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Abstract: Soil salinity and sodicity can significantly reduce the value and the productivity of affected
lands, posing degradation, and threats to sustainable development of natural resources on earth.
This research attempted to map soil salinity/sodicity via disentangling the relationships between
Landsat 8 Operational Land Imager (OLI) imagery and in-situ measurements (EC, pH) over the
west Jilin of China. We established the retrieval models for soil salinity and sodicity using Partial
Least Square Regression (PLSR). Spatial distribution of the soils that were subjected to hybridized
salinity and sodicity (HSS) was obtained by overlay analysis using maps of soil salinity and sodicity
in geographical information system (GIS) environment. We analyzed the severity and occurring
sizes of soil salinity, sodicity, and HSS with regard to specified soil types and land cover. Results
indicated that the models’ accuracy was improved by combining the reflectance bands and spectral
indices that were mathematically transformed. Therefore, our results stipulated that the OLI imagery
and PLSR method applied to mapping soil salinity and sodicity in the region. The mapping results
revealed that the areas of soil salinity, sodicity, and HSS were 1.61 × 106 hm2, 1.46 × 106 hm2, and
1.36 × 106 hm2, respectively. Also, the occurring area of moderate and intensive sodicity was larger
than that of salinity. This research may underpin efficiently mapping regional salinity/sodicity
occurrences, understanding the linkages between spectral reflectance and ground measurements of
soil salinity and sodicity, and provide tools for soil salinity monitoring and the sustainable utilization
of land resources.

Keywords: soil salinity; soil sodicity; Partial Least Square Regression (PLSR); hybridized salinity and
sodicity (HSS); Landsat 8 OLI

1. Introduction

Basically, mapping and assessing the soil salinity and sodicity is a first step for salinity monitoring,
salt-soil agriculture development, and environmental sustainability maintenance throughout the
world [1,2]. Such work is also valuable to the scientific understanding of soil salinity and sodicity
occurrences and pursuing effective measures for evaluating the affected soils [3].
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The west Jilin Province of China, typically a semiarid area, is among the world’s three largest
sodic saline-alkali regions. Due to overgrazing and grassland conversion to farmland, its area of
salt-affecting lands increased drastically during the 1950s and the 1990s [4,5]. Consequently, soil
salinity and sodicity decreased the productivity of the croplands and affected diversity of the grassland
plant species, which thwarted ecological sustainability and societal and economic development of the
west Jilin Province. For better understanding the occurring extent and severity of soil salinity and
sodicity, depicting accurate projection of future salinity dynamics and making decisions about land
management and utilization in the region, mapping the local salinity, and sodicity is much needed [6].

Soil salinity refers to the amount of soluble salt conserved in the soils, whereas sodicity points
to the sodium as often means poor soil structures that impede soil hydraulic conductance and water
uptake of plants [1,7]. As soil salinity and sodicity aggravates, more salt ions appear at the soil surface,
which favors the use of conventional remote sensing (RS) technology for surveillance [8]. In the last
decades, multispectral and microwave RS data with varied spatio-temporal resolutions (e.g., Landsat,
SPOT XS, IKONOS, ASTER, MODIS, IRS, and Radar, etc.) have been used for monitoring [9–11]
and mapping [12,13] salt-affected soils and halophytic vegetation [3,14]. In most cases, multiple
bands were transformed into one index that was more sensitive to soil salinity than using a single
band [15,16]. As for the single band, reflectance at the visible (VIS) bands (400~750 nm) was found
to be more sensitive to soil pH than in other spectral ranges; Landsat 8 OLI-band1 (coastal) was also
found closely correlated with soil salinity [17]. Nonetheless, substantial elements in linking RS spectral
information and field salinity measurements are still to be elucidated, particularly across diverse
regions. In particular, soil salinity was more often mentioned than sodicity in previous studies [18,19].
Yet, discerning the disparity effects between salinity and sodicity could underpin full-view recognition
of soil health and making decisions about land restoration, and improve the comprehensive utilization
of the lands. But, this critical issue should be fully examined especially in reference to the soils with
complicated coexistence of soil salinity and sodicity in the west Jilin Province.

The Partial Least Squares Regression (PLSR) has been widely used in soil parameter estimation [3].
This technique is a robust multivariate regression method appropriate particularly when the predictors
exhibit multicollinearity [20]. Accordingly, many studies reported success of using PLSR for soil
salinity assessment [21–23]. By contrast, Janik et al. [24] and Pang et al. [25] implied that the ANN
(Artificial Neutral Network) method could outperform the basic PLSR for prediction of some soil
properties and non-linear regression may be more accurate than linear regression. However, ANN is
difficult to accurately analyze the various performance indices of a biblical network. Therefore, we
chose PLSR to establish the inversion models of soil salinity and soil sodicity. Another consideration
to improve the accuracy of modelling was that we tried to transform spectral reflectivity through
non-linear functions before modelling. Here, the advantages of using the PLSR approach rely on its
inference capabilities for modelling the probable linear relationships that are existing between spectral
reflectance and salt content in soils, and power to include multiple response variables simultaneously
for addressing the likely collinearity among the noise-engaged predictor variables.

Accordingly, the objectives of this research were as follows: (1) to build up the relationships
between reflectance bands, spectral indices (vegetation indices and salinity/sodicity indices), and field
measurements of soil salinity/sodicity; (2) to improve soil salinity/sodicity estimating accuracy by
optimizing PLSR; (3) to map soil salinity/sodicity of the study area, particularly the HSS; and, (4) to
unravel the occurring severity and distribution of soil salinity, soil sodicity, and HSS with regard to land
cover and soil types. This research may provide a clue for pursuing tools about soil salinity monitoring,
understanding correlations between spectral reflectance and field measurements of salinity, as well as
tackling regional land degradation and development issues.
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2. Materials and Methods

2.1. Study Area Descriptions

The west Jilin Province, as the largest sodic saline-alkali soil distribution in Northeast China, is
located in the southern Songnen Plains (43◦59′~46◦18′ N, 121◦38′~126◦11′ E. Figure 1), with low-lying
terrains and elevations between 100~200 m. The groundwater depth is about 2 m. The study area
is under a temperate, semi-arid continental monsoon climate, with precipitation dwindling from
420~460 mm in the east to 350~420 mm in the west, and evaporation increasing from 1200~1600 mm
in the east to 1500~2000 mm in the west [26,27]. About 80% of the total precipitation occurs between
mid-June and mid-August. The soils are Chernozem (Haplic Chernozem, FAO), meadow soil (Eutric
Vertisol, FAO), aeolian soil (Arenosol, FAO), Solonetz (Solonetz, FAO), and Chestnut soil (Haplic
Kastanozem, FAO). Pristine vegetation of this area is temperate steppes grown on the salted soils,
with widespread fragmented scar-like saline lands that were spotted on the landscapes. However,
grassland conversion to cropland has been common since the 1980s in this region, leading to less than
one-quarter of the natural steppes are merely remained and cultivated croplands are ubiquitous with
salinity to some extent.

Figure 1. Location of the study area, digital elevation model (DEM) and soil sampling locations.

2.2. Data Sources and Pre-Processing

Six scenes of satellite images created by Landsat 8 OLI covering the study region were used, of
which five scenes were acquired on August 2016, and one image at the end of July. The images were
geo-rectified to the Universal Transverse Mercator (UTM) coordinate system using World Geodetic
System (WGS) 1984 datum assigned to north UTM Zone 51. Atmospheric correction was performed
using FLAASH Model (Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes) that can
correct both additive and multiplicative atmospheric effects [28]. Using ENVI 5.3, the study region
was clipped from a mosaic of all the processed images. The spectral indices that link vegetation
performance and soil salinity were calculated by the reflectance of corresponding bands, including
NDVI, EVI, SIs [2,15,29], DVI [30], SAVI, and SRSI [31]. The spectral indices are listed in Table 1.



Sensors 2018, 18, 1048 4 of 17

Table 1. The expressions of spectral indices.

Spectral Index Expression Full Name Reference

NDVI (NIR − Red)/(NIR + Red) Normalized Differential Vegetation Index Shrestha (2006)
DVI NIR − Red Differential Vegetation Index Clevers et al. (1988)
EVI NIR/Red Enhanced Vegetation Index Huete et al. (1997)

SAVI (NIR − Red)/(NIR+Red + 0.5) × 1.5 Soil Adjusted Vegetation Index Bouaziz et al. (2011)
SI

√
Green × Red Salinity Index Bouaziz et al. (2011)

SI2
√

Green2 + Red2 + NIR2 Salinity Index2 Douaoui et al. (2006)
SI3

√
Green2 + Red2 Salinity Index3 Douaoui et al. (2006)

SI4 SWIR1/NIR Salinity Index4 Douaoui et al. (2006)

SRSI
√
(NDVI− 1)2 + SI2 Salinization Remote Sensing Index Alhammadi et al. (2008)

For enhancing the remotely sensed data that built the linkages between spectral signatures
and soil salinity and verifying the inversion models on the retrieval of soil salinity and sodicity, we
conducted field measurements and soil sampling in October 2016. As a result, all of the soil samples
were collected in triplicate from the 0–5 cm layer. The number of soil samples obtained from each land
cover type is shown in Figure 1. All of the samples were air-dried, sieved through a 2 mm sieve. Soil
pH and EC were measured in 1:5 soil:water extracts using LEICI pH5-3E and LEICI DDS-307A meters,
respectively [17]. Wetland, water body, and built-up land were not involved in the inversion because
we focused on the predominantly terrestrial salinity, and thus excluded samples from the lands. By
excluding four data points with aberrant values following experimental analysis, we finally accepted
157 sampling points for analysis.

Auxiliary data included Digital Elevation Model (DEM, resolution 30 m) data; a soil type map
(1:1000,000), provided by Northeast Institute of Geography and Agroecology, Chinese Academy of
Sciences; and, reference/validation site for classification of land cover by field survey or from Google
Earth in 2016.

2.3. Random Forest to Classifying Land Cover

The RS images were classified by Random Forest (RF) to draw a land cover map for analyzing
soil salinity and sodicity within each land cover type. RF is an ensemble of classification trees, where
each tree contributes with a single vote for the assignment of the most frequent class to the input
data. Key advantages of RF include non-parametric nature, high classifying accuracy, and capability to
weigh variable importance [32,33]. RF uses a random subset of inputs or predictive variables in a node
division instead of using best variables, which can reduce the generalizing error and finally lead to
highest accuracy. Here, the classification system consisted of seven basic land cover classes: woodland,
grassland, wetland, water body, barren land, cropland, and built-up [34,35]. The overall land cover
classification accuracy was 95.76%, with a Kappa value 0.91 for RF.

2.4. The PLSR

The PLSR is an extension of multiple regression analysis, in which the effects of linear
combinations of several predictors on a response variable (or multiple response variables) are analyzed.
The method combines the traits of principal component analysis and multiple linear regressions [20].
Therefore, to eliminate the influence of collinearity among variables on multiple linear regression
models, PLSR is usually used to improve the stability of estimators [36]. For developing the PLSR
algorithms in this research, soil EC and pH were used each as an indicator of soil salinity and
sodicity. Based on field sampling, the PLSR models can be established for soil salinity and sodicity
retrieval [3,16,36]. The variables were transformed into six formulas to better retrieve soil EC and pH
before three times of PLSR analyses. For the first time, soil EC and pH were retrieved merely by the
reflectance of bands. Subsequently, we only used spectral indices to build up the retrieval models.
Finally, we combined the bands and spectral indices to retrieve soil EC and pH. By using R2 and RMSE,
the models were assessed to determine best models. Consequently, the optimized latent variables
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for regression were obtained from the models for soil salinity and sodicity. Model performance
can be evaluated with R2, Bias, Standard Deviation (SD), and RMSE. R2 indicates the strength of
statistical correlation between measured and predicted values. The model can be accurate for R2 > 0.91,
good for 0.82 < R2 < 0.90, moderate for 0.66 < R2 < 0.81, and poor for 0.5 < R2 < 0.65, according to
Farifteh et al. [37]. Bias measures the mean difference between prediction and measurements, and SD
represents the random component of total uncertainties [38]. The metrics are described, as follows:

R2 = 1− ∑(ŷi − yi)
2

∑(yi − y)2 (1)

Bias =
∑(ŷi − yi)

N
(2)

SD =

[
∑(ŷi − yi − Bias)2

N− 1

]1/2

(3)

RMSE =

[
∑(ŷi − yi)

2

N

]1/2

(4)

where y denotes the measures with a mean value of y, ŷ denotes the predicted values, and N the
number of samples. The 0.05 probability level was used to test the significance of correlation.

3. Results

3.1. Sensitivity of RS Variables to Soil EC and pH

In order to distil the variables sensitive to soil pH and EC, spectral analyses of soil samples were
implemented. Regression coefficients were used to indicate the impact of independent variables on
the dependent variable, for instance, the higher the regression coefficient value, the greater the impact
on the dependent variable [3]. Before modelling, the 157 soil samples were divided into two subsets.
The first set (110 samples) was used for calibration and the second set (47 samples) for validation.
Laboratory analysis showed that the pH values of the sampled soils ranged from 5.90 to 10.45, with an
average 8.70 that generally pointed to sodicity [1]. EC measurements of the samples ranged from 0.03
to 3.99 mS/cm, with an average 0.54 mS/cm that indicated lower soluble salt concentration. Thus,
most soils in the study area were more affected by sodicity rather than by salinity.

Table 2 shows the correlation coefficients between EC, pH, and reflectance of bands, and between
bands. EC showed the lowest coefficient positive with NIR (R = 0.348), moderately correlated with
SWIR1, SWIR2, and PAN (R = 0.704, 0.738, and 0.763), and higher with Coastal, Red, Green, and
Blue (R = 0.821, 0.810, 0.826, and 0.818). In particular, the correlation coefficient between Red vs. pH
(R = 0.805), or between EC vs. Green (R = 0.826) was the highest each among the group, implying that
the band Red had priority for soil salinity retrieval and the band Green for sodicity.

Table 2. Correlation coefficients between band reflectance, soil pH and EC.

EC pH Coastal Red Green Blue NIR SWIR1 SWIR2 PAN

EC 1 - - - - - - - - -
pH 0.703 ** 1 - - - - - - - -

Coastal 0.821 ** 0.791 ** 1 - - - - - - -
Red 0.810 ** 0.805 ** 0.988 ** 1 - - - - - -

Green 0.826 ** 0.793 ** 0.991 ** 0.992 ** 1 - - - - -
Blue 0.818 ** 0.795 ** 0.998 ** 0.992 ** 0.992 ** 1 - - - -
NIR 0.348 ** 0.068 ** 0.294 ** 0.245 * 0.334 ** 0.283 ** 1 - - -

SWIR1 0.704 ** 0.788 ** 0.912 ** 0.944 ** 0.925 ** 0.923 ** 0.160 * 1 - -
SWIR2 0.738 ** 0.791 ** 0.939 ** 0.967 ** 0.948 ** 0.948 ** 0.143 * 0.989 ** 1 -
PAN 0.763 ** 0.773 ** 0.958 ** 0.964 ** 0.966 ** 0.963 ** 0.289 ** 0.906 ** 0.931 ** 1

Note: * represents significance at the 0.05 level; ** represents significance at the 0.01 level; bold number means the
maximum value in a column.
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Table 3. Correlation coefficients between spectral indices, soil pH and EC.

EC pH SI SI2 SI3 SI4 SRSI SAVI NDVI EVI DVI

EC 1 - - - - - - - - - -
pH 0.703 ** 1 - - - - - - - - -
SI 0.818 ** 0.803 ** 1 - - - - - - - -

SI2 0.722 ** 0.507 ** 0.770 ** 1 - - - - - - -
SI3 0.826 ** 0.793 ** 1.000 ** 0.804 ** 1 - - - - - -
SI4 0.472 ** 0.704 ** 0.731 ** 0.209 * 0.695 ** 1 - - - - -

SRSI 0.818 ** 0.803 ** 1.000 ** 0.771 ** 0.997 ** 0.731 ** 1 - - - -
SAVI −0.665 ** −0.814 ** −0.931 ** −0.467 ** −0.888 ** −0.920 ** −0.912 ** 1 - - -
NDVI −0.665 ** −0.814 ** −0.931 ** −0.467 ** −0.888 ** −0.920 ** −0.912 ** 1.000 ** 1 - -
EVI −0.449 ** −0.694 ** −0.708 ** −0.159 * −0.677 ** −0.877 ** −0.708 ** 0.889 ** 0.889 ** 1 -
DVI −0.555 ** −0.725 ** −0.775 ** −0.198 * −0.736 ** −0.912 ** −0.775 ** 0.935 ** 0.935 ** 0.909 ** 1

Note: * represents significance at the 0.05 level; ** represents significance at the 0.01 level; bold number means the
maximum value in a column.

Table 3 indicates the correlation coefficients between soil EC, pH, and all of the spectral indices
one another. Vegetation indices (NDVI, EVI, DVI, and SAVI) were negatively correlated with EC and
pH, with NDVI/SAVI the most negatively correlated. By contrast, salinity indices (SI, SI2, SI3, and
SI4) were positively correlated with EC and pH. Since SI (R = 0.803) and SAVI (R = 0.814) exhibited
more sensitive to soil sodicity than other spectral indices, thus we stipulated that SAVI was the priority
spectral index to reflect soil sodicity. For EC, SI3 was the best estimator of soil salinity (R = 0.826), yet
EVI had the poorest (R = −0.449). Overall, the RS-derived vegetation indices were more sensitive to
soil sodicity than to soil salinity.

3.2. The PLSR Models for Soil Salinity/Sodicity Retrieval

We conducted mathematical transformations on all of the normalized variables, which included
the bands and spectral indices before building regression models. The results implied that
mathematical transformations upon the normalized variables that integrated bands and spectral
indices should be carried out before building regression models, which improved the retrieval accuracy
of soil salinity and sodicity than before.

For better comparing accuracy of the inversion models after different forms of mathematical
transformation, all of the variables were normalized, as follows [39]:

x′ = (x− xmin)/(xmax − xmin) (5)

where x is an original value, x′ is the normalized value.
The variables transformed into “1/log(r)” or “er” exhibited better correlations with soil EC

(Table 4). For retrieval of soil pH, the “1/r” was best transform (Table 5). At the same time, we
found that some nonlinear transformations can enhance the correlations between the variables and
EC or pH, and the accuracy of the regression models that were established by combining bands and
spectral indices was improved than that by bands or spectral indices per se. The prediction results
showed that the R2 for EC increased from 0.704 to 0.735, and from 0.666 to 0.694 for pH. The optimized
models were highlighted in Tables 4 and 5. For the EC regression model, the most influential variables
were SI3 and the band Green, which were transformed through “er”. For the pH regression model,
the most influential variables were SAVI and the band Coastal, which were transformed through
“1/r”. Obviously, the optimized variables and the mathematical transformations were pivotal in well
predicting soil EC and pH.
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Table 4. The regression models for soil EC in relation to bands, spectral indices and hybrid variables.

Transform Imaging Feature R2 Expression SD RMSE

r Band 0.706 EC = 1.601Green − 3.093SWIR1 − 1.121 0.456 0.451
Index 0.704 EC = 21.114NDVI + 5.411SI3 − 12.024 0.457 0.453

Hybrid 0.706 EC = 5.854SI3 − 3.093SWIR1 − 0.029 0.455 0.451

1/r Band 0.646 EC = − 45.758Blue − 1.031NIR + 2.670 0.501 0.527
Index 0.707 EC = 8.506EVI − 11.121NDVI + 19.717 0.454 0.451

Hybrid 0.712 EC = 7.915EVI + 0.161Red − 2.236 0.45 0.446

er Band 0.717 EC = 8.553Green − 1.969SWIR1 − 7.523 0.446 0.442
Index 0.711 EC = 2.783SI3 − 3.165 0.45 0.448

Hybrid 0.735 EC = 14.090SI3 − 24.833Green + 13.174 0.432 0.429

log (r) Band 0.635 EC = 9.244Green − 3.032Red + 4.557 0.507 0.503
Index 0.601 EC = 1.692SI3 + 2.764SI2 + 2.549 0.53 0.525

Hybrid 0.709 EC = 20.220Green − 9.125SI + 8.066 0.452 0.449

1/log(r) Band 0.726 EC = − 2.052Green + 0.363SWIR1 − 1.969 0.432 0.435
Index 0.727 EC = − 0.486SI3 − 0.450 0.437 0.435

Hybrid 0.727 EC = − 0.486SI3 − 0.450 0.437 0.435

1/er Band 0.691 EC = 4.634SWIR1 − 15.431Green + 9.478 0.467 0.462
Index 0.691 EC = − 6.391SI3 − 7.701EVI + 3.169DVI + 8.618 0.469 0.463

Hybrid 0.734 EC = − 90.819Green + 43.953SI3 + 38.916 0.432 0.429

Sqrt(r) Band 0.675 EC = 11.977Green − 3.844SWIR1 − 2.951 0.479 0.474
Index 0.682 EC = 5.083SI3 + 7.866EVI − 3.338DVI − 4.727 0.474 0.469

Hybrid 0.724 EC = 58.351Green − 27.823SI3 − 13.214 0.441 0.437

Note: r represents the normalized variables (bands and spectral indices).

Table 5. The regression models for soil pH in relation to bands, spectral indices, and hybrid parameters.

Transform Imaging Feature R2 Expression SD RMSE

r Band 0.666 pH = 6.082Red − 1.743NIR + 8.156 0.573 0.568
Index 0.663 pH = − 62.762NDVI + 41.701 0.575 0.571

Hybrid 0.686 pH = 3.753Green − 40.192NDVI + 28.970 0.557 0.551

1/r Band 0.689 pH = − 63.919Blue − 0.499NIR + 43.330 0.554 0.548
Index 0.691 pH = 3.541SAVI − 0.346Red − 18.863 0.552 0.547

Hybrid 0.694 pH = 1.705SAVI − 1.348Coastal − 1.898 0.551 0.546

er Band 0.651 pH = 4.442Red − 1.306NIR + 5.200 0.586 0.581
Index 0.682 pH = − 155.862SAVI + 1.049SI3 + 183.862 0.56 0.56

Hybrid 0.684 pH = − 147.848SAVI + 2.551Green + 173.026 0.558 0.553

log (r) Band 0.689 pH = 3.466Blue + 11.968 0.552 0.548
Index 0.682 pH = 2.761SI + 10.582 0.558 0.554

Hybrid 0.689 pH = 3.466Blue + 11.968 0.552 0.548

1/log(r) Band 0.653 pH = − 2.287Blue + 0.229NIR + 6.866 0.584 0.579
Index 0.677 pH = 493.206SAVI − 44.705NDVI + 394.719 0.564 0.559

Hybrid 0.691 pH = 41.952SAVI − 0.559Green + 54.273 0.560 0.555

1/er Band 0.678 pH = − 8.159Red + 2.137NIR + 13.922 0.564 0.558
Index 0.688 pH = 129.434SAVI − 3.412SRSI − 102.821 0.554 0.549

Hybrid 0.688 pH = 129.434SAVI − 3.412SRSI − 102.821 0.554 0.549

Sqrt(r) Band 0.678 pH = 6.139Red + 5.851 0.561 0.558
Index 0.681 pH = 4.617SRSI + 6.529 0.558 0.555

Hybrid 0.689 pH = 4.718SRSI − 1.647NIR + 7.643 0.553 0.548

Note: r represents the normalized variables (bands and spectral indices).

The prediction accuracy was assessed with 47 validating samples using RMSE and R2, which
revealed the RMSE of the pH reaching 0.427 (R2 = 0.747) and that of the EC reaching 0.532 mS/cm
(R2 = 0.698), respectively. These indicated that the two models were acceptable for estimating soil
salinity and sodicity.
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3.3. The Spatial Distributions of Soil Salinity and Sodicity

For demonstration purpose, the retrieval results of soil EC and pH were categorized into four soil
salinity levels (EC) and four sodicity levels (pH). In this research, EC values were relatively lower than
some previous research [1,23,40]. It was likely due to the precipitation prior to sampling time because
rainfall had a certain effect on the salinity of surface soils (0~5 cm) [41]. Thus, the salinity levels
were ranked as non-salt affected (EC < 0.2 mS/cm), slightly salted (0.2 mS/cm < EC < 0.4 mS/cm),
moderately salted (0.4 mS/cm < EC < 0.8 mS/cm), and intensively salted (EC > 0.8 mS/cm), following
Taylor [40] and Zhang et al. [23]; and, the sodicity levels were non-sodium affected (pH < 8.5), slightly
sodic (8.5 < pH < 9.0), moderately sodic (9.0 < pH < 9.5), and intensively sodic (pH > 9.5), according to
Ali [1] and Farifteh et al. [42].

The mapping results showed that the non-salt affecting area was located in northeast and
southwest of the study area, and the intensively salted area was in the middle, whilst the moderately
salted area was in the south and middle of the area (Figure 2). The salt-affecting area was 1.61× 106 hm2,
accounting for 34.28% of the study area; slightly salted was common in the salt-affecting lands
(1.17 × 106 hm2), accounting for 72.90% of the area. The areas of moderately salted and intensively
salted were 0.23 × 106 hm2 and 0.21 × 106 hm2, accounting for 14.31% and 12.79% of the salt-affecting
area, respectively.

Figure 2. Distributions of soil salinity in the west Jilin.

The sodium-affecting area was 1.46 × 106 hm2, accounting for 31.15% of the study area; slightly
sodic was the dominant level (0.79 × 106 hm2), accounting for 54.51% of the area. The areas of
moderately sodic and intensively sodic were 0.41× 106 hm2 and 0.25× 106 hm2, accounting for 28.14%
and 17.35% in the sodium-affecting area, respectively. The intensively sodic area was distributed in the
middle and the north of the study area, and moderately and slightly sodic areas were in the south and
middle. By contrast, the non-sodium affecting areas were close to the non-salt affecting area, which
was mainly located in the northeast and southwest of the study area (Figure 3).
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Figure 3. Distributions of soil sodicity in the west Jilin.

Spatial distribution of the soils that were affected by HSS was obtained by overlay analysis with
the maps of soil salinity and sodicity. The HSS levels are shown in Table 6. The spatial distribution
of HSS indicated that the occurrence of HSS appeared roughly at the same place of soil salinity and
soil sodicity (Figure 4). The HSS affecting area was 1.36 × 106 hm2, accounting for 28.91% of the
study area. The areas of moderate and intensive HSS were 0.24 × 106 hm2 and 0.19 × 106 hm2;
accounting for 18.07% and 14.14% in the HSS affecting area, respectively. The intensive HSS area was
distributed in the middle of the study area, as revealed manifest spatial overlap between the salinity
and sodicity occurrences.

Figure 4. Distributions of hybridized salinity and sodicity (HSS) in the west Jilin.
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Table 6. The standard for soil HSS severity ranking.

Level Range of EC and pH

Unaffected pH < 8.5 or EC < 0.2 mS/cm

Slightly affected
0.2 mS/cm < EC < 0.4 mS/cm and 8.5 < pH < 9.0;
0.4 mS/cm < EC < 0.8 mS/cm and 8.5 < pH < 9.0;
0.2 mS/cm < EC < 0.4 mS/cm and 9.0 < pH < 9.5;

Moderately affected
0.4 mS/cm < EC < 0.8 mS/cm and9.0 < pH < 9.5;
EC > 0.8 mS/cm and 8.5 < pH < 9.0;
0.2 mS/cm < EC < 0.4 mS/cm and pH > 9.5;

Intensively affected
0.8 mS/cm < EC and pH > 9.5;
0.4 mS/cm < EC < 0.8 mS/cm and pH > 9.5;
0.8 mS/cm < EC and 9.0 < pH < 9.5;

3.4. Land Cover Classifications

The spatial distribution of land cover in the west Jilin Province is shown in Figure 5. The results
indicated that cropland was the largest land cover, with an area of 3.05 × 106 hm2, accounting for
65.00% of the study area, as followed by grassland (12.93%), woodland (5.03%), water body (4.77%),
wetland (4.64%), built-up land (4.34%), and barren land (3.29%). Grassland and barren land were
mainly distributed in the middle of the study area, where many small lakes and ponds were available;
woodland scattered across the area, with many as shelter belts on the fields. Accordingly, these
classification results can be a basis for assessing soil salinity and sodicity in relation to land cover in
the study area.

Figure 5. Spatial distribution of land cover in the west Jilin.

3.5. The Distribution of Soil Salinity/Sodicity with Land Cover

In this research, we merely analyzed soil salinity, sodicity, and HSS for woodland, cropland,
grassland, and barren land in the study area. Figure 6 illustrates the areas of soil salinity, sodicity,
and HSS with regard to land cover. The results indicated that cropland was the largest in area among
all of the land cover types, with the areas of soil salinity, sodicity, and HSS to be 0.91 × 106 hm2,
0.76 × 106 hm2, and 0.69 × 106 hm2, respectively. Grassland, barren land, and woodland followed
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then. However, the slightly salted level resided the prevalent degree in the affected area among
cropland, grassland, and woodland, which emerged the same for the slightly HSS level. Further, the
barren land was mostly intensively salted and/or sodic (with about 60.00% of the barren land). As
for grassland, moderately sodic level was dominant in the sodium-affecting area (32.24%), whereas
woodland exhibited the least affected by salinity and sodicity.

Figure 6. The areas of soil salinity, sodicity, and HSS at different levels with regard to land cover
(a) Salinity (b) Sodicity (c) HSS (d) Affected soils.

3.6. The Distribution of Soil Salinity/Sodicity with Soil Types

Figure 7 presents the areas of soil salinity, sodicity and HSS with regard to soil types. In this
research, soil types encompassed eight classes in the west Jilin Province. Chernozem soil and Meadow
soil were dominant in this area. The areas of soil salinity, sodicity, and HSS, with regard to soil
types, followed as: Chernozem > Meadow soil > Aeolian soil > Solonetz > Chestnut soil > Bog soil
> Solonchak > Black soil. The results stipulated that Chernozem was the largest in area among the
soil types, in which the areas of soil salinity, sodicity, and HSS were 0.76 × 106 hm2, 0.71 × 106 hm2,
and 0.65 × 106 hm2, respectively. Meadow soil and Aeolian soil followed as the second and the third.
Solonetz soil was the most seriously affected by salinity, sodicity and HSS, in which the influenced
percentages in area were 72.14%, 68.34%, and 66.27%, respectively. Solonchak soil then followed, with
an affected percentage of 57.72% in area. In addition, the soils with affected percentages above 35.00%
in area included Aeolian soil, Meadow soil, and Bog soil. The soils with affected percentages below
35.00% in area pointed to Chestnut soil, Chernozem, and Black soil (Mollisol). Naturally, the Black
soils were least affected among the soils.



Sensors 2018, 18, 1048 12 of 17

Figure 7. The areas affected by soil salinity, sodicity, and HSS at different levels with regard to soil
types. (a) Salinity (b) Sodicity (c) HSS (d) Affected soil types (CN: Chestnut soil, MS: Meadow soil,
AS: Aeolian soil, CZ: Chernozem, BL: Black soil ST: Solonetz, BO: Bog soil SC: Solonchak).

4. Discussion

This research endeavored to map soil salinity and sodicity via building the relationships between
Landsat 8 OLI imagery and in-situ measurements of soil EC and pH over the west Jilin of China. We
pursued establishing and improving the models for soil salinity and sodicity retrieval using PLSR
and mathematical transformation of selected variables. As a result, we corroborated that combining
Landsat 8 OLI imagery and improved PLSR algorithm can efficiently optimize the retrieval models of
soil salinity (measured with soil EC) and sodicity (measured with soil pH).

In the past decades, soil salinity and/or sodicity retrieval models have been proposed often
by relating soil physi-chemical properties and spectral performance with RS data and ground
measurements [29,43]. By using three dielectric retrieval algorithms, small perturbation, optical
physics, and Dubois models to implement analysis, Bell et al. [14] retrieved an improved estimation of
a dielectric constant for soil salinity discrimination (optimized R2 = 0.649). Fan et al. [16] established a
soil salinity retrieval model (R2 = 0.749) with advanced Multi-Spectral Sensor and PLSR. Janik et al. [24]
documented a method by combining partial least square (PLS) and ANN (R2 = 0.94). Nawar et al. [36]
suggested the multivariate adaptive regression splines (MARS) model (R2 = 0.73) for soil salinity
prediction, which performed better than PLSR. Sidike et al. [3] found that PLSR was better than
Stepwise Multiple Regressions (SMR) in retrieving soil salinity. However, we found that the spectral
reflectance increased with soil EC, which became dramatic when EC exceeded 1 mS/cm; while pH
exceeded 8, the spectral reflectance increased dramatically too (Figure 8). This implied nonlinear
relationship might exist between soil EC, pH and the spectral data. Therefore, unlike previous
research, we improved the PLSR models’ accuracy via combining reflectance bands and spectral indices
through nonlinear mathematical transformation before modelling. Consequently, we confirmed that
mathematical transformation indeed could improve the correlation between spectral reflectivity and
surface sampling measurements, which further improved the accuracy of the PLSR models. Here,
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“er”and “1/r” were the optimal mathematical transforms for building the inversion models of soil EC
and pH, respectively.

Then, we verified that Landsat 8 OLI imagery was appropriate and economic for extracting
the information of soil salinity and sodicity over a large area. Generally, the advantages of RS
technology involve quick access and saving time, wider coverage, and constant time series provision
for long term monitoring [6,16,44]. By contrast, OLI imagery owns broader views, comparable spatial
resolution relative to satellite hyperspectral data (e.g., Hyperion [45]), and abundant band/spectral
information competent with higher resolution imagery like QuickBird, IKONOS, and GeoEye-1 [46].
Most importantly, Landsat 8 OLI is free to obtain [47].

Further, we witnessed that linking Landsat OLI-derived variables and field measurements of
salinity and sodicity indeed made sense for the mapping and assessment in our case. We found that
the band Green best correlated with soil EC, and the band Red best correlated with soil pH (Table 2).
Yet, Bai et al. [17] found the band Coastal was best correlated with soil EC and pH. This may lie in the
imagery acquisition time difference between spring season in their case and summer growing season in
ours. Undoubtedly, it should be better to represent soil EC by reading vegetation performance during
summer, as can be readily described by the band Green [29]. As for spectral indices, we found the
vegetation indices revealed negatively, and the salinity indices were positively correlated with soil EC
and pH. Moreover, the vegetation indices were more sensitive to soil pH than to soil EC, NDVI/SAVI
was best correlated spectral index, and SI3 was the most sensitive salinity index to soil EC (Table 2).
Nonetheless, Shrestha [11] found that NDVI was poorly negatively correlated with soil EC, and NIR
was best correlated with soil EC.

Figure 8. Correlations between optimal variables and soil EC and pH measurements.
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Finally, our mapping results indicated that about one third of the area was affected by salt and
sodium in the west Jilin Province. The salt-affecting area was larger than that by sodicity, however,
the severity of soil salinity was less than that of sodicity, because the moderate and intensive sodicity
accounted for 45.49% of the sodic area, and the moderate and intensive salinity accounted for 29.03%
of the saline area. Bai et al. [17] have ever estimated the soil sodicity and salinity for the northern
Songnen Plains. But soil sodicity in our study was much more serious (mean pH = 8.70) than that in
Bai’s study area (mean pH = 7.92). The causes may lie in less precipitation and higher temperatures in
the west Jilin [26]. The soil EC values were lower when compared with other research, which may be
due to the regional variations of the study areas [12,15,16,48] and field sampling uncertainties [15,38].
Despite that the soil samples were collected during a desalting period, we classified the levels of soil
salinity and sodicity by expert knowledge and characteristics of the study area [14,23]. This ensures
that our results can represent the spatial distributions of soil salinity and sodicity in the region well.
Cropland (68.51%) was the major contributor to slight salinity, while in the moderate salinity area,
grassland was dominant (50.23%). Among all of the land cover types, grassland and barren land were
the major contributors to intensive salinity, with percentages 41.48% and 44.31% in area. Cropland
and grassland were also dominant contributors to slight and moderate sodicity in the area. However,
some differences existed between soil salinity and sodicity, e.g., the contribution rate of cropland to
intensive sodicity was twice of that to intensive salinity in area.

However, several aspects should be consolidated in our research. First, we did not sample the soils
from built-up land, wetland, and waters for the sake of targeting terrestrial off-town salinity issues.
However, the excluded areas were also likely affected by salt problems. Second, human activities
played critical roles in affecting the soil salinity and sodicity, e.g., worsening salinity and sodicity of
the top soils by bringing salt to soil surface through altering natural water cycles, or allowing for
excessive recharge of groundwater and salt accumulation by concentrating [1]. Built-up land is the
central of human activities, however, soil salinity and sodicity in built-up land was poorly assessed [49].
Khaledian et al. [50] found that the soil quality of built-up land was poorer than that of other land
types. Also, as wetland and waters are important natural resources, their salinity and sodicity will
directly affect vegetation and water quality [48,51]. Therefore, to accurately analyze soil degradation
by salinity and sodicity, sampling sites should be much representative, better covering all sorts of
landscapes and human activities. In future research, soil samples from wetlands and urban areas are
needed. Moreover, it is promising to retrospect soil salinity and sodicity during historical stages in
accordance with the employed inversion models, and to unveil the areal trending of salt affection
through inversion results of soil salinity and sodicity throughout multiple periods.

Land degradation, featured with land salinity mapping in our case, can be interpreted as a
decline in land quality and quantity with spatio-temporal variations. However, the soils and RS data
used in this study were for only one year. Hence, the use of richer time series of soils and RS data
would help to boost an understanding the land degradation processes. We may focus more on the
spatio-temporal dynamics of soil sodicity and salinity at diverse scales and the underlying drivers in
our future investigations.

5. Conclusions

We successfully mapped multiple forms of soil salinity and sodicity in the west Jilin Province
of China using Landsat 8 OLI imagery and improved PLSR algorithm through the nonlinear
transformation to retrieve soil salinity and sodicity. Relationships between field measurements of
salinity and sodicity, reflectance bands, and spectral indices were built up; and, spatial distributions
and occurring severity of salinity and sodicity were also analyzed. The results showed that the
most influential variables were SI3 and the band Green were transformed through “er”. For the pH
regression model, the most influential variables were SAVI and the band Coastal were transformed
through “1/r”. RMSE of pH reached 0.427 (R2 = 0.747) and that of EC reached 0.532 mS/cm (R2 = 0.698).
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By statistics from the mapping, about one-third of the study area was influenced by salinity and
sodicity. The intensive salinity, sodicity, and HSS lands were mostly distributed in the low-elevation
areas near lakes. Soil degradation due to salinity and sodicity was common with regard to land cover
in the area. Barren land was the most affected land cover that was subjected to salinity and sodicity.
Grassland was the most notable vegetated land cover affected by soil salinity and sodicity, in which
exceeding 75.00% in area was salted. By contrast, cropland was the largest affected area among all the
land cover, in which the areas that were subjected to salinity, sodicity and HSS were 0.91 × 106 hm2,
0.76 × 106 hm2, and 0.69 × 106 hm2, respectively. With regard to soil types, Chernozem had the largest
area subjected to salinity and sodicity, while Solonetz was the most serious type that was affected
by salinity. In short, our results may provide realistic guidance for land degradation monitoring,
ecological reclamation, salt-soil agriculture management, and comprehensive utilization of natural
resources in the west Jilin Province of China.
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