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Abstract: Tuberculosis (TB) is one of the leading causes of death due to its being an infectious disease,
caused by the airborne pathogen Mycobacterium tuberculosis (M.tb). Approximately one-fourth of
the world’s population is infected with latent M.tb, and TB is considered a global threat killing
over 4000 people every day. The risk of TB susceptibility and mortality is significantly increased in
individuals aged 65 and older, confirming that the elderly represent one of the largest reservoirs for
M.tb infection. The elderly population faces many challenges that increase their risk of developing
respiratory diseases, including TB. The challenges the elderly face in this regard include the following:
decreased lung function, immuno-senescence, inflammaging, adverse drug effects, low tolerance to
anti-TB drugs, lack of suitable diagnoses/interventions, and age-associated comorbidities. In order to
find new therapeutic strategies to maintain lung homeostasis and resistance to respiratory infections
as we age, it is necessary to understand the molecular and cellular mechanisms behind natural lung
aging. This review focuses primarily on why the elderly are more susceptible to TB disease and death,
with a focus on pulmonary function and comorbidities.
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1. Tuberculosis in the Elderly

Tuberculosis (TB) has scourged humankind through the centuries. It is considered a
global threat claiming more than 4000 lives every day, resulting in approximately 1.3 mil-
lion deaths in 2020 [1,2]. This has, in part, been aggravated by the COVID-19 pandemic,
which restricted access to TB diagnosis and treatment [3–5]. TB is a chronic inflammatory
disease caused by the bacillus Mycobacterium tuberculosis (M.tb), which is easily spread from
one person to another by airborne droplet nuclei. These aerosolized particles transit past
the nasopharyngeal region to be delivered into the distal airways, e.g., the alveolus [6].
Although M.tb typically affects the lungs (pulmonary TB), other organs can also be vulnera-
ble (extrapulmonary TB). Increased risk of TB disease and mortality are associated with
populations that have compromised immunity, such as HIV-infected individuals, infants,
and the elderly [7–9]. The main focus of this review is to discuss why the elderly are more
susceptible to TB disease and death.

The elderly population (discussed here as ≥65 years old) is expected to double to 2 bil-
lion by 2050 [10,11] and increase to almost 95 million by 2060 in the United States alone [12].
The elderly population is at remarkable risk of developing respiratory diseases, including
TB [7,13]. The global number of TB cases and incidence in the U.S. is higher in populations
over 50 years of age with an overall male:female ratio of 2:1 (2.7 per 100,000 persons: 1.7 per
100,000 persons, respectively) [14]. The elderly are considered a large reservoir for M.tb
infection, due to their increased susceptibility to new infections and reactivation of latent
M.tb infection [7,15]. Additionally, medical care for the elderly can be challenging, due to
their predisposition for chronic comorbidities and adverse drug reactions, leading to poorly
managed anti-tuberculosis treatment combined with an increased mortality rate [16–19],
predominantly because of waning immunity.
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2. Lung Function Changes in the Elderly

Natural aging of the lung is associated with continuous changes at the molecular and
physiological levels, leading to a persistent low-grade pro-inflammatory and oxidative
state, decreased lung function and impaired immune responses, which increases suscepti-
bility to lung disease and respiratory infections [13,20,21]. Impaired lung physiology with
increasing age is due to significant changes in cellular and structural composition across
the respiratory epithelium. As we age, lung function progressively declines, including
reduced respiratory muscle strength, force expiratory capacity, and vital capacity [22–25].
Importantly, lung tissue from elderly individuals has significantly decreased tissue-repair
capacity compared to young individuals [26]. Therefore, age-associated changes in the alve-
olar space, such as decreased alveolar septae and elasticity and changes in the extracellular
matrix, impair the ability of the lung environment to respond to chemical, mechanical, and
biological stressors appropriately [11,27]. Moreover, aging leads to detrimental alterations
in cellular function and cell-to-cell interactions of pulmonary resident cells and peripheral
immune cells, leading to an imbalance and decline of appropriate innate and adaptive
immune responses, associated with immuno-senescence [21,28,29]. Therefore, aging nega-
tively interferes with critical physiological and immunological mechanisms to maintain
the coordinated functions of multiple cell types to sustain cellular homeostasis. Addition-
ally, hallmarks of cellular aging, such as increased mitochondrial dysfunction, oxidative
stress, and cellular senescence, as well as decreased proteo-stasis and telomere length,
contribute to the dysregulated regenerative capacity of lung tissue, inflammation, and
immunosurveillance, leading to increased susceptibility to infection and development of
chronic respiratory diseases [11,21]. Understanding the molecular and cellular mechanisms
behind natural lung aging remains an important goal in the search for novel therapeutic
approaches to preserve lung homeostasis as we age.

3. Inflammaging and/or Immuno-Senescence?

Cell-mediated immunity is the primary mechanism of immune protection against
M.tb infection. However, changes in the lung environment as we age can modify the
cellular function of both pulmonary innate and adaptive cells [21,27]. For example, changes
occur in macrophages (decreased phagocytosis and increased superoxide production),
neutrophils (decreased phagocytosis and dysregulated chemotaxis), dendritic cells (de-
creasing antigen presentation), and T lymphocytes (reduced naïve T cell number, impaired
T cell helper responses and cytotoxic responses), amongst others [21,27,28] (Figure 1). It is
necessary to better understand how increasing age influences the pulmonary environment
at both molecular and cellular levels to appreciate how this can impact susceptibility to
develop TB disease or mortality. One hallmark of the aging lung is a heightened basal
level of pro-inflammatory mediators (termed inflammaging) [30]. Inflammaging was orig-
inally characterized as a persistent low-grade pro-inflammatory state in the circulation
that progressively increases with age [31], interfering with regulation of anti-inflammatory
responses, driving immuno-senescence, and increasing the risk of chronic diseases as
an individual ages [30,32]. The molecular composition of the alveolar lining fluid (ALF)
components (e.g., innate soluble protein/cytokines and lipids) in the lung are also sig-
nificantly altered in aged mice and elderly humans, resulting in a relatively oxidized
environment [27,33,34]. Such studies confirmed that inflammation is not limited to the pe-
riphery, but can also be found within the lung and, likely, within other tissues too. Related
to M.tb infection control, the ALF of elderly humans can differentially alter the M.tb cell
envelope surface upon contact [35–37], and alter the expression of genes involved in cell
envelope remodeling, metabolism, and virulence [38]. Significantly, M.tb exposure to ALF
from the elderly can increase bacterial virulence and pathogenicity in vivo in mice [39].
Mechanistically, age-associated functional alterations of ALF components in humans (e.g.,
decreased surfactant protein D [SP-D] binding) [33,39] are associated with decreased host
capacity to control M.tb infection in vitro [39,40], and to replenish with functional SP-D so
as to reestablish the capacity of human macrophages to control M.tb infection [39]. These
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findings confirm how the aging lung environment can alter soluble innate lung components
and impair protective functions of the lung.
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cell number. Changes in ECM, surfactant composition (ATs), cytokine production, and chemotaxis 
(PMNs). A complete description of the cellular composition and functional changes in the aging 
lung is reviewed in detail elsewhere [11,21,27]. Abbreviations: ECM (extracellular membrane), ATs 
(alveolar epithelial cells), Mφ (macrophages), PMNs (neutrophils), DCs (dendritic cells), M.tb (My-
cobacterium tuberculosis). This illustration was created with BioRender (https://biorender.com/), ac-
cessed on 18 September 2022. 

Additional studies support these findings at the cellular level, where, although alve-
olar macrophages from old mice have elevated IFN-γ-induced activation markers, they 
show reduced control of M.tb infection [41]. Similarly, although M.tb infected macro-
phages from elderly individuals have a higher basal activation and ROS production, the 
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signatures demonstrate that the aged inflammatory macrophages are more permissive to 
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Figure 1. Structural and cellular changes in the aging lung. Age-associated changes in the composi-
tion and function of pulmonary cells is characterized by increased inflammation and oxidative stress
driving impaired lung homeostasis, leading to increased susceptibility to M.tb infection. Structural
and Cellular Changes: Increased alveolar space, inflammation, oxidative stress (ATs, Mϕ), superoxide
production (Mϕ), apoptosis (ATs), fibrogenic responses, antigen presentation (DCs), CD4:CD8 ratio
and senescence (ATs). Decreased mucociliary clearance, mucous production, alveolar septae, elasticity,
phagocytosis (Mϕ, PMNs, DCs), migration and proliferation (DCs, T cells), and naïve T cell number.
Changes in ECM, surfactant composition (ATs), cytokine production, and chemotaxis (PMNs). A
complete description of the cellular composition and functional changes in the aging lung is re-
viewed in detail elsewhere [11,21,27]. Abbreviations: ECM (extracellular membrane), ATs (alveolar
epithelial cells), Mϕ (macrophages), PMNs (neutrophils), DCs (dendritic cells), M.tb (Mycobacterium
tuberculosis). This illustration was created with BioRender (https://biorender.com/), accessed on
18 September 2022.

Additional studies support these findings at the cellular level, where, although alve-
olar macrophages from old mice have elevated IFN-γ-induced activation markers, they
show reduced control of M.tb infection [41]. Similarly, although M.tb infected macrophages
from elderly individuals have a higher basal activation and ROS production, the cells are
more permissive to intracellular growth [13]. Furthermore, characterization of alveolar
macrophage subpopulations in old mice with unique inflammatory or regulatory signatures
demonstrate that the aged inflammatory macrophages are more permissive to M.tb growth
and survival [42]. Neutrophils are rapidly recruited to the mycobacterial infection site,
and their phagocytic function includes a broad range of antimicrobial properties (ROS,

https://biorender.com/
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cytotoxic proteases, and neutrophil extracellular traps [NETs]) to potentially clear infec-
tion [43]. Although aging impacts neutrophil function by decreasing NET formation and
phagocytosis, as well as causing dysregulated accumulation and chemotaxis [21,44], the
overall data about the microbicidal activity of neutrophils are often conflicting [45], and
more studies are needed to understand how aged neutrophils control M.tb infection. Aged
mice showed resistance to M.tb infection associated with an early and transient inflamma-
tory environment [46–48] and, thus, neutrophils and CD11b+ cells might contribute to early
protection. Partial depletion of neutrophils in lipopolysaccharide-treated mice (a model for
inflammation in old age) demonstrated decreased M.tb association and killing [49]. The
prolonged recruitment and activation (degranulation) of neutrophils in older individuals in
response to infection likely promotes chronic inflammation in the lung epithelium (tissue
damage) and contributes to the susceptibility of the elderly to develop, or succumb to, TB.

Altered T cell-mediated immunity is associated with advanced aging, which results in
decreased capacity to control M.tb infection [50]. Importantly, the emergence of protective
CD4+ T cells was shown to be delayed in old mice [51], suggesting a delayed accumulation
and migration of CD4+ T cells of old mice into M.tb infection sites. Adaptive CD4+ and
CD8+ T-cell compartments become compromised with age, but, despite this, old mice were
able to express a transient early resistance to M.tb that was mediated by innate CD8+ T
cells that could respond to IL-12 in an antigen-MHC-I independent manner and secrete
IFN-γ [46,48,52]. This early IFN-γ response was sufficient to limit the initial growth of M.tb.
However, old mice are unable to generate sufficient IL-2-secreting antigen-specific T cells
due to low proliferative capacity within the lungs [53–55], limiting the ability of old mice to
combat M.tb infection. Overall, chronic inflammation during aging hinders T-cell responses
and interferes with vaccine efficacy [56–58]. For example, applying a delayed-type hyper-
sensitivity model of Mycobacterium bovis BCG vaccination and tuberculin skin test in old
baboons showed impaired immune responses to antigenic challenges that varied between
tissue sites and the periphery, limiting appropriate immune memory responses [59]. A
follow-up study demonstrated a decrease or delay in T cell recall responses to the pul-
monary challenge site in aged BCG vaccinated rhesus macaques [60]. In contrast, BCG
(strain Tokyo 172) revaccination of guinea pigs (young, middle-aged, and old groups)
showed reduced bacterial growth in different organs, demonstrating the importance of a
BCG booster to confer protection, regardless of age [61]. Although BCG-inoculated aged
mice showed protection against M.tb infection comparable to young mice [62], the efficacy
was eventually lost over time [63].

4. How Comorbidities of Aging Impact TB in the Elderly

Although many studies have characterized how aging-associated changes in innate
and adaptive immunity can be key drivers for the increased susceptibility of the elderly to
respiratory infections, it remains unclear how age-associated comorbidities may contribute
to this elevated risk. Specific for TB, numerous age-related comorbidities, such as diabetes,
obesity, malnutrition, chronic respiratory diseases, cancer, and other underlying medical
conditions, can result in an increased risk for developing active TB disease [7,8]. As a result,
absolute mortality increases as the number of comorbidities and age increases [64].

A meta-analysis of the association between diabetes and active TB in several obser-
vational studies revealed that Diabetes mellitus (DM) increases the risk for active TB by
approximately three-fold in all age groups [65]. The prevalence of DM increases with age
due to baseline glucose tolerance being lower in the elderly (even without DM) [66], leading
to an elevated risk of TB compared to the younger population. The authors even concluded
that in countries such as India and China, DM may already be responsible for more than
10% of active TB cases [65]. Patients with DM and TB have an increased risk of TB treatment
failure and death compared to TB patients without DM [67]. There is a premise that diabetes
directly compromises innate and adaptive immune responses [68]. DM causes impaired
neutrophil function (chemotaxis, adherence and phagocytosis), and suppression of cytokine
production, as well as reducing non-specific IFN-γ production, which is critical for the
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initial stages of M.tb recognition [68–70]. In contrast, a new cross-sectional study revealed
unique findings on the association between DM, TB, BCG vaccination, and aging. For
instance, DM was not a risk factor in the Hispanic elderly (>60 years) community, despite its
high prevalence [71]. An additional interesting finding was that BCG vaccination conferred
a protective effect for TB in the elderly [71]. In summary, DM is considered a significant
contributing risk factor for TB, mainly in younger individuals; however, as we get older
that risk is reduced.

An additional metabolic disorder linked to DM is obesity, which negatively contributes
to the inflammation and impairment of cell-mediated immunity. Increased levels of white
adipose tissue secrete significant pro-inflammatory cytokines (TNFα, CRP, interleukins),
leading to chronic, low-grade inflammation, that is aggravated by the activation of com-
plement components (C3, C3a and C3aR, C3adesArg [ASP] and Factor D) [72]. Although
complement activation is considered a supportive component of our first line of defense
against pathogens, its detrimental (bystander) activation might lead to increased tissue dam-
age and susceptibility to TB. M.tb infected obese mice on a high-fat diet (HFD) demonstrate
increased pulmonary inflammation, IFN-γ-mediated immunopathology, and susceptibility
to M.tb infection [73]. Data that link aging, obesity, and TB are so far conflicting. A study
in Panama showed that elderly and obese “household close contacts” were at higher risk
of acquiring latent TB [74]. In contrast, an elderly and obese population in Hong Kong
demonstrated a lower risk of active TB disease [75]. Either way, we can conclude that major
health risk factors (e.g., obesity, DM) can influence optimum immune responses.

The intake of micronutrients is critical for major metabolic pathways and immune cell
functions [76]. Therefore, malnutrition is one of the most common causes of immunodefi-
ciency worldwide and is considered an important risk factor for TB [77,78]. For example,
zinc deficiency was associated with lymphoid atrophy, as well as impaired T-lymphocyte
functions, macrophage migration, and cytokine production in BCG-vaccinated guinea
pigs [79,80]. An additional study of BCG-vaccinated guinea pigs with Vitamin D3 (cal-
citriol) deficiency showed no effect on the course of TB disease in a non-vaccinated group,
but considerable loss of T-cell capabilities in a BCG-vaccinated group [81]. In addition, M.tb
infected macrophages from malnourished animals co-cultured with lymphocytes produced
less TNF [82]. Elderly individuals, mainly those who are socially isolated, are at high
risk of malnutrition, leading to malabsorption of essential nutrients necessary to stimulate
adequate immune responses [83]. For instance, malnourished aged people demonstrate
decreased CD4+ T cell subsets, monocytes and PMN density and, consequently, decreased
release of IL-1 and IL-2 cytokines, among others [84–86]. This is partially due to the signifi-
cantly low levels of albumin in malnourished elderly [84,87]. Furthermore, cross-sectional
studies showed that TB patients suffered from nutrient deficiencies in vitamins (A, B6,
D, and E), thiamin, and folate, among others, suggesting that TB can directly contribute
to malnutrition [88,89]. There is a strong connection between malnutrition and immune
impairment mainly mediated by T cells and T cells are already compromised in the el-
derly population, highlighting malnutrition as a factor that may aggravate the TB disease
outcome in this population.

In addition to metabolic disorders, several chronic lung and kidney diseases may also
represent risk factors for TB, including chronic obstructive pulmonary disease (COPD),
idiopathic pulmonary fibrosis (IPF), lung cancer, and chronic kidney disease (CKD). The
pathological features of these conditions are mainly caused by the detrimental role of aging
that drives uncontrolled inflammation and abnormal tissue repair capabilities, consequently
contributing in some cases to emphysema and pneumonia [90,91]. COPD is a lung disease
characterized by chronic airflow obstruction in response to environmental factors (mainly
cigarette smoke or wood burning fires) resulting in an irreversible inflammatory state and
lung tissue remodeling [91]. When compared to the general population, COPD patients
have a higher risk of developing active TB disease [92,93]. The authors anticipate that the
global burden of COPD will raise the incidence of active TB [92]. Another detrimental effect
of inflammaging is excessive activation of alveolar epithelial cells, fibroblasts and myofi-
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broblasts, causing aberrant production of extracellular matrix, leading to IPF [94]. Patients
with IPF have a higher TB incidence (five times greater) than the general population [95].
Although there are plenty of studies that attribute TB as a risk factor for lung cancer [96,97],
we should investigate in depth how lung cancer can influence TB susceptibility in the
elderly. It seems that cancer patients are more susceptible to TB than control groups [98,99].
A retrospective cohort study of elderly cancer patients demonstrated an increased risk
of reactivating latent TB infections, but it was not exclusively related to lung cancer. It
was also associated with other cancer types, including colon, oral and hematologic [99].
Lastly, CKD patients, particularly those undergoing dialysis, have a significantly higher
risk of pulmonary TB compared to the general population, mainly due to their immuno-
suppressed status [100–103]. Although more studies are needed to understand how aging
may exacerbate the impact of COPD, IPF, cancer or CKD in the progression of TB disease,
undoubtedly, all age-associated comorbidities have one thing in common, and these are
worsening immune system responses and inflammation, leading to an increased risk of
TB disease.

5. Sociocultural Determinants Surpass Any Age Barrier

Socioeconomic deprivation (the disadvantage of an individual due to lack of economic
and social resources), such as poor living conditions (homelessness), overcrowding, illicit
drug and alcohol use, unemployment (or having a low income), imprisonment, and lack of
education might contribute to TB susceptibility or risk of poor treatment outcomes [104,105].
There is increased TB prevalence when people are living in crowded conditions with poor
ventilation, especially elderly individuals living in institutional care (nursing homes) [106].
Undoubtedly, people with poor socioeconomic status have an increased risk for TB, and it
is accepted that social intervention, such as providing adequate nutrition and health care,
including preventative therapy for latent TB patients, and avoidance of overcrowding, can
prevent disease dissemination [104,105,107]. Thus, if we know what could be a feasible
solution to stop the spread, why does TB remain a problem? It is likely due to challenges in
TB surveillance programs (treatment supply and monitoring), or insufficient collaboration
between the health sector and the community. Either way, we must overcome these
challenges in order to control the current global TB epidemic.

6. Conclusions

Aging by itself is a very significant risk factor for developing TB. The continuous
accumulation of basal inflammation and an oxidative state as we age (inflammaging)
exacerbates the homeostatic balance of stress responses, impairing the intrinsic mechanisms
that aid cell regeneration, repair, and immunosurveillance [11,21,27]. These outcomes
consequently increase susceptibility to acute and chronic diseases and result in increased
morbidity and mortality in the elderly [11]. Aging is a highly complex and dynamic process;
thus, understanding fully how to prevent loss of, or restore, inflammatory reactivity and
detrimental effects remains elusive. Even more complicated, is the addition of all the
age-related comorbidities including DM, malnutrition, obesity, and HIV, that are currently
driving the global TB epidemic (Figure 2) [1]. Alternative perspectives about how aging
and TB are interconnected must also be evaluated. A recent study showed that TB infection
increased epigenetic perturbations (DNA methylation) that correlated with inflammation
and oxidative stress leading to premature cellular aging and increasing the risk of death in
TB patients [108]. It is critical to determine strategies to reduce age-related inflammation to
improve resistance to TB disease and quality of life in the elderly.
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Figure 2. Risk factors of TB disease and mortality in the elderly. Aging by itself is a major risk factor
to develop and succumb to TB, partially due to the waning immunity that characterizes the elderly
population. Additional risk factors, including comorbidities and socioeconomic determinants, are
key drivers to increase even more the susceptibility of the elderly to respiratory infections. This
illustration was created with BioRender (https://biorender.com/), accessed on 18 September 2022.

BCG vaccination confers protection and controls inflammation by lowering plasma
levels of types 1, 2, and 17 pro-inflammatory cytokines and type 1 interferon in elderly
persons residing in hot spots for SARS-CoV-2 infection [109]. Additionally, BCG improved
myeloid and T cell responsiveness in elderly individuals in [109]. A striking finding could
be associated with reversal of inflammaging and immuno-senescence in the elderly [110] to
potentially provide appropriate protection against other respiratory diseases, such as TB.
Antioxidant and micronutrient supplementation (vitamin C, vitamin E, and nicotinamide
adenine dinucleotide [NADH]) significantly improve T cell proliferation and responses,
as well as control cellular oxidative stress in aging [111–113]. Thus, oral supplementation
of these vitamins may represent a feasible and promising therapeutic strategy to manage
cellular oxidative stress and age-related disorders. Interestingly, vitamin consumption (A,
C, D, and E), in addition to providing antimycobacterial properties, may reduce TB risk in
smokers, especially Vitamin C, by lowering levels of oxidative stress [114,115].

Lifestyle interventions, including diet (Caloric restriction [CR]), exercise training
or avoiding frequent use of alcohol, drugs, and cigarette smoking, may provide lasting
alternatives to control inflammation and immunological protection in the elderly. The
compelling topic of moderate but not acute CR (by reducing plasma levels of glucose and
insulin) associated with extending lifespan in some animal models is still feasible [116–118],
although emerging evidence debates whether CR-related increased lifespan is universal in
all mammalian species or not [119]. Overall, lowering glucose plasma levels by restricting
food intake reduced metabolic rate and, consequently, the production of reactive oxygen
species that may cause oxidative damage [118]. In addition, increased glucose and insulin
levels (hyperglycemia and hyperinsulinemia) can cause molecular damage by glycation
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and glycoxidation, which is considered an age-related effect [120]. In addition to type of
diet, physical fitness may contribute to the metabolic health of the elderly. Older women
taking part in regular exercise training showed decreased inflammation and oxidative
stress markers in adipose tissue [121,122]. Conversely, the absence of exercise training
in women demonstrated a more pro-inflammatory environment, showing higher levels
of TNFα and IL-8 cytokines and TH 1 cell recruitment [121]. Certainly, CR and exercise
training may combat low-grade inflammation found in aging.

It is critical to consider how pharmacological interventions could exacerbate TB disease
in the elderly. Adverse effects of anti-TB drugs are significant in elderly patients, due
to the high incidence of underlying illnesses. Overall, elderly TB patients tolerate anti-
TB medicines less well compared to young individuals, which reduces the effectiveness
of anti-TB therapy and can cause neurotoxicity, skin lesions, arthralgia, hepatitis, and
gastrointestinal discomfort, among others [16,123]. The main challenge remains in trying
to avoid the sensitivity to drug reactions in a population with comorbidities that already
require the administration of multiple drugs or treatments (polypharmacy), leading to a
lowered efficiency of renal and hepatic drug clearance [15].

To conclude, molecular and physiological changes accumulate in the lungs as we age,
leading to a persistent low-grade pro-inflammatory and oxidative state. Consequently,
these detrimental changes, led primarily by inflammaging and immuno-senescence, in-
terfere with the homeostatic balance of stress responses, leading to increased oxidative
stress, mitochondrial dysfunction, cell injury, decreased lung function, impaired immuno-
surveillance, and increased susceptibility to chronic diseases and respiratory diseases, such
as TB. Waning immunity, underlying conditions (co-morbidities), and susceptibility to
adverse drug effects, among other factors, make the elderly population at higher risk for
TB diseases and mortality (Figure 2). Diagnosis and positive TB treatment outcomes are
challenging in elderly patients. For example, TB lung lesions are frequently misdiagnosed
as pneumonia [123], or the elderly present fewer classical TB symptoms (e.g., cough, fever,
night sweats and weight loss) [124]. Unfortunately, this causes a significant delay in the
clinical TB diagnosis for the elderly [124]. Although there is no diagnostic gold standard
test to detect latent-TB infection in the elderly, IGRA tests have been used for the detec-
tion of IFN-γ production (in response to specific peptides from M.tb) over the tuberculin
skin test (TST), due to its increased sensitivity [125]. Phenotypic and genotypic testing
have been implemented for the rapid diagnosis of M.tb infection, especially in low- and
middle-income countries with high burden disease rates [126], as these tests are urgently
needed, especially after the emergence of multi-drug resistant (MDR) strains. Due to the
challenges of diagnosis and treatment of TB in the elderly we should focus our attention on
(1) determining mechanisms to reduce inflammation levels at an appropriate time to avoid
TB progression, and (2) determining methods to prevent adverse drug effects to ensure
successful TB treatment outcomes in this fragile and compromised population.
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