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Summary
Background: Artificial intelligence (AI) has recently been applied to endoscopy and 
questionnaires for the evaluation of oesophageal diseases (ODs).
Aim: We performed a systematic review with meta- analysis to evaluate the perfor-
mance of AI in the diagnosis of malignant and benign OD.
Methods: We searched MEDLINE, EMBASE, EMBASE Classic and the Cochrane 
Library. A bivariate random- effect model was used to calculate pooled diagnostic 
efficacy of AI models and endoscopists. The reference tests were histology for neo-
plasms and the clinical and instrumental diagnosis for gastro- oesophageal reflux dis-
ease (GERD). The pooled area under the summary receiver operating characteristic 
(AUROC), sensitivity, specificity, positive and negative likelihood ratio (PLR and NLR) 
and diagnostic odds ratio (DOR) were estimated.
Results: For the diagnosis of Barrett's neoplasia, AI had AUROC of 0.90, sensitivity 
0.89, specificity 0.86, PLR 6.50, NLR 0.13 and DOR 50.53. AI models’ performance 
was comparable with that of endoscopists (P = 0.35). For the diagnosis of oesoph-
ageal squamous cell carcinoma, the AUROC, sensitivity, specificity, PLR, NLR and 
DOR were 0.97, 0.95, 0.92, 12.65, 0.05 and DOR 258.36, respectively. In this task, AI 
performed better than endoscopists although without statistically significant differ-
ences. In the detection of abnormal intrapapillary capillary loops, the performance 
of AI was: AUROC 0.98, sensitivity 0.94, specificity 0.94, PLR 14.75, NLR 0.07 and 
DOR 225.83. For the diagnosis of GERD based on questionnaires, the AUROC, sen-
sitivity, specificity, PLR, NLR and DOR were 0.99, 0.97, 0.97, 38.26, 0.03 and 1159.6, 
respectively.
Conclusions: AI demonstrated high performance in the clinical and endoscopic diag-
nosis of OD.
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1  | INTRODUC TION

Artificial intelligence (AI) is being extensively applied to different 
medical settings aiming to improve the performance in the diagnosis 
of various diseases, including gastrointestinal (GI) diseases. The term 
AI generically refers to complex computer algorithms that mimic 
human cognitive functions, including learning and problem- solving.1 
Machine learning (ML) is a field of AI that can be taught to discrim-
inate characteristics of data samples and then apply experience to 
interpret previously unknown information.2 Supervised ML with 
support vector machine (SVM) is based on hand- crafted algorithms 
in which researchers, based on clinical knowledge, manually indicate 
features of interest of an input data set (labelled data set) to train 
the system to recognise discriminative features and provide appro-
priate outputs.1 Deep learning (DL) is a subset of ML which can au-
tonomously extract discriminative attributes of input data through 
artificial neural networks, often organised as convolutional neural 
networks (CNNs), which are constituted of multiple layers of non- 
linear functions.1,3

AI is increasingly being integrated into computer- aided diag-
nosis (CAD) systems for GI diseases to improve detection (CADe) 
and characterisation (CADx) of pathology. Consistently, recent 
meta- analyses concluded that the use of AI during lower endo-
scopic procedures significantly increased the detection of colorectal 
neoplasia.4,5

More recently, various studies evaluating the performance of 
AI in the diagnosis of oesophageal diseases (ODs) have been pub-
lished. The main application of AI in the upper GI tract is endoscopy 
and neoplasia detection. Ideally, upper GI endoscopies and biopsies 
should not miss lesions, but the ability to recognise endoscopic im-
ages depends on individual expertise. This is particularly relevant for 
subtle upper GI lesions, where experienced endoscopists can make 
a difference in the diagnosis. In this setting, CAD tools have the po-
tential to successfully assist both trainee and expert physicians to 
reduce variability in the detection of upper GI pathology, increasing 
the diagnostic accuracy regardless of individual expertise and virtu-
ally overcoming inter-  and intra- observer variability.6

In addition, deep learning using multi- layered neural networks 
powered by high- performance computing clusters are capable of 
recognizing complex non- linear patterns in datatypes that previ-
ously were intractable to process, such as endoscopic images and 
videos. In this setting, AI has been applied to clinical questionnaires 
for gastro- oesophageal reflux disease (GERD), pH- impedance and 
oesophageal manometry tracings, and for the evaluation of mRNA 
transcripts in the diagnosis of eosinophilic oesophagitis (EoE).

DL models are black boxes in which the input data and the output 
(diagnosis) are known, but the processes by which the diagnosis is 
achieved are not, and this may be counterproductive.6 Accordingly, 
research is already heading to understand how DL models make de-
cisions to solve interpretability gaps, and methods to understand the 
process of CNN- based choices are being developed.7,8

AI support in decision- making is a fascinating and rapidly evolv-
ing topic. Accordingly, we performed a systematic review with 

meta- analysis of currently available evidence on the performance of 
AI in the diagnosis of oesophageal diseases (ODs), updating previous 
evidence on oesophageal cancer9,10 and assessing evidence on the 
performance of AI in the detection of intrapapillary capillary loops 
(IPCLs) and in the diagnosis of benign ODs.

2  | METHODS

2.1 | Search strategy

We searched MEDLINE, EMBASE, EMBASE Classic and the 
Cochrane Library (via Ovid), from inception to 30 March 2021, to 
identify prospective and retrospective case- control type or cohort- 
type accuracy studies reporting the performance of AI systems in the 
instrumental or clinical diagnosis of malignant and benign ODs. To 
identify potentially eligible studies published only in abstract form, 
conference proceedings (Digestive Disease Week, American College 
of Gastroenterology and United European Gastroenterology Week) 
from 2000 until 30 March 2021 were also searched. The complete 
search strategy is provided in Supplementary Methods. There were 
no language restrictions. We screened titles and abstracts of all cita-
tions identified by our search for potential suitability and retrieved 
those that appeared relevant to examine them in more detail. Foreign 
language papers were translated. A recursive search of the literature 
was performed using bibliographies of all relevant studies. We also 
planned to contact authors if a study appeared potentially eligible, 
but did not report the data required, to obtain supplementary infor-
mation and, therefore, maximise available studies.

2.2 | Study selection (inclusion and exclusion 
criteria)

The eligibility assessment was performed independently by two 
investigators (PV, BB) using pre- designed eligibility forms. We in-
cluded in the systematic literature (a) studies reporting the use 
of AI in the diagnosis of ODs in adult patients, (b) studies that re-
ported the rates of true positivity, false positivity, false negativity 
and true negativity compared with the gold- standard diagnosis 
of the disease as ground truth and (c) studies that reported the 
numbers of images or videoclips included in the AI analysis. For 
the meta- analysis we included studies that (a) separately assessed 
the performance of AI with different tools when more than one 
tool was used (ie white light endoscopy [WLE], narrow band imag-
ing [NBI]), (b) separately assessed the performance of AI in the 
diagnosis of different histological types of oesophageal cancer. 
We excluded review articles, case reports and studies that applied 
AI restrictedly to radiology or histopathology from the qualitative 
analysis. We excluded (a) studies exclusively providing compre-
hensive performance scores of AI for different histological types 
of oesophageal cancer and (b) studies not reporting data for ex-
traction from the meta- analysis. Any disagreements were resolved 
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by consensus opinion among reviewers, and the degree of agree-
ment was measured with a kappa statistic. Ethical approval was 
not required because this study retrieved and synthesised data 
from already published studies.

2.3 | Data extraction and analysis

Data were extracted independently by two authors (PV, BB) on to 
a Microsoft Excel spreadsheet (XP professional edition; Microsoft, 
Redmond, WA, USA). Disagreements were resolved by consensus 
among the reviewing authors.

The following data were collected for each study: total number 
of images/cases used in the validation sets, total number of “ground 
truth” images/cases (ie human detected and histologically con-
firmed as neoplastic or non- neoplastic; diagnosis of GERD based 
on symptoms, endoscopy findings and/or pH- metry), the numbers 
of images/cases that were true positive (images/cases showing a 
neoplastic lesion detected/predicted- as- neoplastic by AI), true 
negative (images/cases showing non- neoplastic mucosa without 
AI detection or lesions predicted as non- neoplastic), false positive 
(FP, images/cases showing non- neoplastic mucosa or lesions de-
tected/predicted- as- neoplastic by AI) or false negative (images/
cases showing a neoplastic lesion missed by AI or predicted as non- 
neoplastic). In addition, year of publication, country where the study 
was conducted, type of study (prospective, retrospective), number 

of patients, diagnostic tool (endoscopy and type of endoscopic 
light, questionnaires, pH- impedance monitoring, oesophageal ma-
nometry, oesophageal biopsies), type and design of AI systems (DL, 
SVM) were also retrieved.

2.4 | Study outcomes

The primary outcomes of interest were the pooled diagnostic sensi-
tivity, specificity, positive likelihood ratio (PLR), negative likelihood 
ratio (NLR), diagnostic odds ratio (DOR) and the area under the 
summary receiver operating characteristic curve (AUROC) of the AI 
models in the diagnosis of malignant and benignant ODs.

The secondary outcome was the comparison of the performance 
of AI models versus endoscopists (without the aid of AI) in analysing 
the same validation data sets.

2.5 | Quality assessment

The degree of bias was assessed using the Quality for Assessment 
of Diagnostic Studies (QUADAS) score.11 In detail, we identified four 
domains: patient selection, index test, reference standard and flow 
and timing. The first three domains were also assessed for concerns 
regarding applicability. Each section was classified as having a high, 
low or unclear risk of bias (Figure 1).

F I G U R E  1   Quality in methodology of included studies
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2.6 | Statistical analysis

A bivariate, random- effect model was used to calculate pooled sen-
sitivity, specificity, PLR, NLR, DOR and the AUROC of AI- assisted 
models and endoscopist in detecting oesophageal lesions.12 The 
method takes into account the correlation between sensitivity and 
specificity. The estimation procedure is based on a restricted maxi-
mum likelihood approach. The model parameterisation assumes that 
the sensitivity the specificity, on the logit scale, are distributed as 
bivariate normal random variables. The pooled AUROC 95% confi-
dence interval has been estimated by performing a bootstrap resa-
mpling of the AUC value; however, some concerns are possible in 
cases of few studies included in the computation. The calculation 
has been performed by considering the extended 95% CI procedure 
of computation for meta- analysis of diagnostic accuracy studies.13

Heterogeneity has been performed by considering the Cochrane 
guidelines.14 The χ2 tests to assess heterogeneity of sensitivities and 

specificities were performed. The sources of heterogeneity were 
explored through subgroup analysis. We conducted subgroup anal-
yses according to (a) specific diagnosis (Barrett's neoplasia [BN], oe-
sophageal squamous cell carcinoma [OSCC], abnormal IPCL, GERD), 
(b) country, (c) study type, (d) AI algorithm, (e) endoscopy type, (f) 
real- time evaluation of the performance of AI and g) best and worst 
performance of different algorithms on the same image set.

The publication bias was analysed via Deeks’ test.15 The statis-
tical significance was set at a P value <0.05. The analyses were per-
formed using R 4.4.2 with mada package.16

3  | RESULTS

The search strategy generated 2568 citations. From these we identi-
fied 67 separate articles that appeared to be relevant to the study 
question. In total, 42 studies17- 58 reported on the performance of 

F I G U R E  2   Flow diagram of assessment 
of studies identified in the meta- analysis

Studies identified in literature 
search (n = 2568)

Studies retrieved for evaluation 
(n = 67)

Excluded n = 2501
(title and abstract revealed

not appropriate)

Excluded (n = 25) because:

•  Dual publication = 1

•  Did not report performance of
   AI = 3
•  Restricted to 
   histopathology/radiology 2

•  Did not include diagnosis of
   oesophageal disease = 19

Studies included in the qualitative synthesis
(n = 42)

Studies included in the quantitative synthesis
(n = 19)

- Barrett’s neoplasia = 9

- Oesophageal squamous cell carcinoma = 5

- Abnormal intrapapillary capillary loops = 2

- Gastroesophageal reflux disease = 3

Included in the qualitative
synthesis but excluded from the
quantitative synthesis (n = 23)
because:

•  No poolable data = 5
•  No extractable data = 9
•  Single study = 9
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AI in the diagnosis of various ODs and were included in the qualita-
tive synthesis (Supplementary Table S1). Among the included stud-
ies, 1917- 35 reported complete data for extraction and were included 
in the meta- analysis: 9 on BN,17- 25 5 on OSCC,26- 30 2 on abnormal 
IPCLs31,32 and 3 on GERD33- 35 (Figure 2). Agreement between inves-
tigators for the assessment of study eligibility was excellent (kappa 
statistic = 0.85).

3.1 | Studies not included in quantitative synthesis

Among the 42 studies included in the qualitative synthesis, 2336- 58 
could not be included in the meta- analysis for various reasons. They 
also included investigations on eosinophilic oesophagitis (n = 1), re-
flux monitoring (n = 1), optical endoscopic diagnosis of GERD (n = 1), 
motility assessment (n = 1), diagnosis of cytomegalovirus and her-
pes simplex virus oesophagitis (n = 1) and varices (n = 1). In par-
ticular, nine studies38,39,41- 44,48- 50 did not report complete data for 
extraction, five studies45- 47,51,58 reported non- poolable data, and 
nine36,37,40,52- 57 were the unique retrieved studies of their type. We 
included these studies in Supplementary Table S1 for completeness, 
but not in the final quantitative synthesis through meta- analysis.

3.2 | AI in the diagnosis of Barrett's neoplasia

Nine studies17- 25 reported extractable and comparable data regard-
ing AI in the diagnosis of BN (Figure 3). Eight studies were performed 
in Europe17- 25 and one in America.22 All the studies used DL models, 
except two in which an SVM algorithm was tested.17,18 Moreover, 
seven studies provided the performance of AI under WLE,17- 22,24 two 
under NBI22,25 and one provided the comprehensive performance of 
AI with WLE or NBI.23 Six studies were retrospective,18,20,22- 25 and 
three were prospective.17,19,21 Three studies evaluated the perfor-
mance of AI using real- time videos.19,21,25Three studies compared 
the performance of the AI system to that of endoscopists, and all 
these studies used WLE.17,18,20 In all the included studies, BE and BN 
were diagnosed according to histology as ground truth.

The comprehensive performance of AI in the diagnosis of BN 
with WLE or NBI, based on all the nine studies,17- 25 was: AUROC 
0.90 (CI, 0.85- 0.94), pooled sensitivity 0.89 (CI, 0.84- 0.93), specific-
ity 0.86 (CI, 0.83- 0.93), PLR 6.50 (CI, 1.59- 2.15), NLR 0.13 (CI, 0.20- 
0.08) and DOR 50.53 (CI, 24.74- 103.22) (Table 1).

For the detection of BN under WLE the pooled AUROC was 0.89 
(CI, 0.84- 0.94), pooled sensitivity 0.89 (0.82- 0.94), pooled specific-
ity 0.86 (CI, 0.82- 0.89), pooled PLR 6.43 (CI, 1.53- 2.17), pooled NLR 
0.12 (CI, 0.21- 0.01) and pooled DOR 52.03 (CI, 21.56- 125.58) in 
seven studies17- 22,24 (Table 1).

For the detection of BN under NBI in two studies,22,25 the 
pooled performance was AUROC 0.93 (CI, 0.75- 0.99), sensitiv-
ity 0.89 (CI, 0.77- 0.95), specificity 0.96 (CI, 0.47- 1.00), PLR 20.19 
(CI, 0.37- 6.23), NLR 0.11 (CI, 0.5- 0.05) and DOR 177.11 (CI, 2.9- 
10 821.79). Very wide confidence intervals are observed especially 
for DOR given that only two studies were reported in the evidence 
synthesis (Table 1).

As regard the type of AI algorithm, the pooled AUROC, sen-
sitivity, specificity, PLR, NLR and DOR of the studies that used 
DL as a backbone were 0.91 (CI, 0.86- 0.95), 0.89 (CI, 0.83- 0.93), 
0.87 (CI, 0.83- 0.90), 6.80 (CI, 1.60- 2.22), 0.12 (CI, 0.21- 0.07) and 
54.65 (CI, 24.01- 124.4), respectively, in seven studies.19- 25 The 
pooled AUROC, sensitivity, specificity, PLR, NLR and DOR of the 
studies that used SVM as a backbone17,18 were as follows: 0.87 
(CI, 0.78- 0.97), 0.89 (CI, 0.70- 0.97), 0.84 (CI, 0.72- 0.91), 5.45 (CI, 
0.91- 2.39), 0.13 (CI, 0.42- 0.04) and 42.86 (CI, 5.95- 308.51), re-
spectively (Table 1).

For the pooled performance of AI on real- time videos, the AUROC, 
sensitivity, specificity, PLR, NLR and DOR were 0.82 (CI, 0.80- 0.92), 
0.81 (CI, 0.73- 0.87), 0.84 (CI, 0.79- 0.89), 5.20 (CI, 1.25- 2.03), 0.22 (CI, 
0.94- 0.15) and 23.16 (CI, 10.35- 51.81), respectively, in three stud-
ies.19,21,25 For non- real- time studies,17,18,20,22- 24 the pooled AUROC, 
sensitivity, specificity, PLR, NLR and DOR were 0.93 (CI, 0.86- 0.96), 
0.92 (CI, 0.87- 0.95), 0.87 (CI, 0.82- 0.91), 7.11 (CI, 1.60- 2.32), 0.10 (CI, 
0.16- 0.06) and 73.32 (CI, 30.61- 175.63), respectively (Table 1).

As for retrospective studies,18,20,22- 25 the pooled performance of 
the AI algorithms was as follows: AUROC 0.93 (CI, 0.87- 0.97), sensi-
tivity 0.90 (CI, 0.85- 0.94), specificity 0.87 (CI, 0.82- 0.90), PLR 6.69 

F I G U R E  3   Performance of artificial intelligence in the diagnosis of Barrett's neoplasia

Study Sensitivity Specificity AUROC
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(CI, 1.54- 2.25), NLR 0.11 (CI, 0.18- 0.07) and DOR 59.54 (CI, 25.57- 
138.60). Instead, for prospective studies,17,19,21 the pooled diagnos-
tic efficacy of the AI algorithms was as follows: AUROC 0.87 (CI, 
0.80- 0.94), sensitivity 0.84 (CI, 0.70- 0.92), specificity 0.86 (CI, 0.79- 
0.91), PLR 5.87 (CI, 1.19- 2.28), NLR 0.19 (CI, 0.39- 0.08) and DOR 
31.66 (CI, 8.51- 117.78) (Table 1).

As for studies performed in Europe,17- 25 the pooled AUROC, 
sensitivity, specificity, PLR, NLR and DOR were 0.85 (CI, 0.84- 0.93), 
0.85 (CI, 0.81- 0.89), 0.84 (CI, 0.80- 0.88), 5.50 (CI, 1.43- 1.98), 0.17 
(CI, 0.23 −0.13) and 32.07 (CI, 18.04- 57.00), respectively. In the 
study performed in America,22 the pooled AUROC, sensitivity, spec-
ificity, PLR, NLR and DOR were 0.98 (CI, 0.90- 0.99), 0.97 (CI, 0.82- 
0.99), 0.97 (CI, 0.66- 1.00), 28.62 (CI, 0.87- 6.06), 0.04 (CI, 0.27- 0.01) 
and 816.6 (CI, 8.73- 76 349.10), respectively (Table 1).

The bootstrap AUROC comparison among groups indicates a 
significant difference across countries (P = 0.04). Moreover, the 
geographical location (Europe vs America) is a significant source 
of heterogeneity according to the χ2 test results (0.01). No sig-
nificant differences in AUROC were identified across the other 
subgroups.

As regard endoscopists with WLE, the pooled AUROC, sensi-
tivity, specificity, PLR, NLR and DOR were 0.90 (0.85- 0.95), 0.93 
(0.66- 0.99), 0.85 (0.71- 0.93), 6.17 (0.82- 2.63), 0.09 (0.48- 0.01) 
and 70.12 (4.70- 1045.93), respectively, in three studies17,18,20 
(Table 2).

For the diagnosis of BN under WLE, the performance of AI 
was comparable with that of endoscopists (P = 0.98). Moreover, 
the method of diagnosis endoscopists versus AI is not a significant 
source of heterogeneity according to the χ2 test results (0.96).

None of the included studies investigated the performance of 
endoscopists under NBI in the diagnosis of BN.

3.3 | Artificial intelligence in the diagnosis of 
oesophageal squamous cell carcinoma

Five studies provided extractable and comparable data for the 
meta- analysis on the diagnosis of OSCC26- 30 (Figure 4). All the stud-
ies were conducted in Asia and used DL techniques. Four studies 
used WLE,27- 30 and two used NBI.26,30 Two studies investigated the 
performance of AI during real- time videos,26,27 whereas three used 
stored images.28- 30 Two studies compared the performance of the 
AI system to that of endoscopists.28,30 All the studies defined OSCC 
according to histology as ground truth.

The pooled performance of AI in the diagnosis of OSCC with 
WLE or NBI was: AUROC 0.97 (0.92- 0.98), sensitivity 0.95 (0.91- 
0.98), specificity 0.92 (0.82- 0.97), PLR 12.65 (1.61- 3.51), NLR 0.05 
(0.11- 0.02) and DOR 258.36 (44.18- 1510.7) in five studies26- 30 
(Table 1).

Under WLE, the pooled performance was as follows: AUROC 
0.98 (0.95- 0.99), sensitivity 0.95 (0.86- 0.98), specificity 0.93 (0.77- 
0.98), PLR 14.42 (1.31- 4.11), NLR 0.05 (0.18- 0.02) and DOR 277.2 
(19.94- 3852.9) in four studies27- 30 (Table 1).O
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With NBI, the pooled diagnostic efficacy was as follows: AUROC 
0.98 (0.94- 0.99), sensitivity 0.96 (0.83- 0.99), specificity 0.96 (0.94- 
0.97), PLR 23.49 (2.59- 3.62), NLR 0.04 (0.19- 0.01) and DOR 537.21 
(71.81- 4018.64) in two studies26,30 (Table 1).

For the real- time diagnosis of OSCC by AI, the pooled AUROC, 
sensitivity, specificity, PLR, NLR and DOR were 0.99 (0.94- 0.99), 0.94 
(0.79- 0.99), 0.98 (0.94- 0.99), 39.4 (2.51- 4.73), 0.06 (0.23- 0.01) and 
651.92 (53.83- 7895.1), respectively, in two studies,26,27 whereas, in 
non- real- time studies,28- 30 the pooled diagnostic efficacy of AI was as 
follows: AUROC 0.96 (0.89- 0.97), sensitivity 0.96 (0.92- 0.98), speci-
ficity 0.87 (0.71- 0.95), PLR 7.29 (1.14- 2.93), NLR 0.05 (0.11- 0.03) and 
DOR 143.03 (27.61- 741.01). The pooled diagnostic efficacy on vid-
eos was comparable with that on images (P = 0.29) (Table 1). There 
were no significant differences in AUROC across the other subgroups. 
Moreover, no sources of heterogeneity were found.

As regard the pooled performance of endoscopists in the diag-
nosis of OSCC, the AUROC was 0.88 (0.83- 0.98), sensitivity 0.75 
(0.68- 0.80), specificity 0.88 (0.84- 0.92), PLR 6.46 (1.46- 2.27), NLR 
0.29 (0.38- 0.22) and DOR 22.45 (11.5- 43.84) in two studies28,30 
(Table 2). The method of diagnosis endoscopists versus AI is a signif-
icant source of heterogeneity according to the χ2 test results (0.02), 
whereas no significant differences in AUROC have been identified 
across the other subgroups (P = 0.11) (Table 2).

3.4 | Artificial intelligence in the detection of 
abnormal intrapapillary capillary loops

Two studies reported complete and poolable data on the detection 
of abnormal IPCLs and were included in the meta- analysis.31,32 
Both studies were performed in Asia, used DL algorithms, used 
fivefold cross- validation to generate five distinct data sets with 
different combinations of images and used magnified endoscopy 
(ME) with NBI. Both studies classified IPCL patterns according to 
the Japanese Endoscopic Society classification and histology as 
ground truth.59

For the detection of abnormal IPCL, the pooled performance of 
all the included AI algorithms was as follows: AUROC 0.98 (0.86- 
0.99), sensitivity 0.94 (0.67- 0.99), specificity 0.94 (0.84- 0.98), PLR 
14.75 (1.46- 3.70), NLR 0.07 (0.39- 0.01) and DOR 225.83 (11.05- 
4613.93) (Table 1).

The pooled performance of the best fold of each study was 
AUROC 0.98 (0.97- 0.99), sensitivity 0.99 (0.97- 1.00), specificity 0.97 
(0.96- 0.98), PLR 32.18 (3.18- 3.76), NLR 0.01 (0.03- 0.00) and DOR 
2779.61 (804.87- 9599.39) (Table 1).

As regard the pooled performance of the worst fold of each 
study, the pooled AUROC was 0.87 (0.66- 0.96), sensitivity 0.73 
(0.55- 0.86), specificity 0.87 (0.71- 0.95), PLR 5.74 (0.64- 2.85), NLR 
0.31 (0.64- 0.15) and DOR 18.56 (2.97- 115.85) (Table 1). The boot-
strap AUROC comparison across groups indicated a significant 
difference for the best and worst performance (P = 0.001). The al-
gorithms type was a significant source of heterogeneity according to 
the x2 test results (<0.001).TA
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3.5 | Artificial intelligence in the diagnosis of 
gastroesophageal reflux disease

Three studies used symptoms questionnaires for the AI- based di-
agnosis of GERD and were included in the meta- analysis.33- 35 Two 
studies were performed in Europe and used SVM algorithms,33,34 
whereas one study took place in Asia and used DL.35 Two studies de-
fined GERD (as erosive [ERD] or non- erosive reflux disease [NERD]) 
based on symptoms and endoscopy findings,33,35 and one study34 
used symptoms, endoscopy findings and pH- metry as ground truth 
for the diagnosis of GERD (ERD or NERD).

For the diagnosis of GERD based on questionnaires, the pooled 
performance of AI was as follows: AUROC 0.99 (0.80- 0.99), sensi-
tivity 0.97 (0.67- 1.00), specificity 0.97 (0.75- 1.00), PLR 38.26 (0.98- 
6.22), NLR 0.03 (0.44- 0.00) and DOR 1159.6 (6.12- 219 711.69) in 
three studies33- 35 (Table 1).

For studies performed in Europe and with SVM,33,34 the pooled 
AUROC, sensitivity, specificity, PLR, NLR and DOR were 0.98 
(0.97- 0.99), 0.99 (0.98- 1.00), 0.99 (0.95- 1.00), 145.88 (3.05- 6.95), 
0.01 (0.02- 0.00) and 16 120.13 (1009.41- 257436.50), respectively 
(Table 1).

The single study performed in Asia and with DL35 had sensitivity, 
specificity, PLR, NLR and DOR of 0.70 (0.59- 0.80), 0.78 (0.66- 0.87), 
3.25 (0.55- 1.81), 0.38 (0.62- 0.23) and 8.61 (2.8- 26.48), respectively 
(Table 1).

3.6 | Deeks’ funnel plot for publication bias

The Deeks' funnel plot asymmetry test indicated the absence of a 
publication bias in the included studies (P = 0.39).

4  | DISCUSSION

This systematic review with meta- analysis evaluated the perfor-
mance of AI in the diagnosis of both malignant and benign ODs. 
According to this study, AI has potential to accurately diagnose sev-
eral ODs, clinically and endoscopically.

In the diagnosis of BN, AI showed pooled AUROC, sensi-
tivity and specificity of 90%, 89% and 86%, respectively. The 
performance of AI was not significantly different from that of 
expert endoscopists with WLE. These results satisfy the optical 
diagnosis performance thresholds required by the Preservation 
and Incorporation of Valuable Endoscopic Innovations (PIVI) ini-
tiative by the American Society of Gastrointestinal Endoscopy. 
According to PIVI indications, any proposed screening technique 
aspiring to be incorporated into clinical practice, should at least 
equal, or improve, the performance of random sampling in BE (ie 
Seattle Protocol), demonstrating a per- patient sensitivity of 90% 
or greater, and a specificity of at least 80% for detecting oesoph-
ageal adenocarcinoma.60 Moreover, these results suggest that po-
tentially AI application by non- expert endoscopists may result in 
increased early detection of BN and, in the long term improved 
survival for the patients.

Endoscopic recognition of early OSCC is challenging, as lesions 
often pass unrecognised with WLE. Lugol's dye spray chromoendos-
copy has shown to increase the sensitivity of WLE in the diagno-
sis of early OSCC, and NBI significantly increases the specificity of 
oesophago- gastroduodenoscopies compared with Lugol's dye.61- 63 
However, non- expert endoscopists may not perform as good as ex-
perts when operating under NBI,63 limiting the applicability of the 
technique. In this meta- analysis, the application of AI in the diagnosis 
of OSCC comprehensively achieved pooled AUROC of 97%, pooled 
sensitivity of 95% and pooled specificity of 92%. These results are 
in keeping with those of previous meta- analyses,9,10,64- 66 in which AI 
showed good performance in the diagnosis of OSCC, BE- related or 
gastric adenocarcinoma and colorectal lesions.

We also provided a pooled estimate of the AUROC, sensitivity and 
specificity of AI in the detection of abnormal IPCLs, which are micro-
vascular structures on the surface of the oesophagus that appear as 
brown loops on ME with NBI and show morphological changes that 
strictly correlate with neoplastic invasion depth of OSCC. Moreover, 
IPCLs have been also associated to GERD diagnosis and therefore 
their detection could be helpful also in the endoscopy- based suspi-
cion of reflux disease.67 However, the optical classification of IPCLs 
requires experience and is mastered by experts only. In this study, AI 
showed pooled AUROC of up to 98% and sensitivity and specificity 
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of up to 99% and 97%, respectively, in the detection of abnormal 
IPCLs. This has relevant therapeutic and prognostic implications 
as early lesions are amenable of endoscopic treatment,68 and the 
estimation of invasion depth allows intra- procedural decisions for 
endoscopic resections.69,70

In this study, CAD tools showed good performance in the diag-
nosis of benign ODs. Investigations that applied AI to the diagnosis 
of GERD exclusively based on symptoms were included in the meta- 
analysis. In this task, AI achieved pooled AUROC of 99% and sensitiv-
ity and specificity of 97%. Because symptoms prompt patients with 
GERD to seek medical attention, AI- based questionnaires represent 
the ideal tool to timely and accurately diagnose reflux disease with-
out performing invasive procedures (ie EGDS and pH- impedance 
metry) and avoid the delay of treatment. Moreover, AI excels at solv-
ing the non- linearity inherent in the relationship between symptoms 
and underlying pathology. Therefore, DL algorithms can be used to 
reduce the number of questionnaire variables needed to achieve 
a definite diagnosis of GERD,34 allowing clinicians to administer 
shorter and more acceptable questionnaires to patients.

Several single studies that used AI for the diagnosis of benign 
ODs were retrieved from the literature and could not be included in 
the meta- analysis. This lack of data does not reflect a scarce interest 
in the subject, rather it attests the novelty of AI in the field of oe-
sophageal benign diseases. In this setting, AI models autonomously 
extracted and analysed pH- impedance tracings and also individuated 
a novel pH- impedance metric that segregated responders to GERD 
treatment from non- responders.52 The effectiveness of a real- time 
endoscopic GERD diagnosis and AI algorithm for prediction of EoE 
diagnosis were also shown.53,55 A CAD tool demonstrated to rec-
ognise stationary manometry motor patterns with accuracy,54 but 
the application of novel CAD tools to high- resolution manometry re-
cordings is yet to be evaluated. Importantly, AI demonstrated utility 
in the recognition of infrequent forms of oesophagitis (ie, CMV vs 
HSV), which may be mischaracterised even by expert endoscopists.57

There are limitations that were identified in the included studies. 
Almost every study available for this meta- analysis was retrospective. 
An inherent bias related to the nature of these studies is the conve-
nience sampling of controls (ie, selection bias). In this regard, most 
studies were based on endoscopic images only, which were often 
carefully selected among optimal stored endoscopic images. Far less 
studies tested AI with real- time endoscopic videoclips, which would 
better reflect the real life where AI models would help most. On the 
other hand, in this study, the performance of AI applied to real- time 
videos was not statistically different from that on still images, and the 
performance of AI was similar to that of endoscopists. Additionally, 
a recent meta- analysis reported that the inclusion of video clips in 
the training and validation data sets of AI models could achieve even 
higher performance than those including images alone.66

Furthermore, retrospective studies offer the possibility to 
quickly test for the first- time hypothesis that could be further inves-
tigated by larger and prospective trials.

Most of the studies were based on DL models, and others applied 
ML with SVM algorithms. Additionally, various training, validation 

and testing techniques were used in the various investigations, 
namely a different AI algorithm, a different number of training/
validation/testing images or videoclips, and a different proportion 
of images or videoclips for training, validation and testing. On the 
other hand, a recent meta- analysis concluded that AI could detect 
and characterise colorectal polyps despite the use of different AI 
algorithms and imaging techniques.71 Importantly, only two studies 
included in this meta- analysis clarified whether a CADe or a CADx 
was used.25,31 Accordingly, efforts should be put in place in future 
studies for a more rigorous distinction between detection and di-
agnosis/characterisation of lesions to overcome this limitation. Of 
note, one third of the studies included in the qualitative synthesis 
could not be included in the meta- analysis because of non- poolable 
or non- extractable data. As it has already been reported,64 this rep-
resents a major limitation of the literature regarding AI in upper GI 
diseases. Finally, AI itself has inherent limitations. A high volume of 
training data is needed to refine the performance of the algorithm. In 
addition, the high computational power of AI carries the risk of over-
fitting, in which the model is too tightly fitted to the training data 
and does not generalise towards new data.72 Furthermore, AI has a 
black- box nature, and its decision process is obscure. Therefore, reli-
ance on AI tools should never replace clinical judgement and should 
be considered of support only.

Despite the application of AI in the diagnosis of ODs is relatively 
recent, our results demonstrated high accuracy of the examined 
CAD tools for the evaluation of ODs. However, several limitations 
still hamper a capillary diffusion of CAD tools in the diagnosis of 
upper GI disorders, and further prospective and real- time studies are 
needed to fully understand what impact will AI have in the practice 
of gastroenterologists. Our investigation yielded several gaps in the 
studies that investigated AI in the diagnosis of ODs, which will need 
to be addressed and filled when designing future studies.
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