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Abstract—Diffusion-weighted MRI is increasingly used to
study the normal and abnormal development of fetal brain in-
utero. Recent studies have shown that dMRI can offer invaluable
insights into the neurodevelopmental processes in the fetal stage.
However, because of the low data quality and rapid brain devel-
opment, reliable analysis of fetal dMRI data requires dedicated
computational methods that are currently unavailable. The lack
of automated methods for fast, accurate, and reproducible data
analysis has seriously limited our ability to tap the potential
of fetal brain dMRI for medical and scientific applications. In
this work, we developed and validated a unified computational
framework to (1) segment the brain tissue into white matter, corti-
cal/subcortical gray matter, and cerebrospinal fluid, (2) segment
31 distinct white matter tracts, and (3) parcellate the brain’s
cortex and delineate the deep gray nuclei and white matter
structures into 96 anatomically meaningful regions. We utilized
a set of manual, semi-automatic, and automatic approaches to
annotate 97 fetal brains. Using these labels, we developed and
validated a multi-task deep learning method to perform the
three computations. Our evaluations show that the new method
can accurately carry out all three tasks, achieving a mean Dice
similarity coefficient of 0.865 on tissue segmentation, 0.825 on
white matter tract segmentation, and 0.819 on parcellation.
The proposed method can greatly advance the field of fetal
neuroimaging as it can lead to substantial improvements in
fetal brain tractography, tract-specific analysis, and structural
connectivity assessment.

Index Terms—Fetal brain, segmentation, diffusion MRI, deep
learning, multi-task learning

I. INTRODUCTION

A. Background and motivation

The fetal period represents the most dynamic stage in
brain development, when a series of complex processes work
together to transform a simple neural tube into a highly
structured adult-like brain within a few months [1]. During
this period, the fetal brain is particularly vulnerable to diseases
and environmental factors that can result in lifelong neu-
rodevelopmental and psychiatric disorders [2], [3]. Therefore,
accurate and detailed assessment of the fetal brain is crucial
in neuroscience and medicine. Medical imaging has played
an important role in this regard. Magnetic resonance imaging
(MRI), in particular, has provided a wealth of information
about brain development in utero. Fetal MRI can also serve

as an indispensable complement to ultrasound imaging for
clinical fetal brain assessment [4], [5].

Diffusion-weighted MRI (dMRI), in particular, offers
unique capabilities for studying the brain. It enables mapping
of the white matter microstructure and quantitative structural
connectivity analysis [6], [7]. Fetal dMRI has witnessed an
accelerating progress in its ability to reveal important informa-
tion about the development and maturation of the brain white
matter in utero [8], [9]. However, the potential of dMRI to
probe the fetal brain still remains largely untapped [10], [11].
This is in part due to the technical challenges of analyzing
fetal brain dMRI data. Compared with adult brain imaging,
fetal dMRI data has lower signal-to-noise ratio. Fetal motion
during image acquisition can be large and unpredictable.
Another important issue is the rapid development of brain
microstructure and macrostructure, which makes it difficult to
develop methods that can work reliably across the gestational
age.

The overwhelming majority of existing dMRI data analysis
methods and software have been developed for postnatal and
adult brains. Because of the vast differences between fetal and
adult brains, these tools are not suited for fetal data. Reliable
analysis of fetal data requires dedicated computational meth-
ods, which are mostly lacking. In particular, although deep
learning has led to significant breakthroughs in dMRI analysis
[12], very little work has been done to address the needs of
fetal dMRI. A major reason for this gap in technology is
paucity of training data. Collecting and labeling fetal MRI
data is costly and challenging [13], [14]. This problem is
further complicated by the rapid and dramatic changes in the
brain size, shape, and structure in utero. In order to develop
and validate accurate machine learning methods, an adequate
number of images need to be labeled at every gestational age
to capture the inter-subject heterogeneity and the temporal
variability due to brain development [13], [15].

The goal of this work is to develop a method for automatic
delineation of fetal brain structures in dMRI. We adopt a multi-
task learning approach and develop a single model to delineate
the fetal brain in three distinct ways:

1) Tissue segmentation: This involves segmenting the brain
into four tissue classes: white matter (WM), cortical
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gray matter (CGM), sub-cortical gray matter (SGM), and
cerebrospinal fluid (CSF).

2) White matter tract segmentation: Under this scheme, a
selection of 31 WM tracts are delineated. The tract names
and abbreviations used in this paper are presented in Table
II in the Supplementary Materials.

3) Parcellation: This scheme involves parcellation of the
brain cortex into anatomically meaningful regions and
delineation of deep gray nuclei and white matter struc-
tures. It includes 96 labels, including 47 with bilateral
representation and 2 mid-line structures. The full names
and abbreviations for these regions are provided in Table
III in the Supplementary Materials.

Each of these three schemes has important practical appli-
cations. Brain tissue segmentation is crucial for quantifying
normal and abnormal brain growth, as well as for vari-
ous tractography methods, such as anatomically-constrained
tractography [16], surface-enhanced tractography [17], and
machine learning-based tractography [18]. Identification and
delineation of individual white matter tracts can enable tract-
specific analysis for studying microstructural and macrostruc-
tural alterations in specific tracts due to normal brain devel-
opment or pathologies. Parcellation of the cortex and segmen-
tation of the deep gray nuclei and white matter is essential
for defining connectome nodes for structural connectivity
assessment, where accurate and reproducible parcellation is
crucial [19]. Additionally, this may also be used in post-
processing of tractography data [20]. Therefore, the proposed
method can advance the field of fetal brain imaging in multiple
important ways.

B. Related works

1) Automatic delineation of the fetal brain in MRI and
dMRI: Most prior works on segmentation of fetal brain images
have focused on structural MRI [21]. Segmentation of the
fetal cortical gray matter (only one class label) has been
attempted in several works [22], [23]. Several studies have
segmented additional structures such as the white matter, CSF,
and subcortical structures [24], [25]. There have also been
limited efforts to parcellate the fetal brain gray matter in T2-
weighted MRI [26]. In terms of methodology, recent compar-
isons have shown that deep learning techniques outperform the
more classical approaches, such as multi-atlas segmentation
[15], [27]. However, none of these works have addressed the
segmentation of fetal brain tissue directly in the dMRI space.
Similarly, we are unaware of any prior work for automatic
delineation of fetal brain white matter tracts or parcellation of
gray matter in dMRI.

Low tissue contrast and the rapid pace of development of
neuronal structures make it difficult to accurately annotate
fetal brain images. Some prior studies have devised innovative
methods to tackle this problem. For cortical gray matter
segmentation, one study generated noisy annotations using
an automatic segmentation technique that had been originally
devised for neonatal brains [28]. For tissue segmentation,
another study used a multi-atlas method to label 272 fetal
brain images, estimated the boundary uncertainty of each

structure, and proposed a label smoothing technique to account
for noisy training labels [15]. In general, obtaining adequate
training data is a persistent challenge for developing deep
learning methods to delineate structures of interest in fetal
brain images.

2) Multi-task learning: Multi-task learning (MTL) is a
widely used approach in machine learning [29]. It refers
to approaches that jointly address multiple machine learning
tasks by leveraging the similarities and/or differences between
the tasks. It is anticipated that a well-designed MTL approach
should lead to better prediction accuracy than when training
separate models for each task [29]–[31].

Multi-task learning has also become a popular approach
in training deep neural networks [32]–[34]. By addressing
multiple tasks in a single framework, MTL approaches in
deep learning have the potential to improve data efficiency and
reduce the risk of overfitting. Numerous studies have shown
that MTL can lead to improved task performance. For medical
image analysis applications such as segmentation, too, prior
studies have demonstrated the effectiveness of MTL. It has
been shown that training a single model to segment different
organs in different imaging modalities can result in higher
segmentation performance compared with separate models
trained to perform individual segmentation tasks [35], [36]. A
review of MTL methods in deep learning can be found in [30].
Studies that are most related to the present work are multi-task
dense prediction techniques, which have been surveyed in [31].

Along with their benefits, MTL approaches pose new chal-
lenges. Different tasks may have conflicting needs, which
can reduce the performance on some of the tasks involved.
This situation is often referred to as “negative transfer” and
is very common in MTL [37]. Much research has been
devoted to automatically identifying task groupings that can
optimally benefit from MTL [38]. Proper balancing of the loss
functions for different tasks can be very challenging. Various
methods based on task uncertainty, learning speed, and task
performance have been proposed to systematically balance
different task objectives [39]–[41]. Other factors that can
significantly influence the effectiveness of MTL include model
architecture and optimization procedures. Effective sharing of
parameters/activations among the tasks [42], [43], manipula-
tion of the optimization gradients [44], and task scheduling
and prioritization [45], [46] are some of the techniques that
are widely used to enable MTL in challenging applications.

C. Contributions of this work
In this work, we developed and validated a unified frame-

work to delineate the fetal brain in the dMRI space in three
ways: (1) tissue segmentation, (2) white matter tract segmen-
tation, and (3) parcellation. The deep learning methodology
that is employed in this work is not entirely novel; rather, we
have developed a novel computational framework that builds
upon existing techniques. Nonetheless, our work is the first
attempt to delineate the fetal brain directly in dMRI. To the
best of our knowledge, no existing method offers any of the
three capabilities that are enabled by our proposed method.

In order to generate the training data, we annotated a total of
97 fetal brain images using a combination of manual labeling
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by human experts, semi-automatic methods, and automatic
techniques. The proposed method consists of a multi-task
deep learning model that leverages convolutional and attention
mechanisms. Our quantitative evaluations and human expert
assessments show that the proposed method can achieve highly
accurate results on all three tasks. In addition to sharing our
source code for model training, we release our trained model
as a Docker image to facilitate its use and integration into fetal
dMRI pipelines by other investigators.

II. METHODS

A. Image data acquisition and preprocessing

The fetal brain MRI data used in this work were acquired
at Boston Children’s Hospital. The study was approved by the
institutional review board, and written informed consent was
obtained from all participants. A total of 97 fetuses between
23 and 36 weeks of gestational age (GA) were included in this
study. The dMRI scans consisted of single-shell measurements
at b=500 that were acquired along orthogonal planes with
respect to the fetal head. Isotropic dMRI volumes at a voxel
size of 1.2 mm were reconstructed for each fetus using a
slice-to-volume registration method [47]. Subsequently, the
diffusion tensor image (DTI) was computed using a weighted
linear least squares method. A total of 28 of the subjects were
held out for final model validation. The remaining 69 subjects
were used for model development.

B. Annotation procedures

A major component of our efforts in this work included
image annotations to generate the required labels. Given the
highly different nature of the three tasks considered in this
work, we followed three different approaches to generate the
labels for each task.

1) Annotation for tissue segmentation: We generated seg-
mentation labels on the training subjects using a semi-
automatic method. In our previous works, we created a DTI
atlas of the fetal brain and manually segmented this atlas [14].
This atlas consists of 12 labels for fetuses below 31 gestational
weeks and 11 labels for fetuses at 31 gestational weeks and
above. The additional label in younger brains is because of the
presence of two transient zones (i.e., the subplate zone and the
intermediate zone).

To segment each training image in this work, we registered
the three atlases closest in gestational age to the fetus. For
example, if the fetus was at 30 gestational weeks, we registered
atlases at weeks 29, 30, and 31 To ensure accurate alignment,
we employed a deformable diffusion tensor-based registration
method [48]. The computed registration transforms were ap-
plied to the atlas segmentation maps to align them to the fetal
subject. Subsequently, the probabilistic STAPLE algorithm
[49] was applied to fuse the registered labels and arrive
at one segmentation map for the fetus. Then, two research
fellows with medical training performed manual refinements if
necessary, and a board-certified neuroradiologist with fellow-
ship training in pediatric neuroradiology reviewed the final
segmentation maps and revised them as needed. The atlas

labels [14] were merged to create four tissue segmentation
labels: WM, CGM, SGM, and CSF.

Out of the 28 test subjects, 17 were segmented using the
same approach as the training images (as described above). For
the remaining 11 test subjects, two experts manually generated
the tissue segmentation labels. These manual segmentations
were also reviewed and revised by two neuroradiologists with
fellowship training in pediatric neuroradiology. This ensured
optimal ground truth labels for validation of the new method.
Due to limitations in resources, we couldn’t manually segment
a larger number of test subjects as it required approximately
one week of an expert’s time for each image, in addition to
another expert review and revision.

2) Annotation of white matter tracts: We generated labels
depicting a set of 31 white matter tracts by following the steps
described below.

1) We computed whole-brain tractograms using the iFOD2
tractography algorithm [50]. Given the highly varying
curvatures of different tracts, we reconstructed three trac-
tograms using three different tractography angle thresh-
olds of 15◦, 20◦, and 25◦. This ensured that, in most
cases, each tract was fully reconstructed with at least one
of the angle thresholds. Each tractogram consisted of 5
million streamlines.

2) An automatic method [20] was applied to extract stream-
line bundles representing a total of 55 distinct tracts from
each of the three tractograms for each fetus.

3) An expert examined the three streamline bundles for
every fetus/tract and selected the one that most accurately
and most fully covered the anatomical tract of interest. If
none of the reconstructions was acceptable, it was marked
as such by the expert.

4) Each tract’s streamline representation was converted to
a binary mask by computing the streamline density map
and removing the voxels where streamline density was
less than the 5th percentile of non-zero density values.
We merged bilateral tract pairs (e.g., left and right IFO)
into one label, reducing the total number of tract labels to
be segmented from 55 to 31. The tract names are listed
in Table II in the Supplementary Materials.

3) Annotation for parcellation and delineation of the deep
gray nuclei and white matter structures: The segmentation
process was conducted in two main steps. First, we utilized the
initial segmentation maps obtained during the tissue segmen-
tation phase (after expert refinement but before merging into
tissue classes) to delineate all brain structures, including corti-
cal gray matter, deep gray nuclei, and white matter structures.
Subsequently, we parcellated cortex labels (see below), which
were specifically assigned to the CGM and periventricular
white matter regions. For the test subjects, these parcellated
cortex labels were applied to either manual segmentation (11
subjects) or automatic segmentation (17 subjects).

In order to generate parcellation labels, we used an auto-
matic atlas-based method with an existing T2-weighted atlas
of the fetal brain with verified parcellation labels [51]. To
achieve accurate alignment of the atlas to the subject brain,
we computed the registration transform as the composition of
two transforms. First, the T2 atlas image was registered to the
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age-matched mean diffusivity atlas image using diffeomorphic
registration [52]. Then, the fetus DTI image was registered to
its age-matched atlas DTI image via DTI-based deformable
registration [48]. If we denote these registration transforms,
respectively, with Φ1 and Φ2, the composite transform is
computed as Φc = Φ−1

2 ◦ Φ1. The composite transform is
applied to align the parcellation map from the T2 atlas to the
individual fetus’s brain in the dMRI space. The resulting par-
cellation maps were individually inspected, edited as needed,
and verified by an expert. The same automatic procedure was
applied to compute the parcellation label maps for both the
training and test images. The names of the regions and the
abbreviations used in this paper can be found in Table III in
the Supplementary Materials.

C. Deep learning-based segmentation method

1) Network design: Our proposed automatic segmentation
method is shown in Figure 1. We decided to use the DTI
map computed from the dMRI data volume as the method
input. This choice has the advantage of making the model
generalizable to different dMRI acquisition schemes (i.e.,
gradient tables) that may vary greatly between scans. The
diffusion tensor image can be estimated with typical fetal
dMRI scans and does not require tailored multi-shell scans.
Moreover, the DTI map contains the information about the
primary fiber orientation, which would be lacking in scalar
maps such as fractional anisotropy.

Our method consists of a cascade of networks that estimate
the tissue segmentation, white matter tract segmentation, and
parcellation, in that order. First, the DTI input is passed to
a patch-wise attention module to facilitate the learning of
long-range correlations early in the pipeline. The features
learned by this module (Fatt) are passed to a set of three fully
convolutional networks (FCNs) that separately address the
three segmentation tasks. There is no weight sharing among
the FCNs. In addition to Fatt, the DTI image is also included as
the input to each FCN. Moreover, the penultimate FCN feature
maps (just before the output layer) computed by each FCN
are forwarded as additional input to the following FCN(s).
A similar strategy has been adopted by at least one prior
work in MTL. For semantic instance segmentation, Dai et al.
[34] proposed a cascade of three networks for differentiating
the instances, computing the segmentation masks, and object
classification. In that work, the three sub-networks shared the
same pool of convolutional features, and only the output of
earlier tasks was passed to the following tasks. In our proposed
method, on the other hand, there is no shared feature pool.
Instead, the feature maps computed by earlier tasks are for-
warded to the more downstream task(s). The only features that
are shared among the tasks are those computed by the attention
module. Moreover, each task computes new feature maps from
the source DTI input. In summary, denoting the DTI map with
x, the input to the tissue segmentation, WM tract segmentation,
and parcellation FCNs are, respectively [x;Fatt], [x;Fatt;Fsg],
and [x;Fatt;Fsg;Ftr], where Fsg and Ftr denote the penultimate
feature maps from the tissue segmentation and WM tract
segmentation FCNs.

Fig. 1: Schematic representation of the multi-task deep learn-
ing framework. Given the DTI map as input (x), the model
computes tissue segmentation (ysg), white matter tract segmen-
tations (ytr), and parcellation (ypc).

The method works on cubes of size 643 voxels. The whole
cube is used as an input to the FCNs. For the attention module,
the cube is partitioned into 83 patches, each of size 83 voxels.
The attention module is identical to that in our prior work
[53]. We used a succession of 4 vision transformer encoders
with an embedding dimension of 512 and 4 attention heads.
We refer to [53], [54] for architectural details. The output of
the attention module is a set of six feature maps of the same
spatial dimension as the input, i.e., 643 voxels. These feature
maps are passed to the three FCNs. For the FCNs, we used
a standard U-Net design following the details of the nnU-
Net [55]. We empirically set the number of feature maps in
the first stage of each of the three FCNs to be 32. For other
options, we generally followed the default settings of the nnU-
Net framework [55].

For tissue segmentation (ysg) and parcellation (ypc), the
classes are mutually exclusive. In other words, each voxel be-
longs to one and only one class (considering the “background”
as one of the labels). Therefore, a voxel-wise softmax function
is applied to the output layer of the FCNs for these two tasks to
compute the class probabilities. For tract segmentation (ytr), on
the other hand, the classes are not mutually exclusive because
two or more tracts may cross the same voxel. Therefore, a
sigmoid function is applied to the output layer of the tract
segmentation FCN to compute an independent segmentation
probability map for each tract.

2) Multi-task learning approach and loss function: Im-
portant considerations in the design and optimization of our
method include the ordering, prioritization, and weighting of
the tasks. These are persistent issues that have been extensively
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studied in MTL research. For most of these considerations,
there are disagreements among prior studies and the optimal
solution may depend on the specifics of the tasks involved and
the performance targets. For example, in terms of task prioriti-
zation and loss weighting, some approaches such as curriculum
learning [45] and uncertainty-based weighting [39] prioritize
easier tasks, while other approaches, such as Dynamic Task
Prioritization [46], argue that more difficult tasks should be
prioritized. In this work, we ordered the tasks in the cascade
from easy to hard such that features learned from easier tasks
were forwarded to the more difficult tasks.

In order to determine which tasks were more difficult, we
performed preliminary experiments where we trained separate
models to address each of the three tasks. These experiments
showed that, based on segmentation performance metrics such
as the Dice Similarity Coefficient (DSC), the ordering of the
tasks from easier to harder was: tissue segmentation, white
matter tract segmentation, and parcellation. Our approach
(Figure 1) allocates more of the model’s capacity, in terms
of the number of weights and computations, to the harder
tasks. Moreover, the harder tasks in our application also
have less reliable training labels. Specifically, in the case of
cortical parcellation, there is a lack of consensus on cortical
boundaries, especially in early fetal brain development. The
smooth surface of the fetal brain during these stages (and
therefore lack of gyrification) makes it difficult to set accurate
boundaries, as the necessary anatomical landmarks are not
fully developed. Hence, the features learned for the harder
tasks are likely to be less useful for the easier tasks (e.g.,
tissue segmentation) that enjoy more accurate labels. Features
learned by the earlier/easier tasks, on the other hand, are
anticipated to be useful for the later/harder tasks. Specifically,
tissue segmentation is highly informative for both WM tract
segmentation and parcellation because the labels for these two
later tasks are inherently dependent on the tissue type.

In order to balance the optimization loss for the three
tasks, we learn task weightings based on homoscedastic (task-
dependent) uncertainty as proposed in [39]. This type of
prediction uncertainty only depends on the task and does
not vary as a function of the data instance. Rather than
being a model output, it is encoded as a separate set of free
parameters (one for each of the prediction labels). As shown
below, these weights are included in the optimization loss
function. Heteroscedastic (data-dependent) uncertainty may
also be learned, for example via voxel-wise loss attenuation
[56]. However, this was not explored in our work because it
would prohibitively increase the memory requirements due to
the large number of prediction classes involved. Hence, the
loss function used to optimize our model is as follows.

L(x, ysg,ytr,mtr, ypc|θ, w) =

−
∑
i=1:lsg

exp(−wi
sg) · DSC(yisg, ŷ

i
sg)

−
∑
i=1:ltr

exp(−wi
tr) ·mi

tr · DSC(yitr, ŷ
i
tr)

−
∑
i=1:lpc

exp(−wi
pc) · DSC(yipc, ŷ

i
pc)

+
∑
i=1:lsg

wi
sg +

∑
i=1:ltr

mi
tr · wi

tr +
∑
i=1:lpc

wi
pc

(1)

In this equation, the subscripts “sg”, “tr”, and “pc” re-
spectively denote the variables for tissue segmentation, white
matter tract segmentation, and parcellation. Symbols y and ŷ
denote the target label and model prediction, respectively, l∗ is
the number of classes for each task, and exp(−w∗) is the task
weight in the loss function. In order to ignore the tracts that
are missing in the training data, a zero-one array is introduced,
which we have denoted with mtr. Parameters to be optimized
include the network weights (θ), which includes the attention
model and the three FCNs, and the task weights (w).

3) Training and evaluation details: During training,
patches from random locations in the training images are
used to optimize the model. Given the large model size,
we used a batch size of 1. The model was optimized using
stochastic gradient descent with an initial learning rate of
0.0001. We reduced the learning rate by a factor of 0.90 when
the validation loss did not improve after 3 consecutive epochs.
On a test image, we applied the model in a sliding window
fashion with 25% window overlap (i.e., 16 voxels) in each
direction. The complete training code and the trained model
weights are available at https://github.com/engineeringmath/
fetal dmri delineation. A link to a Docker image of our final
model is also available at the same repository.

We refer to the proposed multi-task method (Figure 1)
simply as MTL. For comparison, we trained individual models
separately for each task. In this approach, the model would
look the same as what Figure 1 shows for the first task
(i.e., tissue segmentation task), but repeated for each task
separately. We refer to this approach as single-task learning
(STL). We also compare with nnU-Net [55] and a purely
attention-based model [53] that we refer to as ATT. For
quantitative evaluations, we use DSC, 95-percentile of the
Hausdorff Distance (HD95), and Average Surface Distance
(ASD). Given the challenges in accurately defining boundaries
for cortical parcellation, especially due to the absence of
gyrification in early fetal development, the parcellation labels
were inherently less reliable. As a result, parcellation results
were additionally reviewed by a human expert to accommodate
this variability.

III. RESULTS AND DISCUSSION

Figures 2 to 6 show example tissue segmentation, WM tract
segmentation, and parcellations computed by our model on
independent test images. For WM tract segmentation, we have

https://github.com/engineeringmath/fetal_dmri_delineation
https://github.com/engineeringmath/fetal_dmri_delineation
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Fig. 2: Example tissue segmentation maps predicted by the
proposed method for three test fetuses at 25, 30, and 33
gestational weeks.

shown examples for commissural, association, and projection
tracts separately in Figures 3, 4, and 5. Despite the small size
of our training dataset, exceptionally low image contrast, and
rapidly developing brain structures with gestational age, our
method has learned to compute accurate predictions for all
three tasks across the gestational age.

Fig. 3: Example commissural tract segmentation masks pre-
dicted by the proposed method for three test fetuses at 25, 30,
and 33 weeks of gestation. Green shows the reference tract,
and red shows the segmentation computed by the proposed
method. In this example, for the fetus at 25 gestational weeks,
the tractography-based method used to generate the “ground
truth” failed.

Table I presents a summary of the segmentation perfor-
mance metrics for the proposed method and the three com-
pared techniques. The values in this table represent the average
and standard deviation across all labels for each of the three
tasks. A comparison of MTL and STL demonstrates the
effectiveness of the proposed multi-task learning approach in
improving the segmentation accuracy. The MTL approach has

Fig. 4: Example association tract segmentation masks pre-
dicted by the proposed method for three test fetuses at 25, 30,
and 33 weeks of gestation. Green shows the reference tract,
and red shows the segmentation computed by the proposed
method.

Fig. 5: Example projection tract segmentation masks predicted
by the proposed method for three test fetuses at 25, 30, and 33
weeks of gestation. Green shows the reference tract, and red
shows the segmentation computed by the proposed method.

resulted in statistically significant improvements in the seg-
mentation performance for all three tasks. Even for the tissue
segmentation task, which is the first task in our framework and
has the most reliable labels, there was a statistically significant
improvement in DSC and HD95 compared with STL. This
indicates that the information supplied by the tract segmen-
tation and parcellation labels was effective in improving the
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Fig. 6: Example brain parcellations computed by the proposed
method on two test fetuses at 26 and 32 gestational weeks.
The parcellation computed with the multi-atlas segmentation
(MAS) method, used to generate labels on the training images,
is shown. To allow for a visual comparison, we have also
included the parcellation map of an age-equivalent T2 atlas
image. Arrows highlight specific locations where our method’s
predictions outperform the MAS-quality labels that were used
for model training.

training of the tissue segmentation FCN. Although the features
learned by the tract segmentation and parcellation FCNs are
not used by the tissue segmentation FCN, the model is trained
as a whole. In other words, as the loss function in Equation
1 shows, all network weights (θ) are optimized with respect
to the three tasks. The optimization gradient from the WM
tract segmentation and parcellation tasks have benefited the
training of the tissue segmentation FCN as well. For WM
tract segmentation and parcellation tasks, the proposed MTL
method has achieved significantly better performance metrics
than STL and the two alternative methods. Compared with
STL, the MTL approach has improved the DSC by 2.2% on
both tasks, which is statistically significant.

Figures 7 shows the segmentation accuracy metrics for
our method (MTL) for different class labels in the tissue
segmentation task. Our method has achieved higher DSC for
WM and SGM than for CGM and CSF. However, our method
also shows higher ASD for WM and SGM. This suggests
that the method has overall less accuracy in delineating the
boundaries between WM and its neighboring tissues than
delineating the boundaries between CSF and its neighboring
tissues. The higher DSC for WM compared with CSF is due
to the overall much larger volume of WM.

Because our work is the first to compute fetal tissue segmen-
tation in dMRI, we cannot directly compare our results with
prior works. Nonetheless, it can be instructive to compare our
results with the state of the art in (1) fetal tissue segmentation
in anatomical MRI and (2) adult brain segmentation in dMRI.
Despite fetal dMRI having lower tissue contrast than fetal T2-
weighted MRI, our results are on par with the state of the art
in fetal tissue segmentation in T2-weighted images [13], [22],
[23], [57]. Methods that have been designed specifically to
segment the cortical plate have reported mean DSC values

between 0.81 and 0.91 [22], [23], [36], [57], [58]. Recent
studies have shown mean DSC values of around 0.86, 0.72,
and 0.78 for segmenting WM, CGM, and SGM, respectively
on fetal structural MRI [13]. For extra-axial CSF and the
ventricles, the highest mean DSC has been approximately
0.85 and 0.90, respectively [13]. Overall, our new method
yields results that are comparable with or better than those
results. For segmenting GM, WM, and CSF in adult brain
dMRI, prior works have reported DSC values, respectively, in
the range [0.68,0.86], [0.80,0.87], and [0.60,0.83] [59]–[61],
with one recent study reporting DSC values exceeding 0.95
on high-quality HCP data [62]. Therefore, our results are also
comparable with or better than most published works on adult
brains.

Figure 8 shows the segmentation performance of the pro-
posed MTL method for individual white matter tracts. The
average DSC varies substantially for different tracts. The low-
est DSC is observed for optic radiation (OR, DSC=0.57) and
thalamo-occipital radiation (T OCC, DSC= 0.68), whereas
the highest DSC was for prefrontal-striatal (ST PREC,
DSC=0.92) and several tracts that had a DSC of approximately
0.88 including genu of the corpus callosum (CC 2), superior
thalamic radiation (STR), occipito-striatal (ST OCC), and
thalamo-prefrontal radiation (T PREF). The lower accuracy
for some of the tracts, such as OR, was mainly due to the high
variability and low accuracy in the training labels. Specifically,
due to the limited accuracy of fetal brain tractography, tracts
such as OR were often only partially reconstructed.

A comparison of our results with recent studies on adult
brains shows that the performance of our method is highly
competitive with those studies [63]–[65]. For instance, Tract-
Seg [63], which is considered to be the sate of the art method,
has reported a mean DSC of 0.84 for high-quality HCP data
and 0.82 for clinical data. The mean tract DSC for TractSeg
ranged from 0.63 to 0.90, with the highest DSC observed for
the genu of the corpus callosum (CC 2), similar to our results.
TractSeg is able to segment several smaller tracts, such as the
fornix and anterior commissure, which are not included in
our data because we were unable to reconstruct them in our
fetal whole-brain tractograms. Nonetheless, this comparison
shows that our method is comparable with the state-of-the-art
methods for adult brains.

Figure 9 shows the region-specific performance metrics for
our method in the parcellation task. Overall, the proposed
method shows consistent average performance for all parcel-
lation regions. The mean DSC for most regions is close to or
higher than 0.80, and the mean ASSD for most regions is close
to or lower than 0.50mm. The amygdala (Amyg) had the low-
est DSC (0.68), while all other regions had a DSC above 0.75.
Only three regions, namely the Supplementary Motor Area
(SMA), Postcentral Gyrus (Pstcent), and Paracentral Lobule
(PCL), had a mean ASSD higher than 0.50mm. The cortical
boundaries for these regions, as well as all other cortical areas,
are exceptionally challenging to define in the fetus, even when
done manually. As a result, it is important to interpret the
quantitative performance metrics for the parcellation task with
caution.

We are unaware of any prior works on fetal brain parcel-
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TABLE I: Comparison of the proposed multi-task learning method (MTL) with single-task learning approach (STL) and two
alternative deep learning-based segmentation techniques. The values shown are the average ± standard deviation across all
class labels in each task. Bold results are statistically better than non-bold results in each row, where we have used paired
t-tests with p = 0.01.

Task Metric MTL STL nnU-Net ATT

Tissue segmentation
DSC 0.865± 0.038 0.857± 0.051 0.843± 0.049 0.845± 0.061
HD95 1.252± 0.271 1.366± 0.305 1.372± 0.313 1.358± 0.307
ASD 0.344± 0.068 0.344± 0.073 0.357± 0.071 0.350± 0.069

Tract segmentation
DSC 0.825± 0.051 0.803± 0.061 0.794± 0.064 0.801± 0.072
HD95 1.001± 0.218 1.087± 0.234 1.116± 0.241 1.096± 0.238
ASD 0.338± 0.070 0.349± 0.082 0.350± 0.81 0.345± 0.083

Parcellation
DSC 0.819± 0.070 0.797± 0.074 0.792± 0.075 0.766± 0.106
HD95 1.164± 0.282 1.213± 0.298 1.216± 0.294 1.247± 0.319
ASD 0.360± 0.123 0.383± 0.137 0.391± 0.132 0.402± 0.152

Fig. 7: Detailed segmentation performance metrics for the proposed MTL method in the tissue segmentation task.

Fig. 8: Segmentation performance metrics for the proposed MTL method for each of the white matter tracts. Description of
abbreviated tract names can be found in Table II.

lation in dMRI. For parcellation of cortical regions in T2-
weighted fetal MRI, one study has reported a mean DSC of
0.899 and median surface distance of 2.47mm [26]. For adult
brain parcellation in dMRI, on the other hand, a recent deep
learning method achieved a mean DSC of 0.76 and a mean
test-retest DSC of 0.86. A direct comparison of our results with
those studies is nontrivial. In fact, a fair comparison across
such disparate settings may be impossible. Tissue contract in

dMRI is very different from T2-weighted images, and the fetal
brain images are characterized by low signal quality and rapid
brain development, which makes them far more challenging
than adult brains. Moreover, as mentioned above, the parcella-
tion labels are not as accurate as the tissue segmentation and
WM tract segmentation labels. This limitation probably applies
to all prior works on brain parcellation to different degrees.
Therefore, quantitative assessments that compare the method
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Fig. 9: Segmentation performance metrics for the proposed MTL method for the gray matter parcellation task. The full names
of the regions shown on the horizontal axis can be found in Table III.

predictions with the “ground truth” provide only a limited view
of performance. In this work, in addition to the quantitative
metrics reported above, an expert visually assessed the quality
of each parcellation prediction by verifying its boundaries
against known anatomical landmarks. For example, for the
precentral gyrus, landmarks included the superior and inferior
precentral sulci anteriorly, the central sulcus posteriorly, the
medial longitudinal fissure medially, and the lateral sulcus
laterally. As shown in Figure 6, the parcellations computed by
the proposed method were, in some cases, free from the local
errors that existed in the training labels. This is a common
behavior of deep learning models trained on datasets with
noisy labels [66].

Task weights (Equation 1) for our trained model were wsg =
−9.43± 0.01, wtr = −8.91± 0.23, and wpc = −9.35± 0.05.
These values indicate that the method assigned higher uncer-
tainty values to the tract segmentation task compared to the
other tasks. This can be because, for the tract segmentation,
each label (i.e., each tract) is optimized separately, while for
the other two tasks, there is a strict condition that labels are
mutually exclusive. In other words, while neighboring labels
influence each other in tissue segmentation and parcellation,
this dependency does not exist for tract segmentation resulting
in higher uncertainty in the predictions.

Despite the uniqueness of this study and the highly promis-
ing results, we acknowledge certain limitations that future
works may address. Above, we pointed out the limited ac-
curacy of the parcellation labels. In addition, the white matter
tract segmentation labels were not complete because our
annotation approach (described in Section II-B) was not able
to consistently reconstruct all of them. Some of these tracts
such as arcuate fasciculus, may not be fully developed in the

fetal brain, while others such as the cingulum certainly exist
but are challenging to automatically annotate. Improving the
annotation procedures is likely to lead to further segmentation
performance improvements compared with the results reported
in this paper.

IV. CONCLUSIONS

This work represents the first attempt to develop an auto-
matic method for delineating fetal brain tissue and structures
directly in the dMRI space. Given the small dataset size and
the difficulty of obtaining annotations, we developed a multi-
task learning approach to optimally leverage the training labels
for three separate but related tasks. Our evaluations show that
the proposed method can adequately address all three tasks in
a unified computational framework and achieve performance
levels that are comparable with the results reported in the
most recent studies on adult brains and fetal structural MRI.
Therefore, the new method can be used to automate and
drastically facilitate the processing of fetal dMRI data. Due
to the enormous potential of dMRI for studying early brain
development, the new method can significantly enhance our
ability to chart normal brain development in utero and to
assess the impact of genetic and environmental factors that
can disrupt this process.
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TABLE II: The names and abbreviations of the WM tracts considered in this work. Detailed description and visual presentation
of these tracts can be found in [9].

Classification / Subdivision / Tract Abbr. Classification / Subdivision / Tract Abbr.
Projection Tracts Association Tracts

Corticospinal tract CST Frontal Aslant tract FAT
Cortico-ponto-cerebellar Inferior fronto-occipital fasciculus IFO

Fronto-pontine tract FPT Inferior longitudinal fascicle ILF
Parieto-occipital pontine tract POPT Middle longitudinal fascicle MLF

Cortico-striatal Uncinate fasciculus UF
Fronto-orbital-striatal ST FO Commisural Tracts
Occipito-striatal ST OCC Corpus Callosum
Parieto-striatal ST PAR Rostrum CC 1
Postcentral-striatal ST POSTC Genu CC 2
Precentral-striatal ST PREC Rostral body CC 3
Prefrontal-striatal ST PREF Anterior midbody CC 4
Premotor-striatal ST PREM Posterior midbody CC 5

Thalamic radiations Isthmus CC 6
Anterior thalamic radiation ATR Splenium CC 7
Optic radiation OR
Superior thalamic radiation STR
Thalamo-occipital radiation T OCC
Thalamo-parietal radiation T PAR
Thalamo-postcentral radiation T POSTC
Thalamo-precentral radiation T PREC
Thalamo-prefrontal radiation T PREF
Thalamo-premotor radiation T PREM

TABLE III: The full names and abbreviations for the brain regions and structures considered in the parcellation task.

Zone / Segmentation Name Abbr. Zone / Segmentation Name Abbr.
Frontal Lobe Temporal Lobe

Gyrus Rectus Rect Temporal Pole (Superior) SupTP
Medial Superior Frontal Gyrus MedSupF Hippocampus Hipp
Middle Frontal Gyrus MidF Inferior Temporal Gyrus InfTemp
Olfactory Cortex Olf Middle Temporal Gyrus MidTemp
Opercular Part of the Inferior Frontal Gyrus OpIF Parahippocampal Gyrus ParaHip
Orbital Part of the Inferior Frontal Gyrus OrbIF Superior Temporal Gyrus SupTemp
Orbital Part of the Medial Frontal Gyrus OrbMF Temporal Pole (Middle) MidTP
Orbital Part of the Middle Frontal Gyrus OrbMidF Transverse Temporal Gyrus TransTemp
Orbital Part of the Superior Frontal Gyrus OrbSF Cingulate Cortex
Paracentral Lobule PCL Anterior Cingulate Cortex AntCng
Precentral Gyrus PreC Middle Cingulate Cortex MidCng
Rolandic Operculum RolOper Posterior Cingulate Cortex PostCng
Superior Frontal Gyrus SupF Insular Cortex
Supplementary Motor Area SMA Insula Ins
Triangular Part of the Inferior Frontal Gyrus TriIFG White Matter

Parietal Lobe Brainstem BS
Angular Gyrus Ang Corpus Callosum CC
Inferior Parietal Lobule IPL Internal Capsule IC
Postcentral Gyrus Pstcent Periventricular White Matter pWM
Precuneus Precuneus Deep Gray Nuclei
Superior Parietal Lobule SPL Amygdala Amyg
Supramarginal Gyrus SMG Caudate Nucleus Caud

Occipital Lobe Lentiform Lent
Calcarine Cortex Calc Thalamus Thal
Cuneus Cuneus Cerebellum
Fusiform Gyrus Fusiform Cerebellum Cb
Inferior Occipital Gyrus InfOcc
Lingual Gyrus Ling
Middle Occipital Gyrus MidOcc
Superior Occipital Gyrus SupOcc
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