to average firing rates

in regular-firing, wide-waveform neurons of 3.9 (at reward sites) and 2.6 Hz (during quiet

waking) respectively (see also Relevance Learning, below). With these constraints and target

firing rates, a grid search was used to search for a combination of 4 parameters to set the

starting weights of the network: 1) fixed starting weights for Wx!I (ax!I), 2) fixed starting

weights for WI!E (aI!E), 3) center of Gaussian for Wx!E (μx!E), 4) variance of the Gaussian

for Wx!E (σx!E). Once the target firing-rates had been met by the weight parameters,

the grid search was ended. This produced values of ax!I = 0.5, aI!E = 0.4, μx!E = 0.3, and

σx!E = 0.4. It is important to note that this initialization grid search did not make learning

any easier, because nothing about the initialization contained stimulus information. All that

the initialization search did was provide physiologically realistic firing rates. It would likely

be possible to satisfy the same constraints and firing rate patterns using different initializa-

tion parameter sets, but this was not explored.
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To summarize, starting weights for the Cortex for most simulations were set as follows:

Wx!I
i ¼ 0:5 8i, WI!E

i ¼ 0:4 8i, and Wx!E
ij � N ðmx!E; sx!EÞ 8i; j. The one exception to this is

the latent inhibition simulations shown in (Fig 5). In these simulations we maintained the

stimulus information in the initial condition to a greater degree by setting the weights Wx!E

to be a smoothed diagonal matrix.

All weights from the Cortex to the output units were initialized using a uniform random

distribution: WE!y
ij � Uð0; 1Þ.

Finally, we note also that in all our simulations we respected “Dale’s” law by clipping any

negative connections weights at zero. (Clipping at zero did not prevent later increases to the

weights). This was done both for initialization and during learning. All of the specific imple-

mentations of these initialization procedures can be found by downloading our code (see the

repository link below).

Relevance learning

The principal learning mechanism used in this paper is a modification of the temporal differ-

ence learning algorithm [39]. Specifically, a population-based relevance (or “salience” signal),

S(t), reflects the deviations in excitatory activity from an established baseline. The baseline

level can be thought of as the EI balance set-point maintained by the cortical network. The

level of Cortex excitatory unit activity was measured as the vector norm of the population of

excitatory units, kEðtÞk2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P

ieiðtÞ
2

q

(the reasons for using the norm become clear in Eq 10).

S(t) is therefore determined by the difference between kE(t)k2 and the homeostatic set-point

for the population, H (Fig 1B):

SðtÞ ¼ kEðtÞk2 � H ð15Þ

(Note: this equation is identical to Eq 1 in the Results). The goal of relevance learning in the

network is to have S(t) come to represent expected relevance, which we interpret as “unsigned

value”, U(t):

UðtÞ ¼ h
X1

i¼1

gi� 1uðt þ iÞi ð16Þ

where u(t) is the unsigned reward/punishment signal, US, described above, γ is a temporal dis-

counting factor, and h�i indicates expected value. U(t) is akin to the value function used in tem-

poral difference learning [39]. Similar to temporal difference learning, the goal of learning in

our model is, in part, to ensure that S(t) is a good estimate of U(t). This is accomplished using

a prediction error signal, β(t):

bðtÞ ¼ AuðtÞ þ gSðtÞ � Sðt � 1Þ ð17Þ

where A is a salience scaling factor that determines how much cortical activity levels should

deviate from the set point in response to relevant stimuli. We use β to represent our prediction

error signal, rather than the usual δ, to distinguish it from prediction error signals that measure

differences in signed (as opposed to unsigned) value estimates [39]. (The notation also deviates

slightly from convention by using t rather than t + 1, to avoid questions about whether the

model has future information. This is just a re-indexing, though, and does not affect the results

in any meaningful way).

To put it another way, the system learns to ensure that fluctuations in kE(t)k2 away from

the set-point, H, reflect experience with rewards/punishments (the US). The scale of the fluctu-

ations is determined by A. Training the salience signal S(t) involves updating the synaptic

Irrelevance by inhibition

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006315 August 1, 2018 25 / 37

https://doi.org/10.1371/journal.pcbi.1006315


weights in Cortex to achieve β(t) = 0. It can be seen that this is achieved when:

kEðtÞk2 ¼ H þ AU ðtÞ ) SðtÞ ¼ AU ðtÞ ð18Þ

since U(t − 1) = hu(t)i + γU(t). Therefore, β is generally close to zero when the following condi-

tions have been achieved: (1) for stimuli that do not predict any reward or punishment, the

norm of the spike count in the excitatory cortical population is equal to the homeostatic con-

stant, H and (2) for stimuli that do predict reward or punishment S(t) is a linear function of

U(t) with a slope of A.

To learn this, we perform stochastic gradient descent on the squared difference between

S(t) and AU(t) (see (3)). If we treat x(t) and E(t) as rates of fire, it can be shown that:

@ðSðtÞ � AU ðtÞÞ2

@Wx!I
j

¼
bðtÞ
kEðtÞk2

ðWI!EÞ
T
� ðE � EÞ � WI!EIðtÞð Þð Þ

� �
xjðtÞ ð19Þ

where � indicates element-wise multiplication. Because we followed Dale’s law in our simula-

tions, and firing rates can only be positive, none of the terms in Eq 19 can be negative except

for β(t). Moreover, the only element of the equation that helps to differentiate Sensory inputs

is xj(t). Thus, all of the other terms in Eq 19 can be treated as scaling terms. What this means is

that the gradient direction in weight space is specified solely by β(t) and xj(t), while the other

terms merely indicate the magnitude of the gradient in these directions. In practice, gradient

descent can still occur when following the gradient direction, even if the magnitude of the gra-

dient is ignored. Thus, this allowed us to simplify this expression and use only β(t) and xj(t) as

in Eq 4, while still achieving the same results as would be obtained from following the true gra-

dient defined by Eq 19.

In some simulations (Figs 2 and 3), the performance of this learning rule is compared

against rules in which we perform gradient descent on either the Wx!E or WI!E synapses.

The partial derivatives for the squared difference between S(t) and AU(t) with respect to these

weights are:

@ðSðtÞ � AU ðtÞÞ2

@Wx!E
ij

¼ �
bðtÞ
kEðtÞk2

eiðtÞxjðtÞ

@ðSðtÞ � AU ðtÞÞ2

@WI!E
i

¼
bðtÞ
kEðtÞk2

eiðtÞ
2

WI!E
i IðtÞ

� �

IðtÞ

ð20Þ

which we can simplify again thanks to Dale’s law and positive firing rates, giving us approxi-

mations of the gradients:

@ðSðtÞ � AU ðtÞÞ2

@Wx!E
ij

/ � bðtÞxjðtÞ

@ðSðtÞ � AU ðtÞÞ2

@WI!E
i

/ bðtÞIðtÞ

ð21Þ
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which we then use for the weight updates:

Wx!E
ij  Wx!E

ij þ aDWx!E
ij

DWx!E
ij ¼ �

@ðSðtÞ � AU ðtÞÞ2

@Wx!E
ij

Wx!E
ij  WI!E

i þ aDWI!E
i

DWI!E
i ¼ �

@ðSðtÞ � AU ðtÞÞ2

@WI!E
i

ð22Þ

Using these weight updates for relevance learning can theoretically provide the same coding

for relevance in S(t). However, they make different predictions regarding the effects of

impaired inhibition (Figs 2 and 3).

As already noted in the previous section, the specific H and A used corresponded to empiri-

cal data measuring the average firing rates in the rat medial prefrontal cortex, with H = 6.5 Hz

and A = 1.4 Hz, as observed by Insel and Barnes [38].

Amygdala learning

In simulations with output units, y(t), such as the Amygdala, synapses between Cortex excit-

atory units and the Output units were also trained. In simulations using an Amygdala output

layer, the Cortex-to-Amygdala weights, WE!y, were trained with a competitive learning algo-

rithm as defined in Eq 8. As outlined in Effect of relevance learning on downstream circuitry,

a suitable threshold, θ, can be found to ensure that in the absence of a US the Amygdala only

responds to stimuli that have been paired with reward or punishment in the past. In the simu-

lations presented here, the value of θ was set by grid search so that the probability of any neu-

ron crossing threshold would be very low if no learning had occurred, and very high if an US

was present or learning had converged and the network was presented with a relevant stimu-

lus. The final value that was used in our simulations was θ = H/4.

Categorization learning

In simulations where we trained the output units to categorize input stimuli, we used backpro-

pagation-of-error [67] to train the weight matrices Wx!E and WE!y. More precisely, target

vectors, o(x(t)) are defined, where each stimulus provided to Sensory units has a correspond-

ing target vector for the output Category units. The cross-entropy [67] between the Category

activity and target vectors was used as the loss function to train the network:

LðxðtÞÞ ¼
X‘

i¼1

oiðxðtÞÞ ln ðyiðtÞÞ ð23Þ

where oi(x(t)) is the “target” response to input x(t) for output unit i, i.e. oi(x(t)) = 1 if i is the

correct category for x(t), and it is zero otherwise.

For any weight Wij in Wx!E or WE!y, the weight update is determined by the partial deriv-

ative of this loss function with respect to the weight:

DWij ¼ � ay
@LðxðtÞÞ
@Wij

ð24Þ

where αy is the learning rate. This ensures that the network learns to correctly categorize the
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stimuli (i.e., the pattern of Sensory unit activity, x(t)) using the output, Category units y(t). As

with Amygdala learning, the categorization learning proceeded in tandem with the relevance

learning.

Learning to ignore and blocking

The first set of simulations tested the network’s ability to learn to ignore irrelevant stimuli and

engage in blocking. These were both run using dt = 20 ms, which was selected to be just long

enough prevent Poisson noise from affecting learning. At the beginning of the simulations, a

60 s adaptation period without stimulus allowed weights to adjust to the randomly-selected

baseline input activity levels. All pharmacological simulations were implemented after

adaptation.

Learning to ignore. The US times were generated with an inter-trial-interval uniformly

sampled between 20 and 30 seconds. A relevant stimulus (CS+) was always presented at a fixed

interval before the US, while the irrelevant stimulus (CS0) was presented at random times, and

thus uncorrelated to the US. The interval between CS+ and US was set to 100 ms for most sim-

ulations, but this was immaterial to the learning algorithm (see below). CS+ and CS0 were sim-

ulated as 200 ms periods during which the firing rate of a pre-determined set of Sensory units

(10%) was raised to ψon.

The network was capable of learning the relevance of a temporally offset CS+ because β(t)
integrated signals across time-steps with a discounting factor. However, we should note that

the temporal difference learning algorithm we used here ultimately corresponds to a TD-λ(0)

algorithm [39], which was why it was important to have some overlap between the CS+ and

US. With eligibility traces (i.e. λ> 0) it is possible to learn with longer delays between CS+ and

the US, including delays that lead to no overlap (see S1 Fig).

Blocking. The blocking protocol used the same parameters as that of the previous para-

digm, with the exception that there were four phases of stimulus exposures: 1) a pre-exposure

phase, in which both CSs (named CS-A and CS-B) were presented 50 times without the US

(inter-trial-intervals were decreased to 10-15 s to reduce runtime), 2) a conditioning phase, in

which CS-A was presented 50 times paired with a US, 3) a blocking phase, in which the CS-B

was presented 50 times simultaneously with the CS-A, paired with an US, 4) a test phase, in

which the CS-A and CS-B were presented independently 10 times in the absence of an US. To

reduce run-times, the inter-stimulus intervals were also reduced to between 10 and 15 seconds.

The use of pre-exposures was guided by protocols used in relatively recent work examining

functions of frontal cortex regions [113, 114].

Tests of inhibitory disruptions in different model versions. The effects of inhibitory

connection strength changes on learning to ignore and blocking were assessed using different

model versions. The model versions differed with respect to which synapses were plastic:

Wx!I, Wx!E, or WI!E, see Eqs (3), (4), and (21) above. The purpose of the test was to evaluate

whether disruptions to inhibitory systems correspondingly disrupt learning to ignore and

blocking, as has been hypothesized to take place in schizophrenia. Inhibitory disruptions were

made by reducing the degree to which excitatory units could respond to the inhibitory units

by 10%:

ϕEðtÞ ¼ 0:9
Wx!ExðtÞ þ bE

WI!EIðtÞ
þ 0:1ðWx!ExðtÞ þ bE

Þ ð25Þ

EðtÞ � PoissonðdtϕEðtÞÞ ð26Þ
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Simulation of experimental data: Pharmacological effects on latent

inhibition

Piantadosi and Floresco (2014) [43] demonstrate the effect of GABA-A antagonists on latent

inhibition. Latent inhibition refers to the classic behavioral phenomenon whereby it is harder

to associate a familiar stimulus (one that a subject has been pre-exposed to) with a reinforcer

[45]. Latent inhibition is also known to be disrupted in schizophrenia [46, 47, 48, 49]. As

shown in Fig 5A–5D, a protocol was created that matched the one used in rats (see also

[115, 116]). For processing time purposes, the stimulus and inter-stimulus times used in the

original were reduced by a factor of 5. The protocol began with a 60 s adaptation period, fol-

lowed by three phases: 1) a pre-exposure phase, in which the network was presented with

the conditioning stimulus (CS) 30 times (10% of input units, 6 s long, inter-stimulus interval

of 6 s), 2) a conditioning phase, in which the CS was presented simultaneously with foot shock

(u(t) = 1), and 3) a test phase, in which the CS was presented by itself 4 times. The protocol

was performed on three pairs of network models, with each pair including one network given

pre-exposures and one that was not given pre-exposures. The three pairs simulated the treat-

ment groups used in the original study: animals treated with saline were simulated without

any modification to the network, treatment with GABA-A antagonist during conditioning

were simulated using a 20% reduction in inhibition, according to Eq 25 during the condition-

ing phase, and treatment with antagonist during testing were simulated with the same disrup-

tion during the testing phase. Conditioned fear responses were measured as the maximal

response of amygdala units, averaged across all timesteps during CS presentation.

Simulation of experimental data: Optogenetic effects on fear

expression

Recent work by Courtin et al. [44] found that inhibition of PV+, fast-spiking neurons in the

mouse mPFC can evoke fear responses, while excitation of the same neurons can decrease fear

responses. The protocol used in that study was presently simulated as precisely as possible

(Fig 6A and 6B), using all of the same parameters as used in the latent inhibition design. To

simulate optical inhibition of PV+ cells, a 20% reduction in inhibition were implemented, sim-

ilar to Eq 25. During the pre-conditioning phase, this reduction in the inputs was applied for

250 ms intervals separated by 860 ms (equivalent to 0.9 Hz stimulations, as in the original

study). This was followed by a conditioning phase, in which a 6 s CS+ was paired with foot-

shock (i.e., the firing rate of input units coding for the CS was set to ϕon and u(t) = 1). As in the

previous protocol, all stimulus and inter-stimulus times were decreased from the original

study by a factor of 5. One change from the original protocol is that the 1 s US presentation

used in the original study was lengthened to the entire CS period. We justify this change based

on an assumed difference between real brains and the model: whereas in the brain, activity

and plasticity are likely regulated by change, such as the onset or offset of a stimulus, the

model treats each time point equivalently. Thus, the period during which the CS is on but US

is off will extinguish the associations learned during their concurrence. The CS–US pairings

were presented 12 times with an inter-trial interval of 4-30 s. The conditioning phase was fol-

lowed by an extinction phase, in which the CS was again presented 12 times with the same

inter-trial interval, followed in turn by a series of CS presentations accompanying the 40%

reduction in Wx!I values. To test the effect of inhibitory activation during a conditioned CS,

the same conditioning protocol was used, but was followed by presentations of the CS accom-

panying increases to inhibitory unit activity. We found that only a 10% increase in WI!E was

necessary to elicit changes approximating those observed in the original study.
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Pairing of relevance-learning with classification learning

To examine the ability of the network to carry both the salience signal and the other informa-

tion simultaneously (i.e. to multiplex the salience signal with other signals) simulations were

run wherein the feedforward excitatory weights (Wx!E and WE!y) were trained to perform

categorization of the inputs, x(t), while the excitatory weights onto the inhibitory unit, Wx!I,

were trained according to the relevance algorithm described in Eqs (3) and (4) (Fig 7 & S4

Fig). To do this, each of the ten stimuli (described in Stimuli) was presented in a fixed order

for 200 ms, and this 2 s sequence (considered 1 epoch) was repeated 50 times, leading to a total

simulation time of 100 s. (Note that not all epochs are presented in Fig 7 & S4 Fig, as the learn-

ing converged quickly).

Model code

All code was written in Matlab (Mathworks Inc.), using the Statistics Toolbox. The code can

be downloaded for free from https://github.com/jordan-g/Irrelevance-by-Inhibition and used

to generate all of the data presented in the paper.

Supporting information

S1 Fig. Learning with delays between CS+ offset and US onset. (A) Average Cortex excit-

atory unit activity (lower plots) and inhibitory unit activity (upper plots) when the offset of

CS+ precedes the onset of the US by 100 ms (note the gap between the green and gray blocks

at the bottom). This effect was achieved by using γ = 0.98 and an eligibility trace for each syn-

apse with a decay factor of λ = 0.8. This corresponds to a TD-λ(0.8) algorithm [39]. See the

code online for the specific implementation of the eligibility trace during learning (https://

github.com/jordan-g/Irrelevance-by-Inhibition). (B) Averaged excitatory unit (left) and inhib-

itory unit (right) responses to the CS+ (green) and CS0 (orange) across presentations, as com-

pared with non-stimulus periods (black line).

(TIFF)

S2 Fig. Firing-rate and weight distributions following learning to ignore training. (A) Fir-

ing-rate distributions across the E(t) population during the simulation. Time-bins were

200 ms long. (B) Synaptic weight distributions for the Wx!I weights following learning to

ignore training.

(TIFF)

S3 Fig. Demonstration of learning to ignore with multiple inhibitory units (500 inhibitory

units). (A) Average Cortex excitatory unit activity (lower plots) and average cortex inhibitory

unit activity (upper plots) at simulated, 20 ms time steps in response to unlearned stimuli (left

side) compared with the end of a series of repeated presentations (right side). As with the simu-

lations where only a single inhibitory unit was used, excitatory responses were initially high to

both stimuli, but after learning they increased only in response to the CS+, demonstrating the

network to treat the CS0 as less relevant. (B) Averaged excitatory unit (left) and averaged inhibi-

tory unit (right) responses to the CS+ (green) and CS0 (orange) across presentations, as com-

pared with non-stimulus periods (grey line). Learning took place over the first 20 trials, after

which excitatory responses to the CS0 plateaued to the same level as excitatory responses to

untrained inputs. This was due to increased inhibitory responses to the CS0 across the inhibi-

tory population. (C) Salience responses (S(t)) to the CS+ relative to the CS0 during final presen-

tations are plotted for both control conditions and in simulations of inhibitory dysfunction
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(means ± STD across 30 model runs). Learning was impaired with inhibitory neuron disruption

only in the inhibitory neuron plasticity model (Wx!I).

(TIFF)

S4 Fig. Multiplexed stimulus category and relevance codes with multiple rewarded stimuli.

(A) Diagram illustrating modified model that included both the mechanisms described above

for relevance learning (on Wx!I synapses) in addition to mechanisms learning an output

vector that matches categories presented as input (backpropagation algorithm applied to the

WE!y and Wx!E synapses). As illustrated by bottom boxes, three of ten stimuli presented to

the network were rewarded. (B) Average excitatory unit responses to the three rewarded

(green) and seven unrewarded stimuli (orange) over time. The network quickly learns to

respond more strongly to the rewarded stimuli. (C) Performance of the model on input classi-

fication. Over the same time that the network learns to discriminate rewarded and unrewarded

stimuli, it also becomes capable of matching the output vector to the input. The gray trace

shows the percent of presentations that stimuli are correctly classified, which increases quickly

before reaching a plateau. The blue trace shows the cross-entropy, an information measure (in

natural units of information) based on the output activity distribution that is inversely related

to the success of input classification.

(TIFF)

S5 Fig. Learned irrelevance—Slowed relevance learning following uncorrelated CS-US pre-

sentations. (A) Average excitatory unit responses to each presentation of a CS in a learned

irrelevance paradigm. One network (red) was exposed to 100 presentations of a CS and an US,

where CS and US presentation times were chosen from independent uniform distributions, for

a total time of 800 s. The CS and US presentations lasted 200 ms. Afterwards, the CS and US

were shown together 100 times at regular intervals of 5 s, with the CS preceding the US by

100 ms. A second network (blue) was only shown the 100 correlated CS-US presentations. Both

networks underwent a 60 s adaptation period without stimulus presentations. For these simula-

tions we used the same hyperparameters as in the “learning to ignore” simulations, with the

addition of 10 Amygdala units whose hyperparameters were identical to those used in the latent

inhibition simulations. The Wx!I and WE!y synapses were updated at every time step. Data

shown is mean ± STD from 20 simulations. (B) Average Amygdala layer activity during each

CS presentation, for the network that was shown uncorrelated CS-US presentations followed by

correlated CS-US presentations (red), and for the network shown only correlated CS-US pre-

sentations (blue). Note that the blue trace shows a rapid response from the Amygdala, while the

red trace takes a few trials to show consistently higher Amygdala responses.

(TIFF)

S1 Data. Code to run simulations. Matlab code for running the simulations that generated

the data presented in the paper is provided here. Note that the code utilizes the Statistics Tool-

box. To run a custom simulation, refer to main_script.m. In order to reproduce any of the

figures in the paper, simply run one of the following files instead: learning_to_ignore.
m, blocking.m, latent_inhibition.m, fear_expression.m, catego-
rization.m, learned_irrelevance.m.

(ZIP)
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